Lecture 8

Lecture date: Apr 29, 2011
Scribe: Uri Grupel

In this lecture we compute asumptotics estimates for the Green's function and apply it to the exiting annuli problem. Also we define Capacity, Polar set Prove the B-P-P theorem of Martin's Capacity for Markov chains [3] and use apply it on the intersection of RW problem.

Tags for today's lecture: Green's function, exiting annuli, Capacity, Polar set, Martin Capacity, intersection of RW.

1 Asymptotics for Green's funcion

Here we show the Asymptotics for Green's funcion and application for exiting annuli in dimension $d \geq 3$
Reminders:

- Local Centeral Limit Theorem (LCLT):

$$
\sup _{x \in \mathbb{Z}^{d} x \text { and } n \text { of same parity }}\left|\mathbf{P}\left(S_{n}=x\right)-2\left(\frac{d}{2 \pi n}\right)^{\frac{d}{2}} e^{-\frac{d|x|^{2}}{2 n}}\right|=O\left(n^{-\frac{d+2}{2}}\right)
$$

as $n \rightarrow \infty$
We'll denote $\bar{p}(n, x)=2\left(\frac{d}{2 \pi n}\right)^{\frac{d}{2}} e^{-\frac{d|x|^{2}}{2 n}}$ and $E(n, x)=\left|\mathbf{P}\left(S_{n}=x\right)-2\left(\frac{d}{2 \pi n}\right)^{\frac{d}{2}} e^{-\frac{d|x|^{2}}{2 n}}\right|$

- Large Deviation: $\exists C_{d}, c_{d}>0$ such that $\forall r, n \mathbf{P}\left(\left|S_{n}\right| \geq r \sqrt{n}\right) \leq C_{d} e^{-c_{d} r^{2}}$
- Green's Function: In dimension $d \geq 3$ the Green's functions is defined by

$$
G(x, y)=G(x-y)=\mathbf{E}^{x}(\text { number of vists to } y)=\sum_{n=1}^{\infty} \mathbf{P}^{x}\left(S_{n}=y\right)
$$

Since in $d=1,2$ this sum is always ∞ In dimesion $d=1,2$ the ptential kernel plays a similar role

$$
a(x)=\sum_{n=1}^{\infty} \mathbf{P}\left(S_{n}=0\right)-\mathbf{P}\left(S_{n}=x\right)="^{\prime} G(0)-G(x){ }^{\prime \prime}
$$

The use of quation marks is due to the fact that in dimension $d=1,2$ the sum in the Green's function definition would be ∞

Theorem 1 For $d \geq 3, G(x) \approx a_{d}|x|^{2-d}$ as $|x| \rightarrow \infty$ where $a_{d}=\frac{d}{2} \Gamma\left(\frac{d}{2}-1\right) \pi^{-\frac{d}{2}}=\frac{2}{(d-2) w_{d}}$ and $w_{d}=\operatorname{vol}\left(B^{d}\right)$ the volume of the unit ball in \mathbb{R}^{d}.
More precisley $\forall \alpha<d, G(x)=a_{d}|x|^{2-d}+o\left(|x|^{-\alpha}\right)$ as $|x| \rightarrow \infty$
ProofFix $x \neq 0$ of even parity, $G(x)=\mathbf{E}($ number of visits to $x)=\sum_{n=1}^{\infty} \mathbf{P}\left(S_{n}=x\right)$. Note first

$$
\begin{gathered}
\sum_{n=1}^{\infty} \bar{p}(2 n, x)=\sum_{n=1}^{\infty} 2\left(\frac{d}{2 \pi n}\right)^{\frac{d}{2}} e^{-\frac{d|x|^{2}}{4 n}} \underset{*}{=} \int_{0}^{\infty} 2\left(\frac{d}{2 \pi t}\right)^{\frac{d}{2}} e^{-\frac{d|x|^{2}}{4 t}}+O\left(|x|^{-d}\right)= \\
=\frac{d}{2} \Gamma\left(\frac{d}{2}-1\right) \pi^{-\frac{d}{2}}|x|^{2-d}+O\left(|x|^{-d}\right)
\end{gathered}
$$

Where $O\left(|x|^{-d}\right)$ is with respect to $|x| \rightarrow \infty$. Note that the estimate in $*$ is according to the order of the first term for $|x| \sim n$
Now $G(x)=\sum_{n=1}^{\infty} \bar{p}(2 n, x)+E(2 n, x)$ we need only to show that for any $\alpha<d$ $\sum_{n=1}^{\infty} E(2 n, x)=o\left(|x|^{-\alpha}\right)$, to see this we pick a threshold n_{0} close to $|x|^{2} E . g, n_{0}=\frac{c|x|^{2}}{\sqrt{\log |x|}}$, then write

$$
\sum_{n=1}^{\infty} E(2 n, x)=\underbrace{\sum_{B=1}^{\left\lfloor n_{0}\right\rfloor} E(2 n, x)}_{\text {By large deviation and choice of } c=O\left(|x|^{-d}\right)}+\underbrace{\sum_{\left\lfloor n_{0}\right\rfloor+1}^{\infty} E(2 n, x)}_{B y \text { LCLT }=O\left(n_{0}^{-d}\right)=o\left(|x|^{-\alpha}\right) \text { for any } \alpha<d}
$$

For x of odd parity note $G(x)$ is harmonic for $x \neq 0$, so $G(x)=\frac{1}{2 d} \sum_{i=1}^{2 d} G\left(x+e_{i}\right)$ (where e_{i} are the unit vectors) giving the result.

Remark 2 1. In the continuem, for Brownien Motion in $\mathbb{R}^{d}(d \geq 3)$ the Green function is exactly $a_{d}|x|^{2-d}$, this function is harmonic except at $x=0$ and has laplacian $-\delta_{0}$ at 0 .
2. The error in the previus theorem is even $O\left(|x|^{-d}\right)$

Application (exiting annuli or quantitative transience)
$\overline{\text { In } d \geq 3 \text { denote }} A_{n, m}=\left\{x \in \mathbb{Z}^{d} ; n<|x|<m\right\}, \tau_{n, m}=\min \left\{j ; S_{j} \notin A_{n, m}\right\}$, then for $x \in A_{n, m}$

$$
\mathbf{P}^{x}\left(\left|S_{\tau}\right| \leq n\right)=\frac{|x|^{2-d}-m^{2-d}+O\left(n^{1-d}\right)}{n^{2-d}-m^{2-d}}
$$

In particular taking $m \rightarrow \infty$, we get $\mathbf{P}^{x}\left(\exists j ;\left|S_{j}\right| \leq n\right)=\frac{|x|^{2-d}}{n^{2-d}}+o\left(n^{-1}\right)$
ProofSince $G(x)$ is harmonic except in $x=0, M_{j}:=G\left(S_{j} \wedge \tau\right)$ is a bounded martingale so

$$
\underbrace{G(x)}_{\approx|x|^{2-d}}=\mathbf{E}^{x} M_{j}{ }_{\text {optional sampeling }}=
$$

$$
=\mathbf{P}\left(\left|S_{\tau}\right| \leq n\right) \underbrace{\mathbf{E}^{x}\left(G\left(S_{\tau}\right)| | S_{\tau} \mid \leq n\right)}_{\approx n^{2-d}}+\left(1-\mathbf{P}\left(\left|S_{\tau}\right| \leq n\right)\right) \underbrace{\mathbf{E}^{x}\left(G\left(S_{\tau}\right)| | S_{\tau} \mid \geq m\right)}_{\approx m^{2-d}}
$$

Noting that $G(x)=|x|^{2-d}+O\left(|x|^{1-d}\right)$ (weaker than the error in the theorem). By isolation $\mathbf{P}\left(\left|S_{\tau}\right| \leq n\right)$ we get the result. Similarly one can prove

Proposition 3 In $d \geq 3$ letting $C_{n}=\left\{x \in \mathbb{Z}^{d} ;|x|<n\right\}$ and $\tau=\tau_{n}=\min \left\{j ; S_{j} \notin\right.$ C_{n} or $\left.S_{j}=0\right\}$ for $x \in C_{n}$

$$
\mathbf{P}\left(S_{\tau}=0\right)=\frac{a_{d}}{G(0)}\left(|x|^{2-d}-n^{2-d}\right)+O\left(|x|^{1-d}\right)
$$

as $|x| \rightarrow \infty$

Reminder: (Second type of Green's function) For any $A \subseteq \mathbb{Z}^{d}, G_{A}(x, y)=$ \mathbf{E}^{x} (number of visits to y before exiting A)

Question 4 How do we estimate $G_{a}(x, y)$?
Definition 5 For $A \subseteq \mathbb{Z}^{d}$ we define the boundry of A as $\partial A=\left\{x \in \mathbb{Z}^{d} ; x \notin A, x \sim\right.$ y for some $y \in A\}$

Proposition 6 For finite $A \subseteq \mathbb{Z}^{d} \forall x, z \in A$

$$
G_{A}(x, z)=G(x, z)-\sum_{y \in \partial A} H_{A}(x, y) G(y, z)
$$

where $H_{A}(x, y)=\mathbf{P}^{x}(y$ is first exit point of $A)$
ProofLet $\tau=\min \left\{j ; S_{j} \notin A\right\}$ then

$$
G_{A}(x, z)=\mathbf{E}^{x}\left(\sum_{j=0}^{\tau-1} 1_{S_{j}=z}\right)=\mathbf{E}^{x}\left(\sum_{j=0}^{\infty} 1_{S_{j}=z}-\sum_{j=\tau}^{\infty} 1_{S_{j}=z}\right)
$$

The first term is $G(x, z)$, and the second is the same as in the proposition.

Combining proposition 园 and proposition 6 we have the following proposiotion 6
Proposition $7 G_{C_{n}}(x, 0)=a_{d}\left(|x|^{2-d}-n^{2-d}\right)+O\left(|x|^{1-d}\right)$ ProofExercise.
Analogous results for dimension $d=1,2$ [1] [2]

- In $d=1: a(x)=|x|$.

In $d=2: \exists k$ such that $\forall \alpha<2$

$$
a(x)=\frac{2}{\pi} \log |x|+k+o\left(|x|^{-\alpha}\right)
$$

With $k=\frac{2 \gamma}{3}+\frac{3}{\pi} \log 2$ where $\gamma=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \frac{1}{j}-\log n$ the Eulrt constant.

- $G_{A}(x, z)=\sum_{y \in \partial A} H_{A}(x, y) a(y-x)-a(z-x)$ for some finite A and $x, y \in A$
- For $d=2$ In the annulus $A_{n, m}, \forall x \in A_{n, m}$

$$
\mathbf{P}^{x}\left(\mid S_{\tau} \leq n\right)=\frac{\log m-\log |x|+O\left(n^{-1}\right)}{\log m-\log n}
$$

(Quantitative recurrence)

- For $d=2 x \in C_{n}, \forall \alpha<2$

$$
G_{C_{n}}(x, 0)=\frac{2}{\pi}(\log n-\log |x|)+o\left(|x|^{-\alpha}\right)+O\left(n^{-1}\right)
$$

2 Capacity

In this section we define Capacity and Polar sets, intoduce Kakutanis theorem charactrizing polar sets, and prove the Benjamini-Pemantle-Peres theorem which gives a quantitive connection between the Capacity of a set and a Markov Chain on the set. In the end of the section we see some application to the intersection of random walks. This section follow [3]

Definition 8 Given a measure space (Λ, \mathcal{F}), a measurable function $F: \Lambda \times \Lambda \rightarrow[0, \infty)$ (kernel) and a finite measure μ of Λ, the underline F - energy of μ with respect to F is

$$
I_{F}(\mu)=\int_{\Lambda} \int_{\Lambda} F(x, y) d \mu(x) d \mu(y)
$$

Remark 9 It is useful to think of $\Lambda \subseteq \mathbb{R}^{3}$, μ charge density of a certain material and $F(x, y)=|x-y|^{-1}$

Definition 10 The capacity of Λ with respect to F is

$$
\operatorname{cap}_{F}(\Lambda)=\left(\inf _{\mu} I_{F}(\mu)\right)^{-1}
$$

Where μ is a probability measure on Λ, and $\infty^{-1}=0$.

Remark 11 Capacity is monotone increasing in the set. It is a measure of the size of λ with respect to F.

Remark 12 For is Λ will be a countable with $\mathcal{F}=\{$ all subsets of $\Lambda\}$
Sometimes we'll also mention $\Lambda \subseteq \mathbb{R}^{d}$ with \mathcal{F} Borel σ-Field.
Kakutani's theorem (1944):

Definition 13 A Borel $A \subseteq \mathbb{R}^{d}$ is called Polar if $\mathbf{P}^{x}(\exists t>0, B(t) \in A)=0 \forall x \in \mathbb{R}^{d}$ for a Brownian Motion $B(t)$

Theorem 14 (Kakutani) A Borel $A \subseteq \mathbb{R}^{d}$ is Polar if and only if $\operatorname{cap}_{F}(A)=0$ for

$$
F(x, y)=\left\{\begin{array}{cl}
\left|\log \left(\frac{1}{|x-y|}\right)\right| & d=2 \\
\frac{1}{|x-y|^{d-2}} & d \geq 3
\end{array}\right.
$$

Now let $\left\{X_{n}\right\}$ be a Markov chain on a countable set Y, with transition probability $p(x, y)$. Let

$$
G(x, y)=\mathbf{E}^{x}(\# \text { visits to } y)=\sum_{n=0}^{\infty} p^{(n)}(x, y)
$$

Theorem 15 (Benjamini, Pemantle, Peres) If $\left\{X_{n}\right\}$ is a transient chain (any state is visited onlt finitly many times a.s) then for all starting point $\rho \in Y$ and any $\Lambda \subseteq Y$

$$
\frac{1}{2} \operatorname{cap}_{K}(\Lambda) \leq \mathbf{P}^{\rho}\left(\exists n ; \quad X_{n} \in \Lambda\right) \leq \operatorname{cap}_{K}(\Lambda)
$$

where K is the Martin kernel $K(x, y)=\frac{G(x, y)}{G(\rho, y)}$. Furthermore, letting cap ${ }_{K}^{(\infty)}:=$ $\inf _{\Lambda_{0} \text { finite }} \operatorname{cap}_{K}\left(\Lambda \backslash \Lambda_{0}\right)$

$$
\frac{1}{2} \operatorname{cap}_{K}^{(\infty)}(\Lambda) \leq \mathbf{P}\left(X_{n} \in \Lambda i . o\right) \leq \operatorname{cap}_{K}^{(\infty)}(\Lambda)
$$

ProofTo get upper bound it is enough to find one μ. Let $\tau=\min \left\{n ; S_{n} \in \Lambda\right\} \quad(\tau=\infty$ if Λ is not hit), for $x \in \Lambda \nu(x)=\mathbf{P}^{\rho}\left(\tau<\infty, S_{\tau}=x\right) \nu(\Lambda)=\mathbf{P}^{\rho}(\tau<\infty) \leq 1$ if $\nu(\Lambda)=0$, nothing to prove. Assume $\neq(\Lambda)>0$. Note, $\forall y \in \Lambda$,

$$
\int_{\Lambda} g(x, y) d \nu(x)=\sum_{x \in \Lambda} \nu(x) \sum_{n=0}^{\infty} \mathbf{P}^{x}\left(X_{n}=y\right)=G(\rho, y)
$$

so $\int_{\Lambda} K(x, y) d \nu(x)=1$. Hence $I_{k}\left(\frac{\nu}{\nu(\Lambda)}\right)=\nu(\Lambda)^{-1}$ and $\operatorname{cap}_{K}(\lambda) \geq \nu(\Lambda)$
For the lower bound, use the second moment method. Given a probability measure μ on Λ, let

$$
z=\int_{\Lambda} G(\rho, y)^{-1} \underbrace{\sum_{n=0}^{\infty} 1_{X_{n}=y}}_{\mathbf{E}^{\rho}()=G(\rho, y)} d \mu(y)
$$

By Fubini, $\mathbf{E}^{r h o} z=1$

$$
\begin{gathered}
\mathbf{E}^{r h o} z^{2}=\mathbf{E}^{\rho} \int_{\Lambda} \int_{\Lambda} G(\rho, z)^{-1} G(\rho, z)^{-1} \sum_{m, n>0} 1_{X_{m}=z, X_{n}=y} d \mu(y) d \mu(z) \leq \\
\quad \leq \mathbf{E}^{\rho} 2 \int_{\Lambda} \int_{\Lambda} G(\rho, y)^{-1} G(\rho, z)^{-1} \sum_{0 \leq m \leq n} 1_{X_{m}=z, X_{n}=y} d \mu(y) d \mu(z)
\end{gathered}
$$

For each $m, \mathbf{E}^{r h o} \sum_{n \geq m} 1_{X_{m}=z, X_{n}=y}=\mathbf{P}^{r h o}\left(X_{m}=z\right) G(z, y)$ by the markov property. Taking the sum over m

$$
\mathbf{E}^{\rho} z^{2} \leq 2 \int_{\Lambda} \int_{\Lambda} \frac{G(z, y)}{G(\rho, y)} d \mu(z) d \mu(y)=2 I_{K}(\mu)
$$

By Cauchy-Schwartz:

$$
\mathbf{P}^{r h o}\left(\exists n, X_{n} \in \Lambda\right) \geq \mathbf{P}^{r h o}(z>0) \geq \frac{\left(\mathbf{E}^{\rho} z\right)^{2}}{\mathbf{E}^{\rho} z^{2}} \geq \frac{1}{2 I_{K}(\mu)} \Rightarrow \mathbf{P}\left(\exists n ; X_{n} \in \Lambda\right) \geq \frac{1}{2} \operatorname{cap}_{K}(\Lambda)
$$

Proving the first part of the theorem.
For the second part, note that by transience

$$
\left\{X_{n} \in \Lambda i . o\right\}=\text { stackrelmod } 0=\cap_{\Lambda_{0} \text { finite }}\left\{\text { visits } \Lambda \backslash \Lambda_{0}\right\}
$$

Hence if Λ_{n} is a sequence of finite sets increasing to Λ, the by monotonicity

$$
\mathbf{P}(\text { visits } \Lambda i . o)=\lim _{n \rightarrow \infty} \mathbf{P}^{\rho}\left(\text { visits } \Lambda \backslash \Lambda_{0}\right)
$$

and

$$
\operatorname{cap}_{K}^{(\infty)}(\Lambda)=\lim _{n \rightarrow \infty} \operatorname{cap}_{K}\left(\Lambda \backslash \Lambda_{0}\right)
$$

Corollary 16 In $\mathbb{Z}^{d}, d \geq 3$, for any $A \subseteq \mathbb{Z}^{d}$, we deduce

$$
\frac{1}{2} c a p_{K}^{(\infty)}(A) \leq \underbrace{\mathbf{P}(A \text { is hit i.o })}_{\in\{0,1\} \text { by Hewitt-Savage } 0-1 \text { law }} \leq \operatorname{cap}_{K}^{(\infty)}(A)
$$

So A is hit i.o a.s if and only if $\operatorname{cap}_{K}^{(\infty)}(A)>0$, now note that this remains true if we replace K by $F(x, y)=\frac{|y|^{2-d}}{1+|x-y|^{2-d}}$ since by the asyptotics of $G(x)$ we have $c \leq \frac{F(x, y)}{K(x, y)} \leq c^{\prime}$ for some $c^{\prime}, c>0$.

Remark 17 In a different application, the B-P-P theorem show a theorem of Lyons that the chance that a path from root to leaves survive under a general Perculation (keep each eage with probability p_{e} independet) Process is given up to $\frac{1}{2}$ by a certain capacity on leaves, by looking at the Markov chain of surviving leaves from left to right.

Remark 18 1. The theorem still applies if the chainis not transient but $G(x, y)<\infty$ $\forall x, y \in \Lambda$
2. You can replace K by its symmetrized version $\frac{1}{2}(K(x, y)+K(y, x))$ in the theorem, since it doesn't affect capacity.

Intersections of Random Walks
$\overline{\text { Define } S[n, m]:=\left\{S_{j} ; j \in[n, m]\right\}}$

Theorem $19 \exists c_{1}, c_{2}$ and φ such that $\forall n \geq 2$

$$
\begin{gathered}
c_{1} \varphi(n) \leq \mathbf{P}(S[0, n] \cap S[2 n, 3 n] \neq \emptyset) \leq \mathbf{P}(S[0, n] \cap S[2 n, \infty) \neq \emptyset) \leq c_{2} \varphi(n) \\
\varphi(n)=\left\{\begin{array}{cl}
1 & d \leq 3 \\
(\log n)^{-1} & d=4 \\
n^{-\frac{d-4}{2}} & d \geq 5
\end{array}\right.
\end{gathered}
$$

ProofTrivial uper bound for $d \leq 3$ and the lower bound for $d \leq 2$ followes from lower bound for $d=3$, therefore we can assume $d \geq 3$. Proof is by second moment method, with additional trick for $d=4$. Denote

$$
J_{n}=\sum_{j=0}^{n} \sum_{k=2 n}^{3 n} 1_{S_{j}=S_{k}}, K_{n}=\sum_{j=0}^{n} \sum_{k=2 n}^{\infty} 1_{S_{j}=S_{k}}
$$

By the Markov property and LCLT we get, (when $k-j$ is even)

$$
\mathbf{P}\left(S_{j}=S_{k}\right)=\mathbf{P}\left(S_{k-j}=0\right) \approx \frac{c}{n^{d / 2}}
$$

So

$$
c_{1} n^{\frac{4-d}{2}} \leq \mathbf{E} J_{n} \leq c_{2} n^{\frac{4-d}{2}}
$$

we can even get (with a bit more calculation)

$$
\mathbf{E} J_{n}^{2} \leq\left\{\begin{array}{cc}
c n & d=3 \\
c \log n & d=4 \\
c n^{\frac{d-2}{2}} & d \geq 5
\end{array}\right.
$$

And we get the lower bound for all d since

$$
\mathbf{P}(S[0, n] \cap S[2 n, 3 n] \neq \emptyset) \geq \mathbf{P}\left(J_{n}>0\right) \geq \frac{\left(\mathbf{E}\left(J_{n}\right)\right)^{2}}{\mathbf{E} J_{n}^{2}}
$$

We get the upper bpund for all $d \neq 4$ since

$$
\mathbf{P}(S[0, n] \cap S[2 n, \infty) \neq \emptyset)=\mathbf{P}\left(K_{n} \geq 1\right) \leq \mathbf{E} K_{n}
$$

For the upper bound in $d=4$ need to show

$$
\mathbf{E}\left(K_{n} \mid K_{n} \geq 1\right) \geq c \log n
$$

this is the expected number of pairs of times of intesec for s SRW starting in origin, this is like what happens after "'first"' intersection of walks.
Note $c=\mathbf{E} K_{n}=\mathbf{P}\left(K_{n} \geq 1\right) \mathbf{E}\left(K_{n} \mid K_{n} \geq 1\right)$

Remark 20 By taking $n \rightarrow \infty$ we get that for BM in \mathbb{R}^{d}

$$
\mathbf{P}(B[0,1] \cap B[2,3] \neq \emptyset)\left\{\begin{array}{cc}
>0 & d=1,2,3 \\
=0 & d \geq 4
\end{array}\right.
$$

From the other side, it is intresting to consider

$$
q(n)=\mathbf{P}\left(S^{1}[0, n] \cap S^{2}(0, n] \neq \emptyset\right)
$$

for $d=2,3,4$ where S^{1}, S^{2} are independet SRW. Defining

$$
Y_{n}=\mathbf{P}\left(S^{1}[0, n] \cap S^{2}(0, n] \neq \emptyset \mid S^{1}[0, n]\right)
$$

We have $\mathbf{E} Y_{n}=q_{n}$, and it is possible to calculate

$$
\mathbf{E} Y_{n}^{2}=\mathbf{P}\left(S^{1}[0, n] \cap\left(S^{2}(0, n] \cup S^{3}(0, n]\right) \neq \emptyset\right)_{\text {up to a constant }} \underset{n^{\frac{1}{2}}}{ } \quad 1,2,3
$$

Since $0 \leq Y_{n} \leq 1$ we have $\mathbf{E} Y_{n}^{2} \leq \mathbf{E} Y_{n} \leq \sqrt{\mathbf{E} Y_{n}^{2}}$
Finally one can show that in $d=4$ the upper inequality us sharp $q(n) \approx \frac{1}{\log n}$ in $d=4$
$\underline{\text { Known: }} q(n) \underset{\text { const }}{\approx} n^{-f_{d}}$. where $f_{1}=1, f_{2}=\frac{5}{8}$, for $d=3$ it is an open question, by simulation it is known that $f_{3} \approx 0.29$

References

[1] G. Lawler. Intersection of Random Walks
Birkha"user Boston; 1 edition (August 28, 1996)
[2] G. Lawler, V. Limic. Random Walk: a Modern Introduction Cambridge Studies in Advanced Mathematics (No. 123) June 2010
[3] I. Benjamini, R. Pemantle, Y. Peres. Martin Capacity for Markov Chains Ann. Probab. Volume 23, Number 3 (1995), 1332-1346.

