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In this lecture we show an application of Donsker’s invariance principle and then proceed
to the construction of Itô’s stochastic integral.

1 Donsker’s invariance principle

We recall the definitions and give a simple example of an application of the invariance
principle. Consider a random walk Sn = Σn

i=1xi with E(x) = 0, E(x2) = 1. Let S(t) be its
linear interpolation and define

S∗n(t) =
S(nt)√

n
t ∈ [0, 1]

Theorem 1 (Convergence to Brownian motion): S∗n
d−→ B

∣∣
[0,1]

on C[0, 1]

Remark 2 The meaning of the above statement is that for any bounded continuous function
G : C[0, 1] −→ R the following holds EG(S∗n)

n→∞−→ EG(B
∣∣
[0,1]

)

Example 3 Application to to maxima of Brownian motion.

Let Sn = Σn
i=1xi with E(x) = 0, E(x2) = σ2. Denote Mn = max{Sk|0 ≤ k ≤ n} then

lim
n→∞

P(Mn ≥ x
√
n) =

2√
2πσ2

∫ ∞
x

exp
[
− y2

2σ2
]
dy

N∼N (0,1)
= 2P(N ≥ x)

Proof It is enough to show this for σ2 = 1 and to show that for any continuous bounded
function g : R→ R

E(g(
Mn√
n

n→∞−→ Eg(maxB(t)) ∼ 2P(N ≥ x)
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the last step is an application of the reflection principle. (compare to the discrete walk
study and the reflection principle application.)

consider gλ(x) =

{
cos(λx)

sin(λx)
For this choice we define F : R→ R,

G(F ) = g(maxF (t))

G(S∗n) = g(maxS∗n) = g(max
k

Sk√
n

)︸ ︷︷ ︸
max of a piece linear f.is at the end points

2

2 Stochastic integration

The motivation behind stochastic integration is modelling noise. Let us illustrate this idea
via an example: Let us consider Sn - a simple random walk in one dimension xi = ±1

Rn =
∑n bixi is a possible gambling strategy where Ri denotes the gain by time n, bi ∈

σ(x1...xi−1) are random but predictable weights. Rn is obviously a martingale. we denote

R = ”

∫ n

1
b ds” =

n∑
bi · (Si − Si−1)︸ ︷︷ ︸

Xi

So, for Brownian motion this would be white noise.

We wish to define
∫
H(s)dB(s) for a random H. Since we know B(s) does not have a

bounded variation we can not define this as a Stieltjes integral, instead we will construct a
stochastic process M(t) which will have the following properties

• it will be a.s. continuous

• it will be a martingale

Let (Ω,A,P) be a probability space, suppose {Ft}t is a complete filtration (meaning that
if A ∈ A with P(A) = 0 then A ∈ Ft for all t), such that the Brownian motion is adapted
to it and the strong Markov property holds e.g. F(t) is the completion (F+).

Definition 4 {H(t, ω)|t ≥ 0 ω ∈ Ω} is progressively measurable if ∀t ≥ 0 the map (t, ω) −→
H(t, ω) is measurable with respect to B([0, t])×F(t). (B is the Borel σ-field.)
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The measureability requirement corresponds to the predictability property we discussed in
the discrete case example and it implies that H(t, ω) ∈ F(t) ∀t, which is adaptedness of
the process.

Theorem 5 Any H which is adapted and a.s. left-continuous or right-continuous is pro-
gressively measurable.

Proof Without loss of generality suppose H is right-continuous fix t ≥ 0 Define

Hn =

{
H(0, ω) t = 0

H(k+1
2n t, ω) kt2−n < s ≤ (k + 1)t2−n

Hn(t, ω) is measurable with respect to B([0, t])×F(t) hence is also its limit H. 2

We will define
∫∞
0 H(s)dB(s) for progressively a measurable H satisfying

∥∥H∥∥2
2

=
E
∫∞
0 H

2(t, ω)dt <∞ for such integrals we get an isometry (the Itô Isometry):

E

[ ∫ ∞
0
H(s)dB(s)

]2
=
∥∥H∥∥2

2

and {
∫ t
0 H(s)dB(s)}t≥0 will be a continuous martingale with respect to F

Definition 6 for a progressive measurable step process

H(t, ω) =

k∑
Ai1(ti,ti+1](t) 0 ≤ t1 ≤ ... ≤ tk+1

define ∫ ∞
0
HdB(t) =

k∑
Ai ·

(
B(ti+1)−B(ti)

)
We now proceed to the general case, defining an integral of a progressively measurable
process we find an approximating sequence Hn of progressively measurable step processes
with ‖H−Hn‖2 −→ 0 and using the isometry property show

∫∞
0 H(s)dB(s) is well defined

as the L2 limit of
∫∞
0 Hn(s)dB(s).

Lemma 7 Given a progressively measurable process H with ‖H‖2 < ∞ there exists a se-
quence Hn of progressively measurable step process with ‖H −Hn‖2 → 0
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Sketch of Proof We can assume H is uniformly bounded zero outside a compact interval
by truncation. We may assume H is continuous by replacing

Hn(s) = n

∫ s

s−1/n
H(s)ds Hn

L2−→ H

since Hn → H for a.e. s by Lebesgue theorem, Hn is still progressively measurable being
an integral over the past.

A continuous function can be approximated by a series of step functions 2

Lemma 8 (isometry property): for a progressively measurable step process H(s, ω) =∑
Ai(ω)1(ti,ti+1](s) with ‖H‖2 <∞ we have E

[ ∫∞H(s)dB(s)
]2

= ‖H‖22

Proof

E

[ ∫ ∞
0
H(s)dB(s)

]2
= E

∑
i,j

AiAj ·
(
B(ti+1)−B(ti)

)(
B(tj+1)−B(tj)

)
= 2 E

∑
i<j

AiAj ·
(
B(ti+1)−B(ti)

)(
B(tj+1)−B(tj)

)
︸ ︷︷ ︸

0

+

+E
∑
i=j

A2
i ·
(
B(ti+1)−B(ti)

)2
︸ ︷︷ ︸∑
EA2

i ·(ti+1−ti)=E
∫
H2(s)ds=‖H‖22

2

Corollary 9 if {Hn} is a sequence of progressively measurable step processes with ‖Hn −
Hm‖2 → 0 (a Cauchy sequence in L2) then

E

[ ∫ ∞
0
Hn(s)Hm(s)dB(s)

]2
−→ 0

Theorem 10 the stochastic integral is well defined. If H is progressively measurable,
‖H‖2 < ∞ and {Hn}n are progressively measurable step processes ‖H − Hn‖2 → 0 then
the limit

lim
n

∫ ∞
0
Hn(s)dB(s) ≡

∫ ∞
0
H(s)dB(s)

exists, as a limit in L2, is independent of {Hn} and satisfies the isometry property:

E

∫ ∞
0
H(s)dB(s) = ‖H‖22
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Proof the limit exists since {H\} is a Cauchy sequence therefore has a limit by the com-
pleteness of L2. This also gives the isometry. Independence of the choice of sequence follows
from the isometry property.2

Definition 11 For a progressively measurable H with E
[ ∫∞

0 H
2(s)ds

]
<∞ for arbitrary t

we define ∫ t

0
H(s)dB(s) ≡

∫ ∞
0
H(s)1(0,t](s)

Definition 12 A stochastic process X is a modification of another Process Y if

∀t P(X(t) = Y (t)) = 1

(essentially this means X and Y have the same finite dimensional distributions.)

Theorem 13 if H is progressively measurable satisfying E
∫ t
0 H

2ds < ∞ ∀t > 0, then

there is an a.s. continuous martingale and in particular E
∫ t
0 H(s)dB(s) = 0 ∀t

Sketch of Proof Fix t0, find an approximating sequence of step processes Hn such that
‖Hn −H‖2 → 0.

{
∫ t
0 Hn(s)dB(s)|0 ≤ t ≤ t0} has a modification which is a continuous martingale. To

transfer to the limit we need Doobs max inequality in L2
1 2

define X(t) = E

[ ∫ t0
0 H(s)dB(s)|F(t)

]
Note that X(t0) =

∫ t0
0 H(s)ds (we expect to have

X(t) =
∫ t
0 HdB(s) ) X is a martingale up to time t0 by definition. by L2 max inequality

E

{
sup

0≤s≤t0

[∫ s

0
HndB(s)︸ ︷︷ ︸
martingale

− X(s)︸ ︷︷ ︸
martingale

]}2

≤ 4E

(∫ t0

0
HndB(s)−

∫ t0

0
HdB(s)

)2

= 4‖Hn −H‖22
n→∞−→ 0

Taking Hn → H fast enough implies {
∫ s
0 HndB(s)}0≤s≤t0 −→ X both in sup norm and a.s.

thus X(t) =
∫ t
0 HdB(s) a.s.

1Doob’s inequality in Lp

E sup
0≤s≤t

|X(s)|p ≤
[

p

p− 1

]p

E(X(t))p

Proof for the discrete case this follows from the discrete statement, and then approximating gives the
general result.2
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3 Itô’s formula

Recall the fundamental theorem of calculus

f(x(t))− f(x(0)) =

∫ t

0
f ′(x(s))dx(s) (1)

here f is a continuous differentiable function, x is of bounded variation. In this case we
have a Taylor expansion for f with the second term giving quadratic contribution.What
happens in the case x is a Brownian Motion?

For a Brownian Motion, X, we have

B(ti)−B(ti−1) ≈ o
√
ti − ti−1(

B(ti)−B(ti−1

)2

≈ o(ti − ti−1)(
B(ti)−B(ti−1

)3

≈ o(ti − ti−1)3/2

Thus comparing this to formula (1) suggests:

Theorem 14 Itôs formula (I): Let f : R −→ R be a function in C2 with E
∫ t
0 f
′(B(s))ds <

∞ for some t > 0, then a.s. for 0 < s < t holds:

f(B(s))− f(B(0)) =

∫ s

0
f ′(B(u))dB(u) +

1

2

∫ s

0
f ′′(B(u))dB(u)

Theorem 15 Itô’s formula (II): suppose {ζ(s)}s>0 is a.s. an increasing continuous adapted
process, f : R −→ R is a C2 function and E

∫ t
0 ∂xf(B(u), ζ(u))2du < ∞ for some t > 0

Then a.s. for all 0 < s < t

f(B(s), ζ(s))− f(B(0), ζ(0)) =

∫ s

0
∂xf(B(u), ζ(u))dB(u) +

1

2

∫ s

0
∂xxf(B(u), ζ(u))dB(u)

+

∫ s

0
∂ζf(B(u), ζ(u))dζ(u)
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4 Multidimensional Itô’s formula

let f : Rd+m −→ be C2, 2...2︸ ︷︷ ︸
d

,1, 1...1︸ ︷︷ ︸
m

for f( B(u)︸ ︷︷ ︸
d-dim. BM

, ζ(u)︸︷︷︸
m-dim time

) we have similarly to the 1-d

case:

f(B(s), ζ(s))− f(B(0), ζ(0)) =
d∑
i=1

∫ s

0
∂xf(B(u), ζ(u))dBi(u) +

1

2

d∑
i=1

∫ s

0
∂xxf(B(u), ζ(u))dBi(u)

+

∫ s

0
∂ζf(B(u), ζ(u))dζ(u)

this can be re-written suggestively as:

f(B(s), ζ(s))− f(B(0), ζ(0)) =

∫ s

0
∇f(B, ζ) · (dB, dζ) +

∫ s

0
∆xf(B(u), ζ(u))dB(u)

Example 16 Important application

Definition 17 An adopted process {X(t)}t≤T for a stopping time T is called a local martin-
gale if there exist stopping times Tn ↗ T a.s. and such that {X(Tn∧ t)}t≥0 is a martingale.

Theorem 18 let D be a domain in Rd, f : D −→ R harmonic on D and B a Brownian
motion started in D and stopped at T , the first exit time from D. Then {f(B(t))}t≤T is a
local martingale.

Explanation: Stochastic integral part is martingale - (we know it by the construction of
Itô’s integral.) f is harmonic ⇒ second term is 0, the last term vanishes since it does not
depend on time.

Example 19

f(x) =

{
log |x| d = 2

|x|2−d d ≥ 3

is harmonic on Rd − {0}. f(B(t)) is a local martingale, yet it is not a martingale. Indeed,

Ef(B(t)) =

{
∞ d = 2

0 d ≥ 3
∀t ≥ 0
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5 Conformal Invariance of planar Brownian Motion

Theorem 20 Let U be a domain in C(∼= R2) x ∈ U f : U −→ C analytic. Let B be a
planar Brownian motion started at x and let

τU = inf{t ≥ 0|B(t) /∈ U}

then the process {f(B(t)) | 0 < t < τU} is a time changed Brownian motion, That is there
exists a planar Brownian motion B̃ such that

f(B(t)) = B̃(ζ(t))

where ζ(t) =
∫ t
0 |f

′(B(s))|2ds. If in addition f is conformal then ζ(τU ) is a first exit time

from f(U) by B̃
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