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The Common Strategic Network Formation Setup

Agents need to decide whether they form links with other agents
(e.g. Jackson and Wolinsky (1996) and Bala and Goyal (2000)).

Each link is costly.

Benefits from direct links as well as indirect links.

Common assumption: every pair of agents can potentially link.



Introduction General Model Baseline model Main Model Second Model Hybrid Model Final Remarks

Social Environments

In modern life most of the social contacts are formed within social
context.

Examples - family, gym, neighborhood, alumni, department,
conference, interest group, workplace, scouts, army unit,
synagogues, churches.

Within the club, agents may connect with one another and form their
social ties.

Rivera et al. (2010, p. 106): “If networks are the fabric of
inter-personal interaction, social foci are the looms in which they are
woven”.

We suggest a model of simultaneous formation of the social
network and the social clubs’ system.
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Our View

Literature

Links are formed in a context (club).

The clubs have certain characteristics: e.g. acceptance and leaving
policies, formation rules, size effects, participation costs (time and
fees).

The characteristics of the club determine the existence and quality of
the links.

Agents choose an affiliation portfolio but care about their position in
the induced network.

Hence, club memberships and network formation are determined
simultaneously.

The goal - provide insights on network formation that cannot be
captured by the standard strategic link formation models.
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The General Story

Agents choose clubs.
Membership is a decision of the candidate only.
Membership is costly.
An agent can have multiple memberships.

Two agents that share a club are connected by a weighted link.

The weight is determined by some function:
Main Model: Club congestion function.
Second Model: Individual congestion function.

Indirect connections are depreciated (endogenous depreciation).

The agents benefit from their position in the induced weighted
network.

We are interested in the stable and efficient environments.



Introduction General Model Baseline model Main Model Second Model Hybrid Model Final Remarks

An Environment

N = {1, ..., na } is a finite set of identical agents.

S = {1, ..., ns } is a finite set of identical clubs.

The pair {i , s } implies that individual i is affiliated with club s .

Ac ≡ {{i , s } : i ∈N , s ∈ S} is the set of all possible affiliations.

An environment is a triplet G ≡<N ,S , A > where A ⊆ Ac .

Equivalent representations: bipartite graphs and hyper-graphs.

Sociologists refer to an environment as an “Affiliation Network”
(starting with Davis et al. (1941)).
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Additional Notation

Individual i ’s affiliations: SG (i )≡ {s ∈ S |{i , s } ∈ A} (sG (i )≡ |SG (i )|).
Club s ’s members: NG (s )≡ {i ∈N |{i , s } ∈ A} (nG (s )≡ |NG (s )|).
Additional affiliation: G + {i , s } ≡<N ,S , A ∪{{i , s }}>
(G −{i , s } ≡<N ,S , A\{{i , s }}>).

Additional club: let m ⊆N and let s be a vacant club,
G +m ≡<N ,S , A ∪

⋃

i∈m{{i , s }}> (we assume that one vacant
club always exists).

Gn is the set of all environments with n agents.
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The Induced Network

We are interested in the underlying network where the nodes are the
agents.

Potentially, we could have also analyzed the underlying clubs’
network:

The nodes are the clubs and two clubs are connected if they have
mutual members.
However, clubs have no objective function in our setting.

Two agents are linked if they share a club.

The quality of a link may depend on various characteristics of the
environment.
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Weights

The weight of a link between two agents i , i ′ ∈N in G is denoted by
w (i , i ′,G ) ∈ [0, 1].

We will have detailed specifications of weights that are derived from
club congestion and individual congestion in the upcoming analysis.

The weighted network g =<N , EG , WG ,w > is induced by
Environment G and weighting function w if
EG ≡ {{i , j }|i ∈N , j ∈N ,SG (i )∩SG ( j ) 6= ;} and
∀{i , j } ∈ EG : WG ,w ({i , j })≡w (i , j ,G ).
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Multiple Affiliation

Multiple affiliation is a necessary condition for indirect connections. From
Fershtman and Gandal (2011):
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Indirect Connections

A path between i and i ′ in g is a non-empty subgraph p of g where
the nodes are {x1, x2, x3, . . . , xl−1, xl } (all distinct) and the edges
are {x1 x2, x2 x3, . . . , xl−1 xl }, x1 = i and xl = i ′.

Definition (The Weight of a Path)

The weight of path p = {x1, . . . , xl } in the induced weighted network g is
W Pg (p ) =

∏l−1
k=1 W ({xk , xk+1}).
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Distance

Path p is a shortest weighted path between agents i and i ′ if there is
no path p ′ between agents i and i ′ such that W Pg (p ′)>W Pg (p ).

The shortest path between two agents may be indirect even if they
share a club in G (impossible in most network formation models).

d (i , i ′|G , w ) denotes the weight of a shortest path between agents
i and i ′ in the induced weighted network g .

d (i , i ′|G , w ) = 0 if there is no path between agents i and i ′.
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Preferences

The agent benefits from her position in the network.

Let c > 0 denote the homogeneous participation fees.

The utility of Agent i from the Environment G and the weighting
function w is:

ui (G , w , c ) =
∑

k∈N ,k 6=i

d (i , k |G , w )− sG (i )× c
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Example

Environment List of Clubs
Agents’
Network

Utilities

u1 = 3(a + δ) − 3c
∀i ∈ {2, 3, 4}:
if δ ≥ 1−a

2 :
ui = (a + δ) + 2(a + δ)2 − 2c

Otherwise:
ui = (a + δ) + 2(a + δ2) − 2c

1

2

3

4 1

2

3

4A

B

C

D

a
+
δ

a +δ
a
+δ

a +
δ 2

a +δ2

a
+
δ

2

Club A: 1 2

Club B: 1 3

Club C: 1 4

Club D: 2 3 4

The weighting function: w (i , i ′,G ) equals a +δm−1 where m is the size
of the smallest club i and i ′ share, δ ∈ (0, 1), a ∈ [0, 1) and a +δ ∈ (0, 1).
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Open Clubwise Stability

Open Clubwise Stability

An environment G is Open Clubwise Stable (OCS) for weighting function w
and membership fees c if:

∀s ∈ S ,∀i ∈NG (s ) : ui (G , w , c )≥ ui (G −{i , s }, w , c ) (No Leaving)

∀s ∈ S ,∀i /∈NG (s ) : ui (G , w , c )≥ ui (G + {i , s }, w , c ) (No Joining)

∀m ⊆N : ∃i ∈m : ui (G +m , w , c )> ui (G , w , c )⇒ (No New Club)

∃ j ∈m : u j (G +m , w , c )< u j (G , w , c )
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Efficiency

An environment G is Pareto Efficient (PE) if there is no other
environment G ′ such that ∀i ∈N : ui (G ′, w , c )≥ ui (G , w , c ) and
∃ j ∈N : u j (G ′, w , c )> u j (G , w , c ).

An environment G is Strongly Efficient (SE) if there is no other
environment G ′ such that

∑

i∈N ui (G ′, w , c )>
∑

i∈N ui (G , w , c ).

If Environment G is strongly efficient, it is also Pareto efficient, but
the opposite is not necessarily correct.
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Common Environments

The Empty Environment: G =<N ,S ,;>.

The Grand Club: Exactly one populated club and all the agents are
affiliated with it.

The All Pairs Environment: Every pair of agents shares a unique
club of size two.
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No Weights, No Membership Fees

Assumptions:
w (i , j ,G ) is identically 1.
c = 0.

Definition (Connected Environment)

G is a Connected Environment if its induced network is connected (any
pair of agents have a path between them).

Environment G is OCS if and only if G is connected.
Two disconnected agents benefit at least 1 each from forming a club
together (and suffer no costs).
Two connected agents (directly or indirectly) cannot improve by
shortening the path between them.

The connected environments are also efficient.
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No Weights, Positive Membership Fees

w (i , j ,G ) is identically 1.

c > 0.

Definition (Minimally Connected)

G =<N ,S , A > is a Minimally Connected environment if
1 The induced network is connected.
2 For every affiliation {i , s } ∈ A, the network induced by G −{i , s } is

disconnected.

Initial Characterization
1 If G is OCS and c < na −1 then G is a Minimally Connected

environment.
2 If c > na −1 the Empty environment is the unique OCS environment.
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Intuition

Intuition (for the case c < na −1):

The Grand Club environment is OCS.

The empty environment is not OCS.

Suppose G is OCS and disconnected (but not empty).

There must be a component H that contains h > 1 agents.

The maximal possible utility of an agent in H is (h −1)− c .

Since G is OCS then c < h −1.

However, any agent that is not in H can improve by h − c > 0 if she
joins any one of H ’s clubs. Contradiction.

Therefore, if G is OCS then it is connected.

Suppose G is OCS, connected, but not minimally connected.

There is an agent that wants to leave a club since it will not affect the
network connectivity (and her benefits).
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Further Classification

Let G =<N ,S , A > be a Minimally Connected environment.

Let {i , s } ∈ A.

G −{i , s } includes two components.

Denote by C−i (G −{i , s }) the component that does not include
Agent i .

Denote by c−i (G −{i , s }) the number of agents in C−i (G −{i , s }).
The Class of G is K (G ) =min{i ,s }∈A c−i (G −{i , s }).
Intuition: The environment’s “weakest affiliation” is an affiliation that
its absence leads to the minimal loss. This loss is the environment’s
class.
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Examples

List of Clubs Induced Network Class

K(G)=1
Individual 2 leaves Club A
Individual 4 leaves Club D

K(G)=2
Individual 3 leaves Club A
Individual 3 leaves Club B

K(G)=4
Every individual that

leaves Club A

1 2 3 4 5

1

2

3

4

5

1

2

3
4

5

Club A: 1 2

Club B: 2 3

Club C: 3 4

Club D: 4 5

Club A: 1 2 3

Club B: 3 4 5

Club A: 1 2 3
4 5
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Complete Characterization

Proposition

Suppose that for every environment G and for every pair of agents i and j
that share a club in G , w (i , j ,G ) = 1. Then,

1 If na −1> c > 0:
1 G is OCS if and only if G is a Minimally Connected Environment of class

K (G )≥ c .
2 The Grand Club Environment is the unique PE and SE environment.

2 If c > na −1, the Empty Environment is the unique OCS, PE and SE
environment.
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The Club Congestion Model

McPherson and Smith-Lovin (1982) p. 884

One aspect of voluntary associations which is particularly crucial for the
network of informal relations is the size of a given organization. Large
organizations generate more potential acquaintances. One could argue that
the contacts which occur in a larger organization are more “superficial” than
those in smaller organizations.

Definition (The Club Congestion Model)

A club congestion function is a non-increasing function
h : {2, 3, . . . , na }→ [0, 1].
Given a club congestion function h , the weight of a link between two
agents i , i ′ ∈N is wh (i , i ′,G ) = max

s∈SG (i )∩SG (i ′)
h (nG (s )).
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No Membership Fees

Assumptions:

1> h (2)> h (3).

c = 0.

Definition (Sub Environment)

Let G =<N ,S , A > and G ′ =<N ′,S ′, A′ > such that S ′ ⊆ S ,
N ′ =∪s∈S ′NG (s ) and A′ = {{i , s }|i ∈N ′, s ∈ S ′,{i , s } ∈ A} then G ′ is a
sub environment of G and G is a super environment of G ′.
If, in addition, N ′ =N then G ′ is a spanning sub environment of G and G
is a spanning super environment of G ′.
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Characterization

Club congestion with no membership fees

The only OCS environments are the spanning super environments of the All
Pairs environment. These are also the only environments which are efficient
(SE and PE).

Two agents that do not share a size 2 club benefit from forming such club
together.

The original value of their connection is at most max{h (3), h 2(2)}.
Since 1> h (2)> h (3) they both strictly benefit.

No other deviations are worthwhile (over-affiliation provides no value
and no costs).
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The Connections Model

Jackson and Wolinsky (1996).

Let g be an unweighted network.

u J W
i (g ) =

∑

j 6=i δ
di j −ni (g )× c , where

di j is the length of the shortest path between Agents i and j .
0≤δ≤ 1 is the depreciation factor.
c > 0 is the universal direct connection costs.
ni (g ) is the number of Agent i ’s direct neighbors.

g is pairwise stable if no agent wishes to discard a link and no pair of
agents wants to form a link.
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The Connections Model as a Club Congestion Model

Denote by P S (δ, c , n ) the set of pairwise stable networks in the
connections model and by O C S (c , n , h ) the set of OCS
environments in the club congestion model.

For every un-weighted network ḡ =<N , Ē > the corresponding
environment Gḡ =<N ,S , A > is such that for each link {i , j } ∈ Ē
there exists a club si j ∈ S that includes only agents i and j , and
there are no other populated clubs.

Gn is the set of all un-weighted networks with n agents.

GḠn ⊆Gn is the set of all corresponding environments.

The Connections model is embedded in the Club Congestion model

Let h (2) =δ and ∀m > 2 : h (m ) = 0.
1 ḡ ∈ P S (δ, c , n ) if and only if Gḡ ∈O C S (c , n , h ).
2 If G ∈Gn\GḠn then G /∈O C S (c , n , h ).
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Two Useful Environments

Let Sp = {s |nG (s )> 0} denote the set of populated clubs.

Definition (m-complete)

G is an m-complete environment (m ∈N, na ≥m ≥ 2) if:

∀i , i ′ ∈N : |SG (i )∩SG (i
′)|= 1.

∀s ∈ Sp : nG (s ) =m

Definition (m-star)

G is an m-star environment (m ∈N, na ≥m ≥ 2) if:

∀s ∈ Sp : nG (s ) =m

∀s , s ′ ∈ Sp : NG (s )∩NG (s
′) = {i }, i ∈N .
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m-complete

All Pairs
or

2-Complete
(n=4)

Environment List of Clubs Network
Clubs’

Network
Utilities

3-Complete
(n=7)

Grand Club
or

4-Complete
(n=4)

∀i ∈ {1, 2, 3, 4}:
ui = 3(a + δ) − 3c

∀i ∈ {1, . . . , 7}:
ui = 6(a + δ2)− 3c

∀i ∈ {1, 2, 3, 4}:
ui = 3(a + δ3) − c

The weights are all
a + δ2

1

2

3

4

1

2

3

4

1

2

3

4

5

6

7

1

2

3

4

1

2

3

4

1

2
3

4

5

6
7

A

B
C

D

E

F
G

A

B

C

D

E

F

A

B

C

D

E

F

G

A

A

B

C

F

E

D

A

a
+
δ

a +δ

a
+δ

a +
δ

a +δ

a
+
δ

a
+
δ

3

a +δ3

a
+δ

3

a +
δ 3

a +δ3

a
+
δ

3

Club A: 1 2

Club B: 1 3

Club C: 1 4

Club D: 2 3

Club E: 2 4

Club F: 3 4

Club A: 1 2 5

Club B: 1 3 6

Club C: 1 4 7

Club D: 2 3 7

Club E: 2 4 6

Club F: 3 4 5

Club G: 5 6 7

Club A: 1 2 3 4

The weighting function: w (i , i ′,G ) equals a +δm−1 where m is the size
of the smallest club i and i ′ share, δ ∈ (0, 1), a ∈ [0, 1) and a +δ ∈ (0, 1).
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m-star

2-Star
(n=4)

Environment List of Clubs Network Utilities

3-Star
(n=7)

∀i ∈ {1, 2, 3} :
ui = (a + δ) + 2(a + δ)2 − c

u4 = 3(a + δ)− 3c

∀i ∈ {1, . . . , 6}:
ui = 2(a +δ2) + 4(a +δ2)2 − c

u7 = 6(a + δ2)− 3c

The weights are all
a + δ2

1

2

3

4

1

2

3

4

5

6

7

1

2

3

4

1

2

3

4

5 6

7

A

B

C

A

B

C

a
+δ

a +δ

a +
δ

Club A: 1 4

Club B: 2 4

Club C: 3 4

Club A: 1 2 7

Club B: 3 4 7

Club C: 5 6 7

The weighting function: w (i , i ′,G ) equals a +δm−1 where m is the size
of the smallest club i and i ′ share, δ ∈ (0, 1), a ∈ [0, 1) and a +δ ∈ (0, 1).
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Efficiency

Efficiency is hard.

We characterize the efficient networks among those with
homogeneous club size.

Definition (m -uniform environment)

G is an m -uniform environment (m ∈ {2, . . . , na }) if
∀s ∈ S : nG (s ) =m or nG (s ) = 0.

Denote the set of all m -Uniform environments with n agents by Gm
n .

Denote the set of all Uniform environments with n agents by
G a l l

n =∪na
k=2G

k
n .
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Efficiency Result

Efficienct m-Uniform environments

Let m ∈ {2, . . . , na }. For every club congestion function h (·) and m -Uniform
Environment G ′ ∈Gm

n :
1 c ∈ [0, (m −1)(h (m )−h 2(m ))) and let G be an m -Complete

Environment. Then,
∑na

i=1 ui (G , h , c )≥
∑na

i=1 ui (G ′, h , c ).

2 c ∈ ((m −1)[h (m )−h 2(m )], (m −1)h (m )+ (na−m )(m−1)
m h 2(m )] and let

G be an m -Star Environment. Then,
∑na

i=1 ui (G , h , c )≥
∑na

i=1 ui (G ′, h , c ).

3 c ≥ (m −1)h (m ) + (na−m )(m−1)
m h 2(m ) and let G be the Empty

Environment. Then,
∑na

i=1 ui (G , h , c )≥
∑na

i=1 ui (G ′, h , c ).

This result provides motivation to study when are those architectures
stable.
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Club Congestion Functions

Graphs

Definition (Reciprocal Club Congestion)

∀m ≥ 2 : h (m ) = 1
m−1

Definition (Exponential Club Congestion)

h (m ) = a +δm−1 where δ ∈ (0, 1), a ∈ [0, 1) and a +δ ∈ (0, 1)

Interpretation:

Reciprocal: in each club, every agent divides her unit of attention
uniformly between all other club members.

Exponential: the sum of a decreasing exponent that stands for the
prospects of a potential link to materialize and a constant that
represents the role of the club as an institution that connects agents
(the ideational component of solidarity in Moody and White (2003)).
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Club Size Elasticity

Exponential with a = 0

Direct Club Value (DCV): kh (m ) = (m −1)×h (m ), the value of the
direct links induced by a club of size m .

Quick implication: the Empty environment is OCS if and only if
c ≥ max

m∈{2,...,na }
kh (m ).

Club-size elasticity of h (m ): ηh (m )≡
h (m+1)−h (m )

h (m )
1

m
for every club size

m where h (m )> 0 and ηh (m )≡ 0 otherwise.

If ∀m ∈ {2, . . . , na −1} :ηh (m )>−1 (ηh (m )<−1) then h (m ) is
said to be inelastic (elastic).

Lemma (Club Size Elasticity)

The club congestion function h (m ) is inelastic (elastic) if and only if
kh (m ) is strictly increasing (decreasing).
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Stability of m-complete

Stability of m-complete

Let m ∈N, na >m ≥ 2. Denote by k̂ the club size that maximizes the DCV.
The m -complete environment is OCS if and only if

c ∈
�

max
k∈{2,...,min{m−1,k̂}}

(k −1)[h (k )−h (m )], (m −1)[h (m )−h 2(m )]
�

If m = na the m -complete environment (the Grand Club) is OCS if and only if

c ∈
�

max
k∈{2,...,min{na−1,k̂}}

(k −1)[h (k )−h (na )], (na −1)h (na )
�

.

The existence of such membership fees is not guaranteed.
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Low Membership Fees

Recall: Spanning super environments of the All Pairs environment
are the only OCS when c = 0.

Stability of All Pairs: the only sensible deviation is replacing a club
membership with an indirect connection.

The All Pairs environment is OCS if and only if h (2)−h 2(2)≥ c > 0.

Uniqueness: environments where the smallest club between some
pair of agents is of size greater than 2 are not OCS if forming a new
club is worthwhile.

The All Pairs environment is the unique OCS if and only if

min
�

h (2)−h 2(2), h (2)−h (3)
	

≥ c > 0

Efficiency: The All Pairs is the unique OCS if and only if it is PE and
SE.
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Grand Club

Recall: The Grand Club environment is OCS and the unique efficient
environment when there is no congestion.

Two types of possible deviations:
A single agent leaves the club and gets 0.
A subset of agents form a smaller new club.

The existence of membership fees where the Grand Club is OCS is
not guaranteed.

Inelastic club congestion function: such fees exist.
Reciprocal club congestion function: c ∈ [1− 1

na−1 , 1].
Exponential club congestion function where δ ∈ (0, 1

2 ): if a = 0 such
fees never exist but if a > 0, there exists an n̄a such that
∀na : na > n̄a , such fees exist.
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Non Monotonicity

Claim

Let h (·) be an exponential club congestion function where δ ∈ (0, 1
2 ) and

a > 0. There exist two integers m̄ ≤ m̃ such that ∀m : na >m > m̄
there exists a range of membership fees in which the m -complete
environment is OCS. Moreover, there exists a range of membership fees
in which every m -complete environment where n >m > m̃ is OCS.

Thus, for such club congestion functions, m -complete environments
with either small or big clubs are OCS for some membership fees,
while no such fees exist for similar environments with intermediate
size clubs.
Example: let a = 1

32 and δ= 1
4 .

All pairs is OCS in [0, 3
16 ].

For m ∈ {3, . . . , 9} the m -complete is never OCS.
For m ≥ 10 every m -complete is OCS in [0.25,0.27].
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Stability of the m-star

Proposition Incentives Numeric

The general conditions for an m -star to be OCS are cumbersome.

Results mainly from the multiple options for coalitional deviation.

The attractive deviation involves only peripheral agents and it
depends on the severity of congestion versus the severity of the
indirect connections:

If congestion is the main issue, then a new small club is attractive.
If indirect connections are the main issue, then a new big club is
attractive.
In any case diversification is crucial.
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The 2-star

Agents in the 2-Star Environment suffer no congestion.

One relevant deviation is a new club formed by peripheral agents.

The other relevant deviation is dropping affiliation by the central
agent.

Stability of the 2-star Environment

Denote lh =min{k ∈Z|h (k )≤ h 2(2)}.
1 The 2-Star Environment is OCS if and only if

h (2)≥ c ≥ max
k∈{2,...,min{lh−1,na−1}}

(k −1)(h (k )−h 2(2))

2 Let h (·) be an elastic club congestion function. The 2-Star Environment
is OCS if and only if h (2)≥ c ≥ h (2)−h 2(2).
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Congestion vs. Depreciation

0 h (2)−h 2(2) h (2)−h (3)
Congestion is the stronger

friction - h (3)< h 2(2):

AP 2-Star
c

0 h (2)−h 2(2) 2(h (3)−h 2(3)) h (2)

Depreciation and con-

gestion are equal -

h (3) = h 2(2):

AP
2-Star

3-Complete 2-Star
c

0 h (2)−h (3) h (2)−h 2(2) 2(h (3)−h 2(3))

Depreciation is the

stronger friction - h (3) >

h 2(2):

AP
AP

3-Complete 3-Complete
c
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Insight

The standard strategic theory of network formation restricts clubs to
be of size 2.

Therefore, the main trade-off is costly direct connections versus
depreciated indirect connections.

In particular, cliques can occur only if the linking costs are low.

We endogenize the club size.

We argue that this trade-off includes another force - congestion.

For example, cliques can occur in high costs environment if
congestion is less of a friction compared to indirect connection
depreciation.
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3-star

These environments are hybrids.

3-star

Let na ≥ 9 and let h (·) be the exponential club congestion function with
a = 0. The 3-Star Environment is OCS if and only if
c ∈ [δ+δ3−2δ4, 2δ2]. This range exists if and only if δ≥ 1

2 .

When the 3-star is never OCS its because either:
The membership fees are too high, the central agent would leave the
congested clubs.
Or, the membership fees are too low, two peripheral agents that do
not share a club gain by forming a size 2 club:

Shorter path to the other peripheral agent.
Solve both congestion and indirect connections
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The Individual Congestion Model

The observation: Club affiliations require attention and time.

Agents with a thin portfolio of affiliations are able to pay attention to
each of their memberships and to form high quality connections with
other members.

Agents who are members of many clubs, possess many weak direct
relations since they devote little attention to each of their
memberships.

Definition (The Individual Congestion Model)

An individual congestion function is a non-increasing function
b : {2, 3, . . . , ns }→ [0, 1].
Given an individual congestion function b , the weight of a link between
two agents i , i ′ ∈N in Environment G is,

wb (i , i ′,G ) = b (sG (i ))× b (sG (i
′))
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Example

Environment List of Clubs Frictions
Weighted
Network

Utilities

b (1) = 1

b (2) = 3
4

b (3) = 2
3

c = 1
4

u1 =
3
4 + 2 × 9

16 −
1
4 = 1 5

8

u2 = 3 × 3
4 −

1
2 = 1 3

4

u3 =
3
4 + 1 + 9

16 −
1
4 = 2 1

16

u4 =
3
4 + 1 + 9

16 −
1
4 = 2 1

16

1

2

3

4 1

2

3

4A

B

3
4

3
4

3
4

1

Club A: 1 2

Club B: 2 3 4
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Main Result

Stability and Efficiency

In the Individual Congestion model where b (1)> b (2)> 0:
1 Suppose c ∈ [0, (na −1)b 2(1)):

1 The Grand Club environment is the unique SE and PE environment.
2 The Grand Club environment is OCS.

2 Let G be a non Grand Club environment.
1 If G is OCS and non-empty then the Grand Club environment is OCS.
2 For every c ∈ [0, (na −1)b 2(1)) there exists an individual congestion

function such that G is not OCS while the Grand Club environment is
OCS.

3 Suppose c > (na −1)b 2(1):
1 The Empty environment is the unique SE and PE environment.
2 The Empty environment is the unique OCS.
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Huge Multiplicity

Calculation

The general intuition: joining existing or new clubs are unattractive
deviations (individual congestion and membership costs).

Suppose c = 0 and b (1)> b (2).

The Grand Club environment is OCS.

Consider the individual congestion function b (k ) such that b (1) = 1,
b (2) = 3

4 and ∀k > 2 : b (k ) = 0.

The circle with n ≥ 4 agents (n clubs of 2 agents each) is also OCS.

Intuition 1: Due to individual congestion, joining an additional
(existing or new) club harms existing connections.

Intuition 2: Due to depreciation, reducing individual congestion does
not compensate for the loss of a short path.
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m-complete

Stability of m-complete

Let m ∈N, na >m ≥ 2 and denote γ≡ na−1
m−1 . An m -complete environment

is OCS if and only if

c ∈
�

0, (m −1)b 2(γ)[1− b (γ−1)b (γ)]− (na −m )b (γ)[b (γ−1)− b (γ)]
�

Key observation: A necessary condition for a formation of a new club
to be an attractive deviation, is that it provides each member with at
least one new direct neighbor.
Therefore, in m -Complete environments the formation of new clubs
is never an attractive deviation.
For similar reasons no agent wishes to join an existing club.
Thus, an m -Complete environment is OCS if the indirect
connections friction induced by leaving a club is not compensated by
the improved quality of the direct connections and the reduced
membership fees.
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The Hybrid Model

Definition (The Hybrid Model)

Given a club congestion function h (·) and an individual congestion
function b (·), the weight of a link between two agents i , i ′ ∈N in the
weighted network g induced by Environment G =<N ,S , A > is

wh b (i , i ′,G ) = b (sG (i ))× b (sG (i
′))× max

s∈SG (i )∩SG (i ′)
h (nG (s ))
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The Co-Authors Model

Jackson and Wolinsky (1996).

Each agent distributes one unit of attention equally between her
direct relations.

The value of each relation depends only on the attention devoted to
the link by the two end agents.

ni (g ) is the number of Agent i ’s direct neighbors.

u C A
i (g ) =

∑

j 6=i :{i , j }∈g

[
1

ni (g )
+

1

n j (g )
+

1

ni (g )n j (g )
].

g is pairwise stable if no agent wishes to discard a link and no pair of
agents wants to form a link.

Denote by C A(n ) the set of pairwise stable networks with n agents.
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The Co-Authors Model as a Hybrid Model

A D -Truncated model: A value from a path p = {x1, . . . , xl } is the
multiplication of the weights on its links if l −1≤D and zero
otherwise.

O C S (c , n , h , b , D ) is the set of OCS environments with n agents
where the club congestion function is h , the individual congestion
function is b , the truncation parameter is D and the membership
fees are c .

We use the previous definitions for the comparison of un-weighted
networks and environments.

The Co-Authors Model is embedded in the 1-Truncated Hybrid model

Let h (2) = 1, ∀m > 2 : h (m ) = 0, b (k ) = 1
2 [1+

1
k ].

1 ḡ ∈C A(n ) if and only if Gḡ ∈O C S ( 14 , n , h , b , 1).
2 If G ∈Gn\GḠn then G /∈O C S ( 14 , n , h , b , 1).
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Individual Congestion vs. Club Congestion

We use the Grand Club to demonstrate the interplay between the
various frictions.

GC is OCS if and only if

(na −1)× b 2(1)×h (na )≥ c ≥

max
§

0, max
k∈{2,...,na−1}

�

(k −1)× [h (k )× b 2(2)−h (na )× b 2(1)]

− (na −k )×h (na )× b (1)× [b (1)− b (2)]
	

ª

The deviating agents become members of two clubs.

The quality of their links with non-deviating agents decrease
(incentive to deviate to large clubs).
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Alternative Club Rules

Very specific club rules are implicit in the model.

Open Clubwise Stability assumes that membership is open for all
agents (as long as the participation fees are paid).

Alternative club acceptance rules:
Membership requires approval of (a subset of) the existing club
members.
Membership quotas.
Membership criteria.
Exclusivity rules.

Other implicit specifications - leaving rules, rules for forming new
clubs, coordination (within and between agents).

Assumption: all clubs in a specific environment have the same,
exogenously given, rules.
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Closed Clubwise Stability

Closed Clubwise Stability

An Environment G is Closed Clubwise Stable if the following conditions
hold:

1 No Leaving:
∀s ∈ S ,∀i ∈NG (s ) : ui (G , w , c )≥ ui (G −{i , s }, w , c ).

2 No New Club Formation:
∀m ⊆N : ∃i ∈m : ui (G +m , w , c )> ui (G , w , c )⇒
∃ j ∈m : u j (G +m , w , c )< u j (G , w , c ).

3 No Joining: ∀s ∈ S ,∀i /∈NG (s ) :
ui (G , w , c )≥ ui (G + {i , s }, w , c ) O R
∃ j ∈NG (s ) : u j (G , w , c )> u j (G + {i , s }, w , c ).

OCS implies CCS.
When there is no congestion, no negative externalities on the
incumbents from admitting a new member.
Therefore, when there is no congestion OCS and CCS coincide.
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Closed Clubwise Stability in the Club Congestion Model

When there are no membership fees OCS and CCS coincide.

G is the Almost Grand Club environment if there is exactly one
populated club and all but one agent are affiliated with it.

Assume h (·) be such that kh (na −1)> kh (na )> max
k∈{2,...,na−2}

kh (k )

Let kh (na )> c > max
k∈{2,...,na−2}

kh (k ) and na > 3.

No agent wants to leave the populated club.

No subset of agents wants to form a new club.

The Almost Grand Club environment is not OCS since the isolated
agent wishes to join the populated club.

But, it is CCS since such a deviation will strictly hurt the incumbents.

For the incumbents one new direct connection does not compensate
for the weaker direct connections to all other incumbents due to
stronger club congestion.

Implication: Different club rules may induce different dynamics.
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Closed Clubwise Stability in the Individual Congestion Model

Let G be the na+1
2 -Star environment and denote the central

individual by i and the two populated clubs by s and t .

Suppose na is odd, b (k ) = 1
k+1 and c = 1

18 .

No agent wants to leave a club (G is minimally connected and c is
low enough).

No subset of agents wants to form a new club (the damage to
existing direct connections is substantial).

The na+1
2 -Star environment is not OCS since every agent j 6= i

wishes to join the other club.

But, it is CCS since Agent i opposes such an admission (her
connection with Agent j deteriorates).

Under non-unanimous majority rule, G is not CCS.
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Clustering

Real life networks are highly clustered: The probability of two
individuals who share a common neighbor to be connected is much
higher than expected if connections were random.
The literature attributes the high clustering to one of two
explanations:

“Preference for transitivity”: Attraction is based on the “network”
properties of the individuals.
“Homophily”: Attraction is based on “non-network” properties of the
individuals.

Recent literature attempts to provide econometric tools for estimating
network formation models that incorporate these explanations.
Mainly concerned with homophily on unobservables (e.g.
Goldsmith-Pinkham and Imbens (2013), Mele (2017), Graham
(2015, 2016))
Another concern is that neglecting to account for self-selection into
social contexts leads to an over-estimation of the importance of
these factors (Rivera et al. (2010) and Miyauchi (2016)).
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Our Model and Clustering

Indeed, our setting provides a third explanation.

In our framework, a network must exhibit high clustering since the
individual’s neighbors form a tightly knit group.

we propose clubs as linking platforms rather than individuals’ linking
preferences as the fundamental that drives high clustering.

Requires a dataset where the social network (e.g. friendships) and
the affiliation information (e.g. social clubs memberships) were
gathered independently.

We hypothesize that the cliques identified in the social network,
should be traced back to the clubs’ affiliations information (indirect
evidence in Kossinets and Watts (2006)).
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Other Environments

R&D partnerships, joint ventures etc. (the projects are clubs of
firms).

Interlocking directorates (e.g. Mintz and Schwartz (1981), a director
is a club of firms and a board of a firm is a club of directors).

Standardization committees (Bar and Leiponen (2014) and Leiponen
(2008), a committee is a club of firms).

Open source code development (Fershtman and Gandal (2011), a
project is a club of developers and a developer is a club of projects).

Trade (a trade agreement is a club of countries).
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Take Home

Novel framework for strategic network formation of undirected
weighted networks.

Agents choose affiliations and benefit from their position in the
underlying network.

The framework provides insights that are absent from the link
formation models.

Empirical implications: clustering.
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Thanks



Appendix

Clubwise Stability of m-star

Proposition

Let h (·) be a club congestion function. Denote:

γ≡ na−1
m−1 , ηk ≡ d kγ e, lh =min{k ∈Z|h (k )≤ h 2(m )}.

Jh (m ) = (m −1)[h (m +1)−h 2(m )].

F N Sh (k , m , na ) = (k −1)[h (k ) + (m −2)h (k )h (m )− (m −1)h 2(m )].

F N Ih (k , m , na ) =
(k −1)h (k )− (ηk −1)h (m ) + (na −m − (k −ηk ))h (m )h (k )− (na −m )h 2(m ).

F N Lh (k , m , na ) = (k −ηk )(h (k )−h 2(m )).

1 If γ≥m the m -star environment is OCS if and only if

kh (m )≥ c ≥max{ max
m≥k≥2

F N Sh (k , m , na ), max
min{lh ,na }>k>m

F N Lh (k , m , na )}

2 If γ<m the m -star environment is OCS if and only if

kh (m )≥ c ≥max{Jh (m ), max
γ≥k≥2

F N Sh (k , m , na ), max
m≥k>γ

F N Ih (k , m , na )



Appendix

Clubwise Stability of the m -star

back

Leaving a club:
Lost connections cannot be replaced.
The damage is less severe for the central agent.
Hence, the membership fees should be low enough for the central
agent to keep all her affiliations.

Joining an existing club:
Irrelevant for the central agent.
For a standard agent it replaces m −1 indirect connections with
m −1 direct connections (congested and costly).
The membership fees should be high enough for the peripheral
agents to refrain from joining existing clubs.
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Clubwise Stability of the m -star

back

Forming a new club:
A standard agent gains more than the central agent.

If the new club is smaller than the original, the central agent gains only
from the direct connections while the others also gain from increasing
the value of their indirect paths.
Otherwise, the central agent gains nothing while the others may gain
from the direct links.

Members of other clubs are always better partners.
If the new club is smaller than the original size, sharing the new club
with a new partner increases the weights of all the indirect paths to
other members of her club.

The membership fees should be high enough to deter the agents
from coordinating on new clubs.
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m -star - Exponential congestion
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Appendix

m -star - Exponential congestion - continued

back

The reason for the non-monotonicity lies in the complicated incentive
structure.

When the a is low the relative importance of congestion is high.
Hence, the effective lower bound is induced by a deviation of a small
club, that improves on the congestion.

When the a is high the relative importance of congestion is low.
Hence, the effective lower bound is induced by a deviation of a large
(well diversified) club, that improves on the indirect connections.

In the 2-star such a transition does not exist since there are no
congestion issues.
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Very Brief Literature Orientation
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Sociological Theory:
Simmel (1908/1955) - The Web of Group Affiliations.
Kadushin (1966) - Social Circles.

Economic Theory:
Strategic Formation of Social Networks (surveys in Jackson (2008)
and Goyal (2007)).
Games over Environments: Hsieh et al. (2015).
Contractual Stability: Caulier et al. (2013b, 2015) and Caulier et al.
(2013a).
General Preferences: Mauleon et al. (2015).
Multi-Links: So et al. (2014) and Jun and Kim (2009).
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Individual Congestion Only

Back

Consider a circle with 4 agents (4 clubs of 2 agents each) when
b (1) = 1, b (2) = 3

4 and ∀k > 2 : b (k ) = 0.

The weight of each link is ( 34 )
2.

Therefore, each agent’s utility is 2× ( 34 )2+ (
3
4 )

4 > 1.44.

The utility of an agent that leaves one of her clubs (and becomes the
end of a line) is 3

4 + (
3
4 )

3+ ( 34 )
5 < 1.41.

Also, no agent wants to join an existing club or form a new club since
b (3) = 0.

Thus, the circle is OCS.



Appendix

Club Congestion Functions
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Elasticity of Exponential Club Congestion Functions (a = 0)
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