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This lecture deals primarily with recurrence for general random walks. We present several
criteria for a random walk to be recurrent, and prove Polya’s theorem on recurrence and
transience for the simple random walk on Z

d

1 Recurrence for general random walks

Remember the following result from the previous lecture: Every 1-dimensional random walk
Sn satisfies exactly one of the following almost surely:

(i) Sn = 0 for every n.

(ii) limSn = ∞.

(iii) limSn = −∞.

(iv) lim supSn = ∞ and lim inf Sn = −∞.

We would like to contrast this with the following definition:

Definition 1 A random walk taking values in R
d is called point-recurrent if

P(Sn = 0 infinitely often) = 1.

(remember this probability is either 0 or 1, by the Hewitt-Savage zero-one law).

We also define the set of possible values for the random walk as the set of all x ∈ R
d such

that P(Sn = x) > 0 for some n.

Exercise If a random walk is point-recurrent, then

P(Sn = x infinitely often) = 1

for every possible value x.

Remark 2 If the random walk is not discrete (having an atomic distribution for each
step) then these definitions are not very useful. Instead we say that the random walk is
neighborhood-recurrent if for some (and then for any, as can be proved) ǫ > 0

P(|Sn| < ǫ infinitely often) = 1.
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Similary, possible values are changed to those x for which for every ǫ > 0 there exists an n

such that P(|Sn − x| < ǫ) > 0.

Proposition 3 A random walk in R
d is point-reucrrent if and only if one of the following

holds:

(i) P(∃n ≥ 1, Sn = 0) = 1.

(ii) P(Sn = 0 infinitely often) = 1 (this is the definition of point-recurrence).

(iii)
∞
∑

n=0
P(Sn = 0) = ∞.

Proof The equivalence between (i) and (ii) is clear. For the equivalence between (i) and
(iii), note that by the strong markov property, the number of visits to 0 is distributed
geometrically Geo(p), where p is the probability of no return to 0. Therefore

∞
∑

n=0

P(Sn = 0) = E (Geo(p)) =
1

p
,

and now the equivalence is obvious. 2

Theorem 4 (Pólya) A simple random walk in Z
d is recurrent if and only if d = 1 or

d = 2.

Proof We consider each dimension separately:

d = 1: We already saw this result in dimension 1, but we now give a different proof. Notice
that by Stirling’s formula

P(S2n = 0) = 2−2n

(

2n

n

)

∼ 1√
πn

.

Therefore
∞
∑

n=0
P(S2n = 0) = ∞ and we are done.

d = 2: By rotating Z
2 in 45◦ we get that each step is like moving one step in each of two

independent, one dimensional, simple random walks. Hence

P(S2n = 0) ∼
(

1√
πn

)2

=
1

πn
,

and again
∞
∑

n=0
P(S2n = 0) = ∞.
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d = 3: We calculate explicitly:

P(S2n = 0) = 6−2n
∑

j,k≥0

j+k≤n

(2n)!

(j! · k! · (n− j − k)!)2

= 2−2n

(

2n

n

)

∑

j,k≥0

j+k≤n

(

3−n n!

j! · k! · (n− j − k)!

)2

(here j is the number of steps in direction (1, 0, 0), and k is the number of steps in direction
(0, 1, 0) ). Since

∑

j,k≥0

j+k≤n

3−n n!

j! · k! · (n− j − k)!
= 1,

it follows that

P(S2n = 0) ≤ 2−2n

(

2n

n

)

max
j,k≥0

j+k≤n

(

3−n n!

j! · k! · (n− j − k)!

)

.

The maximum is achieved when j and k are as close as possible to n
3 , and this maximum is

smaller than c
n
for some constant c. Hence

P (S2n = 0) ≤ c

n
3

2

,

so
∞
∑

n=0
P(S2n = 0) < ∞ and the random walk is transient.

d ≥ 4: The random walk is still transient, since the first 3 coordinates are transient. 2

Exercise Find a point-recurrent random walk on R whose set of possible values is a count-
able dense set in R.

2 The Chung-Fuchs theorem

Theorem 5 (Chung-Fuchs, 1951) Let Sn be a random walk in R
d. Then:

(i) If d = 1 and Sn

n
→ 0 in probability, then Sn is neighborhood-recurrent. In particular,

this happens if EX1 = 0.
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(ii) If d = 2 and Sn√
n
converges in distribution to a centered normal distribution, then Sn

is neighborhood-recurrent. In particular, this happens if EX1 = 0 and EX2
1 < ∞.

(iii) If d = 3 and the random walk is not contained in a plane then it is neighborhood-
transient (the condition just means that the set of neighborhood-possible values is not
contained in a plane).

Remark 6 If the walk is on Z
d then neighborhood-recurrence is the same as point-

recurrence and the theorem still applies.

Remark 7 If EX1 = µ then by the strong law of large numbers Sn

n
→ µ almost surely.

Therefore if EX1 exists and is nonzero, it’s obvious that the random walk is transient.

We won’t prove the Chung-Fuchs theorem in its full generality, but we will show some partial
results, together with other criteria for recurrence. We will need the following theorem:

Theorem 8 (Birkhoff ergodic theorem for functions of IIDs) Let X1,X2, . . . be
IID random variables in a state space S and let g : S∞ → R be any measureable function.
Define

Yn = g(Xn,Xn+1, . . .).

If E|Y1| < ∞ then

lim
n→∞

1

n

n
∑

k=1

Yk = EY1

almost surely and in L1.

Remark 9 In fact, it is sufficient to take the Yn’s to be a stationary ergodic sequence with
E|Y1| < ∞

We won’t prove this theorem (a proof can be found, for example, in [1]). However, we will
use this result to prove the following:

Theorem 10 (Kesten-Spitzer-Whitman range theorem, 1964) For a random walk
in R

d let
Rn = |{x : ∃k ≤ n, Sk = x}|

be the number of distinct points visited, then

P(no return to 0) = lim
n→∞

Rn

n

almost surely.
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Remark 11 This theorem also holds for ergodic markov chains and even stationary ergodic
sequences.

Proof Note that

Rn =
n
∑

k=0

1[Sj 6= Sk for k + 1 ≤ j ≤ n].

Thus

Rn ≥
n
∑

k=0

1[Sk never revisited] =

n
∑

k=0

g(Xk+1,Xk+2, . . .)

for an appropriate measureable function g. Now we can use Birkhoff ergodic theorem and
get that

lim inf
n→∞

Rn

n
≥ Eg(X1,X2, . . .) = P(no return to 0)

almost surely.

On the other hand, fix M ≥ 1 and note that

Rn ≤
n−M
∑

k=0

1 [Sk not visited again by time k +M ] +M.

Again by Birkhoff we get that

lim sup
n→∞

Rn

n
≤ lim sup

n→∞

1

n

(

M +

n−M
∑

k=0

1 [Sk not visited again by time k +M ]

)

=

= P(0 not revisited by time M)

almost surely. But as M → ∞
P(0 not revisited by time M) → P(0 is never revisited),

so it follows that

lim sup
n→∞

Rn

n
≤ P(0 is never revisited)

and we are done. 2

We are now ready to prove part (i) of the Chung-Fuchs theorem, under the additional
assumptions that the random walk is on Z and that EX1 exists (and therefore EX1 = 0):

Proof By the strong law of large numbers we know that Sn

n
→ 0 almost surely. Therefore

for every ǫ > 0 we can find n0 (which is a random variable by itself) such that |Sn|
n

< ǫ for

n > n0. Hence for n much larger than n0 we get that Rn ≤ 3ǫn, so lim sup Rn

n
≤ 3ǫ almost

surely.

Since ǫ was arbitrary it follows that Rn

n
→ 0, so by the Kesten-Spitzer-Whitman theorem

P(no return to 0) = 0, and the walk is recurrent. 2
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3 Fourier analytic criterion for recurrence

For a random walk on Z
d, let ϕ(θ) = Eeiθ·X1 be the characteristic function of X1. Note

that ϕ is essentially from T
d = [−π, π]d to C.

Reminder

(i) Eeiθ·Sn = ϕn(θ)

(ii) We have the Fourier inversion formula:

P(Sn = y) = (2π)−d

∫

Td

e−iy·θϕn(θ)dθ

Theorem 12 A random walk Sn on Z
d is reucrrent if and only if

lim
rր1

∫

Td

ℜ
(

1

1− rϕ(θ)

)

dθ = ∞

Remark 13 (i) It is also true, but more difficult to prove, that Sn is recurrent if and
only if

∫

Td

ℜ
(

1

1− ϕ(θ)

)

dθ = ∞

(ii) Similarly, for general random walks in R
d, Sn is neighbourhood-recurrent if and only

if for some δ > 0 (and then for every δ > 0)

∫

(−δ,δ)d
ℜ
(

1

1− ϕ(θ)

)

dθ = ∞

(this time ϕ is defined on R
d)

(iii) If X1 has first and second moments, then (in 1 dimension):

ϕ(θ) = 1 + iθEX1 −
θ2

2
EX2

1 + o(θ2)

as θ → 0.

(iv) The weak law of large numbers holds if and only if ϕ′(0) exists, and then Sn

n
→ µ in

probability, where ϕ′(0) = iµ (By a result of E. Pitman)

Proof

P(Sn = 0) = (2π)−d

∫

Td

ϕn(θ)dθ,
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so for 0 < r < 1 we have

∞
∑

n=0

rnP(Sn = 0) =
∞
∑

n=0

(2π)−drn
∫

Td

ϕn(θ)dθ = (2π)−d

∫

Td

∞
∑

n=0

rnϕn(θ)dθ.

Here the final step was Fubini’s theorem, which applies because

∞
∑

n=0

∫

Td

|rnϕn(θ)| dθ ≤
∞
∑

n=0

∫

Td

rndθ < ∞.

Since the left hand side is real it follows that

∞
∑

n=0

rnP(Sn = 0) = (2π)−d

∫

Td

ℜ
(

1

1− rϕ(θ)

)

dθ.

When r ր 1 the left hand side converges to
∞
∑

n=0
P(Sn = 0), so we are done. 2

We would like to use this result for a few remarks about the relation between recurrence
and moments

Definition 14 The symmetric stable random variable of index α is the random variable
X on R such that

Eeiθ·X = e−|θ|α

Such a random variable exists for every α ≤ 2. If α = 2 this is just the gaussian. If α < 2
this is a symmetric random variable such that E|X|p < ∞ for every p < α, but E|X|α = ∞.

Note that
1

1− ϕ(θ)
=

1

1− e−|θ|α ∼ 1

|θ|α
as θ → 0. Therefore

∫

(−δ,δ)d

dθ

1− ϕ(θ)
=

{

∞ : α ≥ 1
< ∞ : α < 1

,

so these random walks are recurrent if and only if α ≥ 1. For α > 1 this is a consequence
of the Chung-Fuchs theorem, since EX = 0.

For α = 1 X has the Cauchy distribution, with density 1
π(1+x2)

. For such X1,
Sn

n
is again

Cauchy distributed (as can be seen by calculating its characteristic function), so the weak
law of large numbers doesn’t hold even though the walk is recurrent.

The recurrence condition is not only about the tail of the random varaible. In 1964, Shepp
gave examples of recurrent walks with arbitrary heavy tails. In fact he proved the following:
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Theorem 15 For every function ǫ(x) such that limx→∞ ǫ(x) = 0, there exists a symmetric
random variable X1 such that

P (|X1| > x) ≥ ǫ(x)

for all large x, and the random walk Sn is neighborhood (and even point) recurrent.
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