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formula

In this lecture we show an application of Donsker’s invariance principle and then proceed
to the construction of Itd’s stochastic integral.

1 Donsker’s invariance principle

We recall the definitions and give a simple example of an application of the invariance
principle. Consider a random walk S,, = ¥, x; with E(z) = 0, E(2?) = 1. Let S(t) be its
linear interpolation and define

S(nt)

NG t € 0,1]

Sa(t) =

Theorem 1 (Convergence to Brownian motion): S} LN B’[O ) on Cl0,1]

Remark 2 The meaning of the above statement is that for any bounded continuous function
G : C[0,1] — R the following holds EG(S:) =5 EG(B| )

Example 3 Application to to maxima of Brownian motion.

Let S, = ¥ ,z; with E(z) = 0, E(z?) = ¢%. Denote M,, = maxz{S|0 < k < n} then

, 2 o0 y? N~N(0,1)
nILH;oP(Mn > zy/n) = \/W/x exp [ — ﬁ]dy =""2P(N >z)

Proof It is enough to show this for 02 = 1 and to show that for any continuous bounded

function g : R = R
MTL n—oo

E(g(% — Eg(max B(t)) ~ 2P(N > z)
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the last step is an application of the reflection principle. (compare to the discrete walk
study and the reflection principle application.)

cos(Az)

) For this choice we define F': R — R,
sin(A\x)

consider gy(x) = {
G(F) = g(max (1)
S

G(S;) = g(max S;) = g(max —%) =
ko/n

max of a piece linear f.is at the end points

2 Stochastic integration

The motivation behind stochastic integration is modelling noise. Let us illustrate this idea
via an example: Let us consider S, - a simple random walk in one dimension z; = £+1

R, = > "b;z; is a possible gambling strategy where R; denotes the gain by time n, b; €
o(xy...x;—1) are random but predictable weights. R, is obviously a martingale. we denote

RZ”/ bds” = b; - (S; — S;_
: > i 1)

X

So, for Brownian motion this would be white noise.

We wish to define [ H(s)dB(s) for a random H. Since we know B(s) does not have a
bounded variation we can not define this as a Stieltjes integral, instead we will construct a
stochastic process M (t) which will have the following properties

e it will be a.s. continuous
e it will be a martingale
Let (92,.A,P) be a probability space, suppose {F;}; is a complete filtration (meaning that

if A€ A with P(A) =0 then A € F; for all t), such that the Brownian motion is adapted
to it and the strong Markov property holds e.g. F(t) is the completion (F*).

Definition 4 {H(t,w)|t > 0w € Q} is progressively measurable if Vt > 0 the map (t,w) —
H(t,w) is measurable with respect to B([0,t]) x F(t). (B is the Borel o-field.)
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The measureability requirement corresponds to the predictability property we discussed in
the discrete case example and it implies that H(t,w) € F(¢) V¢, which is adaptedness of
the process.

Theorem 5 Any H which is adapted and a.s. left-continuous or right-continuous is pro-
gressively measurable.

Proof Without loss of generality suppose H is right-continuous fix ¢ > 0 Define

H(0,w) t=0
H, =
H(ERtw) k2T <s < (k+1)27"

Hy(t,w) is measurable with respect to B([0,t]) x F(t) hence is also its limit H. O

We will define fo (s)dB(s) for progressively a measurable H satisfying HHH? =
E fo H2(t,w)dt < oo for such integrals we get an isometry (the It6 Isometry):

5| [ e = Iu;

and +>0 will be a continuous martingale with respect to F
0

Definition 6 for a progressive measurable step process

k
w) - ZAil(tiyti-o-ﬂ(t) 0<t1 <. tht1

define

/’HdB ZA (tiv1) — B(t:))

We now proceed to the general case, defining an integral of a progressively measurable
process we find an approximating sequence H,, of progressively measurable step processes
with ||H — Hy|l2 — 0 and using the isometry property show [ #(s)dB(s) is well defined
as the Ly limit of [;° H,(s)dB(s).

Lemma 7 Given a progressively measurable process H with ||H||2 < oo there exists a se-
quence H,, of progressively measurable step process with ||H — Hyll2 — 0

13-3



Sketch of Proof We can assume H is uniformly bounded zero outside a compact interval
by truncation. We may assume H is continuous by replacing

Ho(s) = n/ H(s)ds  Hn > H

—1/n

since ‘H, — H for a.e. s by Lebesgue theorem, H,, is still progressively measurable being
an integral over the past.

A continuous function can be approximated by a series of step functions O

Lemma 8 (isometry property): for a progressively measurable step process H(s,w) =
, [e%e) 2
> Ai(w) 1t 1,41 (s) with |H]l2 < oo we have E[ [*° H(s)dB(s)]” = ||H]|3

Proof
0o 2
Bl [TH6aB6)| = BY ;- (Bltin) - B) (Blty) - B()

= 2E) AA;- (B(tiy1) — B(t) (B(tj1) — B(ty)) +

1<j

0
B Y A7 (Bltin) - B(t)’

S EA? (tip1—t:)=E [ H2(s)ds=| H||3
O

Corollary 9 if {H,} is a sequence of progressively measurable step processes with || H, —
Hmll2 = 0 (a Cauchy sequence in Ly) then

E[/OOO Hn(s)Hm(s)dB(s)r 0

Theorem 10 the stochastic integral is well defined. If H is progressively measurable,
|H]l2 < oo and {Hn}n are progressively measurable step processes |H — Hpylla — 0 then
the limit

lim /O Mo (s)dB(s) = /0 " (s)dB(s)

exists, as a limit in Lo, is independent of {H,} and satisfies the isometry property:

i /0 T H(s)dB(s) = |3
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Proof the limit exists since {#, } is a Cauchy sequence therefore has a limit by the com-
pleteness of Lo. This also gives the isometry. Independence of the choice of sequence follows
from the isometry property.O

Definition 11 For a progressively measurable H with E[fooo HQ(S)dS] < oo for arbitrary t
we define

Definition 12 A stochastic process X is a modification of another Process Y if

vt PX(t)=Y(t) =1
(essentially this means X and Y have the same finite dimensional distributions.)

Theorem 13 if H is progressively measurable satisfying Efg H?ds < oo YVt > 0, then
there is an a.s. continuous martingale and in particular Ef(f H(s)dB(s) =0 Vit

Sketch of Proof Fix tg, find an approximating sequence of step processes H,, such that

{ fo B(s)|0 < t < tp} has a modification which is a continuous martingale. To
transfer to the limit we need Doobs max inequality in LQEI O

define X (t) = E[ go ’H(s)dB(s)]]—"(t)] Note that X (to) fo s)ds (we expect to have

= fot ‘HdAB(s) ) X is a martingale up to time ¢y by definition. by Ls max inequality

2 to to 2
{ sup / HpdB(s) — X(s) } < 4E< HndB(s) — HdB(s))
0<s<tg 1 *V“t. . 0 0
martingale  martingale

= 4| H, —H[3 =0

Taking ’H — H fast enough implies { [ HndB(s)}o<s<t, — X both in sup norm and a.s.
thus X (¢ fo HdAB(s) a

'Doob’s inequality in L,

B swp XOF < |25] BC)y

0<s<t
Proof for the discrete case this follows from the discrete statement, and then approximating gives the
general result.O
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3 It0’s formula

Recall the fundamental theorem of calculus
t
fz(t) — f(2(0) = /0 f'(@(s))dx(s) (1)
here f is a continuous differentiable function, = is of bounded variation. In this case we

have a Taylor expansion for f with the second term giving quadratic contribution.What
happens in the case x is a Brownian Motion?

For a Brownian Motion, X, we have

Thus comparing this to formula suggests:

Theorem 14 [tés formula (I): Let f : R — R be a function in Cy with Efg f(B(s))ds <
oo for some t > 0, then a.s. for 0 < s <t holds:

F(B) = 1(B0) = [ £ (B@)aB) + 5 [ (B)dB)

Theorem 15 [t6’s formula (11): suppose {((s)}s>0 s a.s. an increasing continuous adapted
process, f : R — R is a Cy function and Efg Oz f(B(u),¢(u))?du < oo for some t > 0
Then a.s. for all0 <s <t

F(B).0(6)) = F(B0).€0) = [ 0Bl C)dB) + 5 [ 00af (B, () B
+ [ ocs), s
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4 Multidimensional Ito’s formula

let f:R¥*™ — be Cy 9 91.1..1 for f( B(u) , ((u) ) we have similarly to the 1-d
) 5Ly Lees N , R ,
d m d-dim. BM m-dim time
case:

d S d S
F(B(). () = (B0 = 3 [ 0.F(Blw). CpaBia) + 5 Y [ 00 F(B). ) Bi(w)
i=1 1=1

+ /O 0 F(B(w), ¢(w)dC ()

this can be re-written suggestively as:

F(B(3).C(s)) — F(B(0),(0)) = /O VA(B.Q) - (dB.AQ) + /O " AL f(B(u), ¢C(u))dB(u)
Example 16 Important application

Definition 17 An adopted process { X (t)}i<1 for a stopping time T is called a local martin-
gale if there exist stopping times T,, /T a.s. and such that {X (T,, At) }+>0 is a martingale.

Theorem 18 let D be a domain in R?, f : D — R harmonic on D and B a Brownian
motion started in D and stopped at T, the first exit time from D. Then {f(B(t)) h<r is a
local martingale.

Explanation: Stochastic integral part is martingale - (we know it by the construction of
Itd’s integral.) f is harmonic = second term is 0, the last term vanishes since it does not
depend on time.

Example 19
log|x| d=2
xr) =
o= {2 42

is harmonic on R? — {0}. f(B(t)) is a local martingale, yet it is not a martingale. Indeed,

oo d=2

Ef(B(t) = {O Loy V20
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5 Conformal Invariance of planar Brownian Motion

Theorem 20 Let U be a domain in C(2 R?) 2 € U f : U — C analytic. Let B be a
planar Brownian motion started at x and let

Ty = inf{t > 0|B(t) ¢ U}

then the process {f(B(t)) | 0 <t < 1y} is a time changed Brownian motion, That is there
exists a planar Brownian motion B such that

f(B(t)) = B(((1))

where ((t) = f(f \f'(B(s))|?ds. If in addition f is conformal then ((ty) is a first exit time
from f(U) by B
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