Random Walks and Brownian Motion Tel Aviv University Spring 2011 Instructor: Ron Peled

Lecture 13

Lecture date: Jun 6, 2011

Scribe: Jacob Kagan

Tags for today's lecture: Donsker's invariance priciple, Stochastic integration, Itô's formula

In this lecture we show an application of Donsker's invariance principle and then proceed to the construction of Itô's stochastic integral.

1 Donsker's invariance principle

We recall the definitions and give a simple example of an application of the invariance principle. Consider a random walk $S_n = \sum_{i=1}^n x_i$ with $\mathbf{E}(x) = 0$, $\mathbf{E}(x^2) = 1$. Let S(t) be its linear interpolation and define

$$S_n^*(t) = \frac{S(nt)}{\sqrt{n}} \qquad t \in [0,1]$$

Theorem 1 (Convergence to Brownian motion): $S_n^* \xrightarrow{d} B|_{[0,1]}$ on $\mathcal{C}[0,1]$

Remark 2 The meaning of the above statement is that for any bounded continuous function $G: \mathcal{C}[0,1] \longrightarrow \mathbb{R}$ the following holds $\mathbf{E}G(S_n^*) \xrightarrow{n \to \infty} \mathbf{E}G(B|_{[0,1]})$

Example 3 Application to to maxima of Brownian motion.

Let
$$S_n = \sum_{i=1}^n x_i$$
 with $\mathbf{E}(x) = 0$, $\mathbf{E}(x^2) = \sigma^2$. Denote $M_n = \max\{S_k | 0 \le k \le n\}$ then

$$\lim_{n \to \infty} \mathbf{P}(M_n \ge x\sqrt{n}) = \frac{2}{\sqrt{2\pi\sigma^2}} \int_x^\infty \exp\left[-\frac{y^2}{2\sigma^2}\right] dy \stackrel{N \sim \mathcal{N}(0,1)}{=} 2\mathbf{P}(N \ge x)$$

Proof It is enough to show this for $\sigma^2 = 1$ and to show that for any continuous bounded function $g : \mathbb{R} \to \mathbb{R}$

$$\mathbf{E}(g(\frac{M_n}{\sqrt{n}} \xrightarrow{n \to \infty} \mathbf{E}g(\max B(t)) \sim 2\mathbf{P}(N \ge x)$$

the last step is an application of the reflection principle. (compare to the discrete walk study and the reflection principle application.)

consider
$$g_{\lambda}(x) = \begin{cases} \cos(\lambda x) \\ \sin(\lambda x) \end{cases}$$
 For this choice we define $F : \mathbb{R} \to \mathbb{R}$,
 $G(F) = g(\max F(t))$
 $G(S_n^*) = g(\max S_n^*) \qquad = g(\max \frac{S_k}{\sqrt{n}}) \qquad \Box$

max of a piece linear f.is at the end points

2 Stochastic integration

The motivation behind stochastic integration is modelling noise. Let us illustrate this idea via an example: Let us consider S_n - a simple random walk in one dimension $x_i = \pm 1$

 $R_n = \sum_{i=1}^n b_i x_i$ is a possible gambling strategy where R_i denotes the gain by time $n, b_i \in \sigma(x_1...x_{i-1})$ are random but predictable weights. R_n is obviously a martingale. we denote

$$R = \int_{1}^{n} b \, \mathrm{d}s^{n} = \sum_{i=1}^{n} b_{i} \cdot \underbrace{(S_{i} - S_{i-1})}_{X_{i}}$$

So, for Brownian motion this would be white noise.

We wish to define $\int H(s)dB(s)$ for a random H. Since we know B(s) does not have a bounded variation we can not define this as a Stieltjes integral, instead we will construct a stochastic process M(t) which will have the following properties

- it will be a.s. continuous
- it will be a martingale

Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space, suppose $\{\mathcal{F}_t\}_t$ is a complete filtration (meaning that if $A \in \mathcal{A}$ with $\mathbf{P}(A) = 0$ then $A \in F_t$ for all t), such that the Brownian motion is adapted to it and the strong Markov property holds e.g. $\mathcal{F}(t)$ is the completion (\mathcal{F}^+) .

Definition 4 $\{\mathcal{H}(t,\omega)|t \ge 0 \ \omega \in \Omega\}$ is progressively measurable if $\forall t \ge 0$ the map $(t,\omega) \longrightarrow \mathcal{H}(t,\omega)$ is measurable with respect to $\mathcal{B}([0,t]) \times \mathcal{F}(t)$. (\mathcal{B} is the Borel σ -field.)

The measureability requirement corresponds to the predictability property we discussed in the discrete case example and it implies that $\mathcal{H}(t,\omega) \in \mathcal{F}(t) \quad \forall t$, which is adaptedness of the process.

Theorem 5 Any \mathcal{H} which is adapted and a.s. left-continuous or right-continuous is progressively measurable.

Proof Without loss of generality suppose \mathcal{H} is right-continuous fix $t \geq 0$ Define

$$H_n = \begin{cases} \mathcal{H}(0,\omega) & t = 0\\ \mathcal{H}(\frac{k+1}{2^n}t,\omega) & kt2^{-n} < s \le (k+1)t2^{-n} \end{cases}$$

 $\mathcal{H}_n(t,\omega)$ is measurable with respect to $\mathcal{B}([0,t]) \times \mathcal{F}(t)$ hence is also its limit \mathcal{H} . \Box

We will define $\int_0^\infty \mathcal{H}(s) dB(s)$ for progressively a measurable \mathcal{H} satisfying $\|\mathcal{H}\|_2^2 = \mathbf{E} \int_0^\infty \mathcal{H}^2(t,\omega) dt < \infty$ for such integrals we get an isometry (the Itô Isometry):

$$\mathbf{E}\left[\int_{0}^{\infty}\mathcal{H}(s)\mathrm{d}B(s)\right]^{2} = \left\|\mathcal{H}\right\|_{2}^{2}$$

and $\{\int_0^t \mathcal{H}(s) dB(s)\}_{t \ge 0}$ will be a continuous martingale with respect to \mathcal{F}

Definition 6 for a progressive measurable step process

$$\mathcal{H}(t,\omega) = \sum^{k} A_{i} \mathbf{1}_{(t_{i},t_{i+1}]}(t) \qquad 0 \le t_{1} \le \dots \le t_{k+1}$$

define

$$\int_0^\infty \mathcal{H}dB(t) = \sum^k A_i \cdot \left(B(t_{i+1}) - B(t_i) \right)$$

We now proceed to the general case, defining an integral of a progressively measurable process we find an approximating sequence \mathcal{H}_n of progressively measurable step processes with $\|\mathcal{H} - \mathcal{H}_n\|_2 \longrightarrow 0$ and using the isometry property show $\int_0^\infty \mathcal{H}(s) dB(s)$ is well defined as the L_2 limit of $\int_0^\infty \mathcal{H}_n(s) dB(s)$.

Lemma 7 Given a progressively measurable process \mathcal{H} with $\|\mathcal{H}\|_2 < \infty$ there exists a sequence \mathcal{H}_n of progressively measurable step process with $\|\mathcal{H} - \mathcal{H}_n\|_2 \to 0$

Sketch of Proof We can assume \mathcal{H} is uniformly bounded zero outside a compact interval by truncation. We may assume \mathcal{H} is continuous by replacing

$$\mathcal{H}_n(s) = n \int_{s-1/n}^s \mathcal{H}(s) \mathrm{d}s \qquad \mathcal{H}_n \xrightarrow{L_2} \mathcal{H}$$

since $\mathcal{H}_n \to \mathcal{H}$ for a.e. s by Lebesgue theorem, \mathcal{H}_n is still progressively measurable being an integral over the past.

A continuous function can be approximated by a series of step functions \Box

Lemma 8 (isometry property): for a progressively measurable step process $\mathcal{H}(s,\omega) = \sum A_i(\omega) \mathbf{1}_{(t_i,t_{i+1}]}(s)$ with $\|\mathcal{H}\|_2 < \infty$ we have $\mathbf{E} \left[\int^{\infty} \mathcal{H}(s) dB(s) \right]^2 = \|\mathcal{H}\|_2^2$

Proof

$$\mathbf{E} \left[\int_{0}^{\infty} \mathcal{H}(s) dB(s) \right]^{2} = \mathbf{E} \sum_{i,j} A_{i} A_{j} \cdot \left(B(t_{i+1}) - B(t_{i}) \right) \left(B(t_{j+1}) - B(t_{j}) \right)$$

$$= 2 \mathbf{E} \sum_{i < j} A_{i} A_{j} \cdot \left(B(t_{i+1}) - B(t_{i}) \right) \left(B(t_{j+1}) - B(t_{j}) \right) + \underbrace{\mathbf{E} \sum_{i < j} A_{i}^{2} \cdot \left(B(t_{i+1}) - B(t_{i}) \right)^{2}}_{\sum \mathbf{E} A_{i}^{2} \cdot (t_{i+1} - t_{i}) = \mathbf{E} \int \mathcal{H}^{2}(s) ds = \|H\|_{2}^{2}}$$

Corollary 9 if $\{\mathcal{H}_n\}$ is a sequence of progressively measurable step processes with $\|\mathcal{H}_n - \mathcal{H}_m\|_2 \to 0$ (a Cauchy sequence in L_2) then

$$\mathbf{E}\left[\int_0^\infty \mathcal{H}_n(s)\mathcal{H}_m(s)dB(s)\right]^2 \longrightarrow 0$$

Theorem 10 the stochastic integral is well defined. If \mathcal{H} is progressively measurable, $\|\mathcal{H}\|_2 < \infty$ and $\{\mathcal{H}_n\}_n$ are progressively measurable step processes $\|\mathcal{H} - \mathcal{H}_n\|_2 \to 0$ then the limit

$$\lim_{n} \int_{0}^{\infty} \mathcal{H}_{n}(s) dB(s) \equiv \int_{0}^{\infty} \mathcal{H}(s) dB(s)$$

exists, as a limit in L_2 , is independent of $\{\mathcal{H}_n\}$ and satisfies the isometry property:

$$\mathbf{E}\int_0^\infty \mathcal{H}(s)dB(s) = \|\mathcal{H}\|_2^2$$

Proof the limit exists since $\{\mathcal{H}_{\setminus}\}$ is a Cauchy sequence therefore has a limit by the completeness of L_2 . This also gives the isometry. Independence of the choice of sequence follows from the isometry property. \Box

Definition 11 For a progressively measurable \mathcal{H} with $\mathbf{E}\left[\int_{0}^{\infty} \mathcal{H}^{2}(s) ds\right] < \infty$ for arbitrary t we define

$$\int_0^t \mathcal{H}(s) dB(s) \equiv \int_0^\infty \mathcal{H}(s) \mathbf{1}_{(0,t]}(s)$$

Definition 12 A stochastic process X is a modification of another Process Y if

$$\forall t \qquad \mathbf{P}(X(t) = Y(t)) = 1$$

(essentially this means X and Y have the same finite dimensional distributions.)

Theorem 13 if \mathcal{H} is progressively measurable satisfying $\mathbf{E} \int_0^t \mathcal{H}^2 ds < \infty \quad \forall t > 0$, then there is an a.s. continuous martingale and in particular $\mathbf{E} \int_0^t \mathcal{H}(s) dB(s) = 0 \quad \forall t$

Sketch of Proof Fix t_0 , find an approximating sequence of step processes \mathcal{H}_n such that $\|\mathcal{H}_n - \mathcal{H}\|_2 \to 0$.

 $\{\int_0^t \mathcal{H}_n(s) \mathrm{d}B(s) | 0 \leq t \leq t_0\}$ has a modification which is a continuous martingale. To transfer to the limit we need Doobs max inequality in $L_2^1 \square$

define $X(t) = \mathbf{E}\left[\int_0^{t_0} \mathcal{H}(s) \mathrm{d}B(s) | \mathcal{F}(t)\right]$ Note that $X(t_0) = \int_0^{t_0} \mathcal{H}(s) \mathrm{d}s$ (we expect to have $X(t) = \int_0^t \mathcal{H} \mathrm{d}B(s)$) X is a martingale up to time t_0 by definition. by L_2 max inequality

$$\mathbf{E}\left\{\sup_{0\leq s\leq t_{0}}\left[\int_{0}^{s} \underbrace{\mathcal{H}_{n}\mathrm{d}B(s)}_{\mathrm{martingale}} - \underbrace{X(s)}_{\mathrm{martingale}}\right]\right\}^{2} \leq 4\mathbf{E}\left(\int_{0}^{t_{0}}\mathcal{H}_{n}\mathrm{d}B(s) - \int_{0}^{t_{0}}\mathcal{H}\mathrm{d}B(s)\right)^{2}$$
$$= 4\|\mathcal{H}_{n} - \mathcal{H}\|_{2}^{2} \xrightarrow{n \to \infty} 0$$

Taking $\mathcal{H}_n \to \mathcal{H}$ fast enough implies $\{\int_0^s \mathcal{H}_n dB(s)\}_{0 \le s \le t_0} \longrightarrow X$ both in sup norm and a.s. thus $X(t) = \int_0^t \mathcal{H} dB(s)$ a.s.

$$\mathbf{E} \sup_{0 \le s \le t} |X(s)|^p \le \left[\frac{p}{p-1}\right]^p \mathbf{E} (X(t))^p$$

Proof for the discrete case this follows from the discrete statement, and then approximating gives the general result. \Box

¹Doob's inequality in L_p

3 Itô's formula

Recall the fundamental theorem of calculus

$$f(x(t)) - f(x(0)) = \int_0^t f'(x(s)) \mathrm{d}x(s)$$
(1)

here f is a continuous differentiable function, x is of bounded variation. In this case we have a Taylor expansion for f with the second term giving quadratic contribution. What happens in the case x is a Brownian Motion?

For a Brownian Motion, X, we have

$$B(t_i) - B(t_{i-1}) \approx o\sqrt{t_i - t_{i-1}}$$
$$\left(B(t_i) - B(t_{i-1})\right)^2 \approx o(t_i - t_{i-1})$$
$$\left(B(t_i) - B(t_{i-1})\right)^3 \approx o(t_i - t_{i-1})^{3/2}$$

Thus comparing this to formula (1) suggests:

Theorem 14 Itôs formula (I): Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function in C_2 with $\mathbf{E} \int_0^t f'(B(s)) ds < \infty$ for some t > 0, then a.s. for 0 < s < t holds:

$$f(B(s)) - f(B(0)) = \int_0^s f'(B(u)) dB(u) + \frac{1}{2} \int_0^s f''(B(u)) dB(u)$$

Theorem 15 Itô's formula (II): suppose $\{\zeta(s)\}_{s>0}$ is a.s. an increasing continuous adapted process, $f : \mathbb{R} \longrightarrow \mathbb{R}$ is a C_2 function and $\mathbf{E} \int_0^t \partial_x f(B(u), \zeta(u))^2 du < \infty$ for some t > 0 Then a.s. for all 0 < s < t

$$\begin{aligned} f(B(s),\zeta(s)) - f(B(0),\zeta(0)) &= \int_0^s \partial_x f(B(u),\zeta(u)) dB(u) + \frac{1}{2} \int_0^s \partial_{xx} f(B(u),\zeta(u)) dB(u) \\ &+ \int_0^s \partial_\zeta f(B(u),\zeta(u)) d\zeta(u) \end{aligned}$$

4 Multidimensional Itô's formula

let $f : \mathbb{R}^{d+m} \longrightarrow \text{be } \mathcal{C}_{\underbrace{2,2...2}_{d},\underbrace{1,1...1}_{m}}$ for $f(\underbrace{B(u)}_{d-\dim . BM \ m-\dim \ time})$ we have similarly to the 1-d case:

$$f(B(s),\zeta(s)) - f(B(0),\zeta(0)) = \sum_{i=1}^{d} \int_{0}^{s} \partial_{x} f(B(u),\zeta(u)) dB_{i}(u) + \frac{1}{2} \sum_{i=1}^{d} \int_{0}^{s} \partial_{xx} f(B(u),\zeta(u)) dB_{i}(u) + \int_{0}^{s} \partial_{\zeta} f(B(u),\zeta(u)) d\zeta(u)$$

this can be re-written suggestively as:

$$f(B(s),\zeta(s)) - f(B(0),\zeta(0)) = \int_0^s \nabla f(B,\zeta) \cdot (\mathrm{d}B,\mathrm{d}\zeta) + \int_0^s \Delta_x f(B(u),\zeta(u))\mathrm{d}B(u)$$

Example 16 Important application

Definition 17 An adopted process $\{X(t)\}_{t \leq T}$ for a stopping time T is called a local martingale if there exist stopping times $T_n \nearrow T$ a.s. and such that $\{X(T_n \land t)\}_{t \geq 0}$ is a martingale.

Theorem 18 let D be a domain in \mathbb{R}^d , $f: D \longrightarrow \mathbb{R}$ harmonic on D and B a Brownian motion started in D and stopped at T, the first exit time from D. Then $\{f(B(t))\}_{t \leq T}$ is a local martingale.

Explanation: Stochastic integral part is martingale - (we know it by the construction of Itô's integral.) f is harmonic \Rightarrow second term is 0, the last term vanishes since it does not depend on time.

Example 19

$$f(x) = \begin{cases} \log |x| & d = 2\\ |x|^{2-d} & d \ge 3 \end{cases}$$

is harmonic on $\mathbb{R}^d - \{0\}$. f(B(t)) is a local martingale, yet it is not a martingale. Indeed,

$$\mathbf{E}f(B(t)) = \begin{cases} \infty & d=2\\ 0 & d \ge 3 \end{cases} \quad \forall t \ge 0$$

5 Conformal Invariance of planar Brownian Motion

Theorem 20 Let U be a domain in $\mathcal{C}(\cong \mathbb{R}^2)$ $x \in U$ $f : U \longrightarrow \mathcal{C}$ analytic. Let B be a planar Brownian motion started at x and let

$$\tau_U = \inf\{t \ge 0 | B(t) \notin U\}$$

then the process $\{f(B(t)) \mid 0 < t < \tau_U\}$ is a time changed Brownian motion, That is there exists a planar Brownian motion \tilde{B} such that

$$f(B(t)) = \tilde{B}(\zeta(t))$$

where $\zeta(t) = \int_0^t |f'(B(s))|^2 ds$. If in addition f is conformal then $\zeta(\tau_U)$ is a first exit time from f(U) by \tilde{B}