Random Walks and Electrical Networks 3

Reminder: \(G = (V, E) \) graph, \(e \in V \)

\[\sum_{e \in E} c_e \] (c(e) \in \mathbb{E}) Positive numbers (conductance)

Random Walk:
\[P(X_{t+1} = V | X_t = u) = \frac{c_{uv}}{\sum_{w : w \in V} c_{wu}} \]

Directed Edges

Flow: \(\Theta : E \rightarrow \mathbb{R} \) satisfying node law

\(\Theta \) at any vertex \(v \neq a, z \) and is antisymmetric.

\[\|\Theta\|_1 = \sum_{u \in V} \Theta_{au} \] Strength

Theorem (Thomson’s Principle):

\[R_{eff}(a \rightarrow z) = \inf \{ \Theta(\Theta) : \Theta \text{ flow, } \|\Theta\|_1 = 1 \} \]

\[e_{(\Theta)} = \frac{1}{2} \sum_{e \in E} \Theta(e)^2 = \sum_{e \in E} c_{ee} \Theta(e)^2 \]

We saw an extension to infinite graphs where we had \(R_{eff}(a \rightarrow \infty) \).

Connection to Random Walk:

\[R_{eff}(a \rightarrow z) = \frac{1}{P_{a \rightarrow z}|z \rightarrow a(z)} \sum_{u \in V} \Theta_{au} \]

Get to \(z \) before returning to \(a \)

Similarly,

\[R_{eff}(a \rightarrow \infty) = \frac{1}{P_{a \rightarrow \infty}\text{ (walk never) } \sum_{u \in V} \Theta_{au}} \]

Corollary: Random walk is recurrent

\[R_{eff}(a \rightarrow a) = \infty. \]
Corollary: Random walk is recurrent if \(P(\text{Remp}(a \leftrightarrow 0) = \infty) \).

Nash-Williams inequality

A cutset between \(a \) and \(z \) is a set of edges \(T \) separating \(a \) from \(z \) (every path from \(a \) to \(z \) must use an edge of \(T \)).

Prop.: For every flow from \(a \) to \(z \) and every cutset \(T \),

\[
\sum_{e \in T} \delta(e) \geq 1.
\]

(Sketch: reduce \(T \) to a minimal cutset, then a unit flow must leave the side of \(a \) of the cutset towards the side of \(z \).)

Thm. (Nash-Williams): Let \((T_n) \) be disjoint cutsets separating \(a \) from \(z \).

Then \(\text{Remp}(a \leftrightarrow 0) \geq \sum_{T_n} \delta(e) \).

Similarly if \(z = \infty \),

\[\text{Remp}(a \leftrightarrow \infty) \geq \sum_{T_n} \delta(e) \]

Example: \(\mathbb{Z}^2 \) is recurrent.

\(T_n \) = boundary of the ball or radius \(n \) around 0.

\[|T_n| = \Theta(n^2) \]

\[\implies \text{Remp}(0 \leftrightarrow \infty) = \sum_{T_n} \frac{1}{|T_n|} = \infty. \]

\(-2\) is recurrent.
\(\Rightarrow \exists^2 \) is recurrent.

Proof of theorem: Let \(\theta \) be a flow with \(\|\theta\|_1 = 1 \).

\[
\varepsilon(\theta) = \sum_{e \in E} \text{Re} \theta(e)^2 \geq \sum_{n \in G_T} \text{Re} \theta(e)^2.
\]

\[\Rightarrow \sum_{e \in G_T} \text{Re} \theta(e)^2 \geq \frac{1}{\sum_{e \in G_T} C_e}.\]

Proving the theorem.

Remark: There are recurrent graphs for which the Nash-Williams does not prove recurrence.

Random paths

This is a method to generate unit flows. For \(\lambda \), it may even generate the unit current flow.

Proof: Let \(P \) be a probability distribution over paths from \(a \) to \(z \).

For a path \(\gamma \) define

\[
\Theta_\gamma(z) = \text{number of times } z \text{ is traversed by } \gamma - \text{number of times } z \text{ is traversed by } \gamma.
\]

Claim: \(\Theta \) is a flow from \(a \) to \(z \), \(\|\Theta\|_1 = 1 \).

Proof: Check that for each path \(\gamma \) from \(a \) to \(z \), \(\Theta_\gamma \) is a flow of unit strength.

This passes to the expected value.

\(\sum_{g \in G_T} \Theta_g \) is transient.
This passes to the expected value.

Example: \mathbb{R}^3 is transient.

Proof sketch: given a unit vector $\vec{n} \in S^2 \subset \mathbb{R}^3$.

Let $\gamma_\vec{n}$ be a lattice approximation of the straight line from 0 to ∞ in the direction \vec{n}.

Let $\Theta(\vec{e}) = \sum_{\vec{e} \in \gamma_\vec{n}} \delta_{\vec{e}}$

When \vec{n} is chosen uniformly on S^2. Idea: $|\Theta(\vec{e})| \sim \frac{1}{d(0, \vec{e})^2}$

$\implies \Theta(\vec{n}) \equiv \sum_{\vec{e} \in \Theta(\vec{n})} \delta_{\vec{e}} \sim \sum_{\vec{e} \in \Theta(\vec{n})} \frac{1}{d(0, \vec{e})^2} < \infty$

The number of edges in boundary of the ball of radius n around origin.

By Thomson's principle, $\text{Re} \rho(0 \leftrightarrow \infty) < \infty$

So \mathbb{R}^3 is transient.

Galton-Watson trees (E.g., Lyons-Peres book)

Background: Francis Galton was interested in the disappearance of family names.

Model: Say that a person has a random number of children, sampled according to a distribution ν (ν is supported on $\{1, 2, 3\}$).

Say that this is independent from person to person.

Reverend Watson analyzed this in 1874.

Basic theorem - family tree will die out a.s. if the average number of children is smaller, or equal, to 1 unless ν is supported on $\{1, 2, 3\}$.

Almost surely.
almost surely

Formal Statement:

Let μ be supp. on $\xi_0, \xi_1, \xi_2, \ldots$. We just discuss the number of children at every generation instead of the full tree.

Let $Z_0 = 1$. For each $n \geq 1$,

let $Z_{n+1} = \frac{Z_n}{\xi_n} X_n^{(k)}$ number of children of kth person in generation n

where $(X_n^{(k)})_{n \geq 0, k \geq 1}$ are i.i.d. samples of μ.

Basic question: Survival probability $P(\forall n, Z_n > 0) > 0$?

Theorem: $P(\forall n, Z_n > 0) > 0$ if and only if

average $m = \mathbb{E}X > 1$ or $P(X = 1) = 1$

number of children where $X \sim \mu$.

Example: Percolation on a binary tree.

Each edge is kept with prob. $p \in [0, 1]$, indep. among edges.

$\{0, 1\} \rightarrow \mathbb{P}(\exists \text{ an infinite connected component}) = \sum_{p > \frac{1}{2}} \mathbb{P}(\text{conn. comp. of root is a GW tree with } \mu = \text{Bin}(2, p))$ by Kolmogorov's $0-1$ law

Proof of thm.: The case $m < 1$:

Note that $\mathbb{E}Z_n = \mathbb{E}(\mathbb{E}(Z_n | Z_{n-1})) = (n+1)$

$= \mathbb{E}(\mathbb{E}(\prod_{k=1}^{Z_{n-1}} X_k^{(k)} | Z_{n-1})) = \mathbb{E}(m^{Z_{n-1}})$

$= m^n$. $P(Z_n > 1)$
\[n = 7 \implies m^n. \quad \Pr(Z_n \geq 1) \]

By Markov's ineq., \(\Pr(Z_n > 0) \leq m^n \)

Note \(\forall n, Z_n > 0 \Rightarrow \bigcup \{ Z_n > 0 \} = \bigcap \{ Z_n > 0 \} = \lim_{n \to \infty} \Pr(Z_n > 0) \to 0 \)

The case \(m = 1 \):

Note that, for any finite \(m \),

\[M_n := \frac{Z_n}{m^n} \text{ is a martingale}. \]

Indeed, \(\mathbb{E}(M_n | Z_{n-1}, Z_{n-2}) = (n > 1) \)

\[= \frac{1}{m^n} \mathbb{E}(Z_n | Z_{n-1}) = \frac{1}{m^n} m Z_{n-1} = M_{n-1} \]

In particular, when \(m = 1 \), \(Z_n \) is a mart.

By the mart. conv. theorem \((Z_n > 0) \)

\[\exists \Omega \text{ s.t. } Z_n \to \infty \text{ almost surely.} \]

Since \(Z_n \) is integer-valued we conclude that, a.s., \((Z_n) \) is eventually constant.

If \(\Pr(X = 1) \neq 1 \) then this is only possible if \((Z_n) \) is eventually zero.

The general case:

We may assume that \(\mathbb{E}X < \infty \) since otherwise we may truncate \(X \)
(replace it by \(\min \{ X, M \} \) for \(M \) large enough) and analyze \(\Pr(X > 0) \) for the truncated process.

Probability generating function:

\[f(s) := \mathbb{E}(s^X) \quad \text{for } 0 \leq s \leq 1 \]

with \(f(0) := \Pr(X = 0), f(1) := 1. \)
with \(\phi(0) = p(X=0) \), \(\phi(1) = 1 \).

\[\phi(s) = \sum_{k=0}^{\infty} p(X=k) s^k. \]

Properties:

1. \(\phi \) is non-decreasing.
2. \(\phi \) is convex.
3. \(\phi'(1) = E(X) = m. \)

Proof:

Define \(\psi_n(s) = E(s^{Z_n}) \) so that \(\psi_1 = \phi \).

Claim: \(\psi_{n+1}(s) = \phi(\psi_n(s)) \) for \(s \geq 0, 1 \).

Proof:

\[\psi_{n+1}(s) = E(s^{Z_{n+1}}) = E(E(s^{Z_n} | Z_n)) = E(\psi_n(s)) \]

Thus \(\psi_n(s) = \phi(\phi(...(\phi(\psi(1))))...) \)

By Def. \(\phi(Z_n = 0) = \psi_n(0) \)

By claim = \(\phi(\psi_{n-1}(0)) = \phi(p(Z_{n-1} = 0)) \)

In particular, \(\phi(Z_n = 0) \) \(\rightarrow \) \(p \) (process dies out) = \(q \)

Thus we would like to investigate \(\phi(\phi(...(\phi(\psi(1))))...) \)

as we apply \(\phi \) more and more.

\(\phi \) is convex, hence continuous,

\[\phi(\frac{1}{2} \phi(0)) = \phi(p(Z_{1/2} = 0) = \phi(p(Z_1 = 0)) \)
If f is convex, then $\nu_n \to \nu$.

So since $\nu_2 = 0 = f(\nu_1)$

$$9 = f(9)$$

Extension problem is a fixed point of prob. gen. fcn. In fact, it is the smallest fixed point.

$m > 1$:

Thus $\nu_n > 0$.

$1 - \nu$ where ν is the smallest fixed point of f.

$m = 1$:

$\nu(1) \neq 1$

$m < 1$:

Non-negative.
Sub-critical case: \(m < 1 \).

We saw that \(P(\varepsilon_n > 0) \leq m^n \).

How sharp is this?

Theorem (Heathcote, Seneta-Jones 1967):

\[\forall m, \frac{P(\varepsilon_n > 0)}{m^n} \] is non-increasing and thus converges.

For \(m < 1 \), the limit is positive iff \(\mathbb{E}(\log X) < \infty \)
where \(o(\log(1/m)) = 0 \).

Super-critical case: \(m > 1 \).

Notice that \(\mathbb{E}(\varepsilon_n) = m^n \). Is \(\varepsilon_n \) really of order \(m^n \) for all \(n \) on the event of survival?

Recall that \(M_n = \frac{\varepsilon_n}{m^n} \) is a martingale.

So \(M_n \to M_\infty \) a.s. Is \(M_\infty > 0 \) a.s. on survival?

Thm. (Kesten-Stigum 1966): When \(m > 1 \) the following are equivalent:

i) \(P(M_\infty > 0) = P(\forall n, \varepsilon_n > 0) \).

ii) \(\mathbb{E}(M_\infty) = 1 \).

iii) \(\mathbb{E}(X \log X) < \infty \).

If these cond. are violated, \(M_\infty = 0 \) a.s.

It is easy to see that the cond. in the Kesten-Stigum Thm. hold if \(\mathbb{E}(X^2) < \infty \).

- \(1 \) is the case since
This is the case since
\[\text{Var}(Z_n) = \text{Var}(X) \leq \frac{m^n(m^n - 1)}{m^2 - m} \quad n \neq 1 \]

E.g., by cond. on \(Z_{n-1} \)
and using the total variance formula.

Thus, when \(m > 1 \), \(\sup_n \text{Var}(M_n^2) < \infty \).

Hence \((M_n) \) is a martingale bounded in \(L^2 \).

So \(M_n \to M_\infty \) in \(L^2 \).
It follows that \(\mathbb{E}(M_\infty) = 1 \).

In addition,
\[
P(M_\infty = 0) = \mathbb{E}(P(M_\infty = 0) 1_{Z_1}) =
\]
\[
= \mathbb{E}(P(M_\infty = 0) Z_1) = P(P(M_\infty = 0)).
\]

So \(P(M_\infty = 0) \) is a fixed point of \(\mathbb{R} \).

Combined with \(\mathbb{E}M_\infty = 1 \Rightarrow P(M_\infty > 0) =
\]
\[
= P(\forall n, Z_n > 0).
\]