
Random Walks and Brownian Motion Instructor: Ron Peled
Tel Aviv University Spring 2011

Lecture 7

Lecture date: Apr 11, 2011 Scribe: Yoav Ram

The following lecture (and the next one) will be an introduction to modern Potential Theory.
We will see how the connection between Simple Random Walks and Harmonic Functions
is used to solve problems in difference and differential equations with probabilistic tools.
Our main topics are: The Dirichlet problem, Poisson’s equation, and Green’s functions. We
will use tools that were obtained during previous lectures, such as the LCLT, the optimal
stopping theorem, and the martingle convergence theorem. Today’s lecture is covered by
[1].

Tags for today’s lecture: Laplacian, Dirichlet problem, Maximum principle, Poisson ker-
nel, Poisson equation, Green’s function, Local central limit theorem for higher dimensions.

1 Notations

We discuss functions of the class f : Zd → R

Definition 1 The discrete Laplacian or the generator of a SRW:

(Lf)(x) = Ex[f(S1)− f(x)] =
1

2d

∑
x∼y

f(y)− f(x)

Remark 2 f is harmonic ⇔ Lf ≡ 0, f is sub-harmonic ⇔ Lf0

Denote A ⊂ Zd.

Definition 3 The exit time from A is defined as τA = min(n ≥ 0 : Sn /∈ A)

Definition 4 The outer boundary of A is ∂A =
{
y ∈ Zd \A : ∃x ∈ A, y ∼ x

}
Definition 5 The closure of A is Ā = A ∪ ∂A

Remark 6 If f : Ā→ R, then Lf is well defined in A.
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2 Dirichlet Problem

The Dirichlet problem for ∅ 6= A ⊂ Zd given some boundary information F : ∂A→ R is to
find f : Ā→ R such that:

1. ∀x ∈ A, (Lf)(x) = 0, that is, f is harmonic in A

2. ∀x ∈ ∂A, f(x) = F (x)

Theorem 7 Dirichlet problem 1
Suppose ∀x ∈ A Px(τA <∞) = 1 and F is bounded, then there is a unique bounded solution
to the Dirichlet problem, and it is given by

f(x) = ExF (SτA) (1)

This gives a connection between random walks and difference equation problems. In the
continuous case one can do the same with differential equations and Brownian motion.

Proof It is easy to check that (1) defines a bounded solution. Suppose f is a bounded
solution, we need to show that f is given by (1).
Note that {f(Sn∧τA)}n≥0 is a bounded martingale because f is harmonic on A and constant
outside A. So

f(x) = Exf(Sn∧τA) = Exf(SτA) = ExF (SτA)

by the optional stopping theorem and because f and F agree on the boundary.

2

Remark 8 Under the assumptions of the theorem we get the maximum principle for har-
monic functions on on A:

sup
x∈Ā
|f(x)| = sup

x∈∂A
|f(x)|

Remark 9 If A is finite then all functions on ∂A are bounded and we can show existence
and uniqueness without further assumptions. Furthermore, existence and uniqueness can be
proven by linear algebra by noting that we have |A| equations and |A| unknowns, but this
doesn’t give the probablistic presentation of the solution.

Remark 10 If A is infinite the problem can have infinite unbounded solutions. For exam-
ple, for A = {1, 2, 3, ...} , F (0) = 0, d = 1 we can take any linear function f(x) = bx, b ∈ R.
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Remark 11 If d ≥ 3 we can have that Px(τA < ∞) < 1 in which case we can define a
bounded solution to F ≡ 0 by f(x) = Px(τA =∞). Therefore, the condition Px(τA <∞) =
1 is required for uniqueness.

Continuous analogue Suppose D = {x ∈ Rd : |x| < 1} or some other ”nice” domain
and some f : D̄ → R such that f is continuous on D̄ and C2 on D and 4f ≡ 0 on D. Then

f(x) = Exf(Bτ )

where B is a Brownian motion and τ is the exit time from D.
Furthermore, Bτ has a density with respect to the Lebesgue measure on ∂D. This density
is called the Poisson kernel and it is given by

H(x, y) = Cd
1− |x|2

|x− y|d
(2)

which is the density at y for Bτ that started at x.
If you know H then you can get f by

f(x) =

∫
∂D

H(x, y)f(y)ds(y)

where s denotes surface measure.
This relation in the origin for the Poisson boundary that was discussed in lecture 5. This
explicit form of H has two consencuences:

Fact 12 Derivative estimates
f is smooth in D and its k’th order derivaties are bounded, such that

f (k)(x) ≤ ck‖f‖∞

for some ck independent of f (‖f‖∞ is attained on ∂D).

Fact 13 Harnack inequality
For any 0 ≤ r ≤ 1, ∃Cr independent of f such that if f ≥ 0 then

max
‖x‖<r

f(x) ≤ cr min
‖x‖<r

f(x)

Similar statements are true in a discrete setting but we will not discuss them.
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The following theorem addresses the case where the RW exits the set in an infinite time.

Theorem 14 Dirichlet problem 2
Suppose F is a bounded function on ∂A, then the only bounded solutions to the Dirichlet
problem are of the form

f(x) = ExF (SτA)1τA<∞ + bPx(τA =∞) (3)

for some b ∈ R.
Therefore, the space of bounded solutions is 2-dimensional.

Proof It will be convinient to use the lazy RW, S̃n, which has a chance 1/2 not to move at
every time step and a chance 1/2 to move like a SRW. We will use what was shown in the
previous class - that ∀x, y ∈ Zd there exists a successful coupling of S̃xn and S̃yn (there are
no parity issues because the lazy RW is aperiodic).
Assume ∃x ∈ A such that Px(τA = ∞) > 0, otherwise the previous theorem applies. Let
f be a bounded solution to the Dirichlet problem. Note that {f(S̃n∧τA)}n≥0 is a bounded
martingale. Hence,

f(x) = Ex[f(S̃n∧τA)] = Ex[f(S̃n)]− Ex[1τA<n(f(S̃n)− f(S̃τA)] (4)

by extending f to Zd in any bounded way. Now notice that ∀x, y ∈ A we have

|E[f(S̃xn)− f(S̃yn)]| ≤ 2‖f‖∞P(T > n) −−−→
n→∞

0 (5)

where T is the coupling time. The inequality is the bound by the coupling and the limit is
given because the coupling is successful. Thus, by (4) and (5) we get

|f(x)− f(y)| ≤ 2‖f‖∞[Px(τA <∞) + Py(τA <∞)]

Denote Uε = {x ∈ A : Px(τA =∞) ≥ 1− ε} the set of points that have a ”good” chance to
remain in A forever.

Exercise ∀ε > 0, Uε 6= ∅

Thus, ∀x, y ∈ Uε we get |f(x)− f(y)| ≤ 4ε‖f‖∞. Taking any sequence {xn} ∈ Uε the limit
limn→∞ f(xn) exists. Denote this limit by b, then
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|f(x)− b| ≤ 4ε‖f‖∞ ∀ε > 0, x ∈ Uε (6)

Next, define ρε = min{n : S̃n ∈ Uε}.

Exercise ∀x ∈ A,Px(τA ∧ ρε <∞) = 1

Therefore, the optional stopping theorem implies

f(x) = Exf(S̃τA∧ρε) = ExF (S̃τA)1τA≤ρε + Exf(S̃ρε)1ρε<τA

We are almost there. ρε −−→
ε→0

∞, therefore 1ρε≤τA −−→ε→0
1τA=∞ and with (6) we get:

lim
ε→0

Exf(S̃ρε)1ρε≤τA = bPx(τA =∞)

Now, by the dominated convergence theorem,

lim
ε→0

ExF (S̃τA)1τA<ρε = ExF (S̃τA)1τA<∞

and we have all we need, as F (S̃τA)1τA<∞
d
=F (SτA)1τA<∞ 2

Remark 15 We can write HA(x, y) = Px(τA < ∞, SτA = y) as the chance of exiting at
y when starting at x. This is called the harmonic measure. We can add that HA(x,∞) =
Px(τA =∞). Finally, if F (∞) = b, then we have shown that

f(x) =
∑

y∈∂A∪∞
HA(x, y)F (y) (7)

which is analogougous to the Poisson kernel in (2). The fact that it has just one point at
∞ is the fact that Zd has a trivial Poisson boundary.

Remark 16 HA(x, y) is the solution to the Dirichlet problem with

F (z) =

{
1, z = y

0, z 6= y

This is a generalization to the Gambler’s Ruin problem in 1-dimension.
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3 Poisson’s Equation

The following is Poisson’s equation for f , given a set A and a function g : A→ R :

1. (Lf)(x) = −g(x)

2. f(x) = 0 ∀x ∈ ∂A

Theorem 17 Suppose ∅ 6= A ⊂ Zd with Px(τA <∞) = 1∀x ∈ A and g has a finite support
(which is like taking a finite set A), then there is a unique solution to Poisson’s equation,
and it is given by:

f(x) = Ex
τA−1∑
j=0

g(Sj) (8)

Sketch of Proof This proof is left as an exercise. Similar to the proof of (7), verify that
f is a solution. Then assume h(x) is also a solution and check that (L(h− f))(x) = 0 and
h(x)− f(x) = 0 on ∂A. Therefore, it follows from (1) that h ≡ f . 2

Remark 18 Define the Green’s function in A as

GA(x, y) = Ex [# visits to y before leaving A when starting at x ] (9)

Then f(x) =
∑

y∈AGA(x, y)g(y).

Remark 19 If we take g ≡ 1 on a finite A, we get that f(x) = Ex[τA]. Therefore the
expected exit time when starting from x can be found by calculating

∑
y∈AGA(x, y).

Remark 20 On a finite A, GA(x, y) is a |A| × |A| matrix. Similarity,

LA(x, y) =


−1, y = x
1
2d , y ∼ x
0, otherwise

is also a |A| × |A| matrix. The theorem tells us that

GA = (−LA)−1 (10)
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4 The Local Limit Theorem

Recall that in 1-dimension, Sn is close to N(0, n) and we saw (Lecture 3) that if x = o(n3/4)
and x+ n is even, then:

P (Sn = x) ∼ 2
1√
2πn

e−
x2

2n

as n→∞.
Next, we present the analogous for higher dimensions: for d ≥ 1, Sn is close to N(0, 1

d In),
where 1

d I is the covariance matrix of one step of the SRW:

1

d
I =

(
1
d 0
0 1

d

)
= (E [X1,i, X1,j ])i,j

The density of N(0, 1
d In) is ( d

2πn)
d
2 e−

d|x|2
2n and therefore we expect that if x + n is even (x

and n have the same parity), then

P(Sn = x) ∼ 2(
d

2πn
)
d
2 e−

d|x|2
2n

Indeed, if we define the lhs as Pn(x) and rhs as P̄n(x), the error is given by

En,x =

{
|Pn(x)− P̄n(x)|, x+ n is even

0, otherwise

and we get the following theorem:

Theorem 21 LCLT
Given the above notations,

sup
x
En,x = O(n−

d+2
2 )

as n→∞.

Sketch of Proof There are two main approaches:

1. In SRW in Zd the number of steps taken in each coordinate after n steps overall
has a multinomial distribution. We need to establish a LCLT for this distribution
using Stirling’s Formula. Then we can use the 1-dimensional theorem to get the
d-dimensional theorem, as there are approximately n/d steps in every coordinate.
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2. A more general approach: if Sn and S̄n are two distributions on Zd, then the respective
Fourier transforms are

f(λ) = EeiλSn , f̄(λ) = EeiλS̄n , λ ∈ [−π, π]d

Then, by using the inverse Fourier transform:

sup
x
|P(Sn = x)−P(S̄n = x)| ≤

∫
[−π,π]d

|f(λ)− f̄(λ)dλ

or by using the Lp norm notation:

‖P(Sn = x)−P(S̄n = x)‖∞ ≤ ‖f − f̄‖1

Very roughly, to control ‖f − f̄‖1, f and f̄ are very small when λ is far from zero,
and by a Taylor expansion, f − f̄ is small when λ is close to zero.
More details on pg. 3-4 in [2].

2

Proposition 22 (Large Deviation) There exist Cd, cd > 0, dependent only on the dimen-
sion d, such that

P(|Sn| > r
√
n) ≤ Cde−cdr

2

Proof In 1-dimension we proved this (Lecture 3). In higher dimensions it follows by the
union bound:
If |Sn| > r

√
n then at least one coordinate must be > r

√
n. 2

5 Green’s Functions

There are three types of Green’s functions:

1. For a domain A ⊂ Zd we define:

GA(x, y) = Ex [# visits to y when starting at x before leaving A]

This function was discussed in (9) where it was shown to solve Poisson’s equation.
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2. For the entire space we define:

G(x, y) = Ex [# visits to y when starting at x] =
∞∑
n=0

Px(Sn = y) (11)

This function can be written with one argument as:

G(x, y) = G(y − x) = E [# visits to y when starting at 0]

The funciton is well-defined only when d ≥ 3 as it requires transience.
For d = 1, 2, the potential kernel:

a(x) =

∞∑
n=0

[P(Sn = 0)−P(Sn = x)] = ”G(0)−G(x)” (12)

plays the same role as Green’s function.
As in (10), we have G = (−LZd)−1.

3. The Geometrically Killed Green’s Function
For 0 < λ < 1, let T ∼ Geo(1 − λ) be the killing time of the RW, meaning that in
each step, the RW has a chance λ to survive and a chance 1 − λ to be killed. Then
we can define:

G(x, y;λ) = Ex [# visits to y when starting at x before time T] = (13)

=

∞∑
n=0

λnPx(Sn = y)

Again, this function can be written with one argument as

G(x, y;λ) = G(y − x;λ) =

= E [# visits to y when starting at 0 before time T]

Geometrically killed walks are useful in modeling a walk that does roughly n steps.
A geometrically killed walk with λ = 1 − 1

n will have E [T ] = n, but it will keep the
Markovian property, as oppsed to a walk that does exactly n steps.

We can deduce about the asymptotics of Green’s functions from the LCLT. Consider a
geometrically killed walk. Denote R as the number of distinct values seen before the walk
is killed. If λ = 1− 1

n , then R is roughly the number of distinct values seen in n steps.
More generally:
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Remark 23 E [R] = E [T ] P(no return to zero before killed), where T is the killing time.

This is similar to the KSW theorem. The proof is also by the Birkhoff ergodic theorem.

Note that P(no return to zero before killed) = G(0;λ)−1, because the number of visits to
zero is geometrically distributed.
Finally, by the LCLT

G(0;λ) =

∞∑
n=0

λnP(Sn = 0) =

∞∑
n=0

λnCd
1

nd/2
+O(n−

d+2
2 )

and as λ→ 1 we get

G(0;λ) = CdF (
1

1− λ
)

where F is given by

F (s) =

{√
s, d = 1

log s, d = 2

Thus, if λ = 1− 1
n we have

G(0;λ) ∼

{
c1
√
n, d = 1

c2 log n, d = 2

where c1 and c2 are explicit constants.
Therefore,

E [R] =

{√
n
c1
, d = 1
n

c2 logn , d = 2

And with this we end this class.
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