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In this lecture, we will continue last lecture’s topic: Markov property of Brownian Motion
(writing ’BM’ for short in this lecture). First we will talk about the application of Markov
property to local maxima of 1D (’D’ represents ’dimensional’) BM. Then, starting with the
definition of stopping time in continuous setting, we will move on to the Strong Markov
property of BM. In the rest part of this lecture, we will show several applications of Strong
Markov property of BM.

Tags for today’s lecture: Markov property, stopping time, Strong Markov property,
reflection principle, area of planar BM, Lévy’s theorem, zero set of 1D BM

1 Markov Property of BM and its application

Denote

F0(t) : = σ(B(s)|0 ≤ s ≤ t),

F+(t) : =
∩
ϵ>0

F 0(t+ ϵ).

In last lecture, we have showed the Markov property of BM, including the following stronger
version (allowing an additional infinitesimal glance into the future):

Theorem 1 For a d − dimensional BM, and a fixed s ≥ 0, {B(t + s) − B(s)|t ≥ 0} is a
standard d− dimensional BM, independent of F+(s).

Application of Markov property (local maxima of 1D BM)

Definition 2 t is a (strict) local maximum of f if ∃ϵ > 0, s.t. f(t) ≥ (>)f(s) whenever s ∈
[t− ϵ, t+ ϵ].

Last time we also showed:

Theorem 3
P[inf(t > 0|B(t) > 0) = 0] = 1 (⋆)

P[inf(t > 0|B(t) < 0) = 0] = 1
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Proposition 4 For a 1D BM, a.s.

1. All local maxima are strict.

2. The set of times where local maxima are attained is dense and countable.

3. The global maximum, on, say [0, 1] is attained only once.

Proof First show that for any 0 ≤ a < b < c < d, the maxima on I1 = [a, b] and I2 = [c, d]
are distinct a.s.

Denote

m̂1 = max
t∈I1

B(t)−B(b)

m̂2 = max
t∈I2

B(t)−B(c)

and X = B(c)−B(b).

By the Markov property at b and c, all three RV’s (’RV’ means ’random variable’ in this
lecture) are jointly independent. Now note

{max
t∈I1

B(t) = max
t∈I2

B(t)} = {X = m̂1 − m̂2}.

This has probability 0 since X has an atomless distribution conditioning on m̂1 and m̂2.

1 follows since the maxima on all pairs of intervals with rational endpoints (rational interval)
are different.

3 also follows.

To see 2, note that for any a < b, we have

P[max
t∈[a,b]

B(t) ∈ {B(a), B(b)}] = 0.

This follows by ⋆ and the Markov property at a (and the same to the reversed BM). It
follows that each rational interval contains a local maximum, showing denseness.

To show there is only countable many times of maxima, note each ne is the maximum of
some rational interval, since local maxima are strict. 2

2 Stopping times and the strong Markov property

Definition 5 A RV T taking values in [0,∞] is a stopping time w.r.t a filtration {F(t), t ≥
0} if

{T ≤ t} ∈ F(t), ∀ t.
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Example 6 1. Every deterministic time t ≥ 0 is a stopping time.

2. Min (min{S, T}) of two stopping timeS is a stopping time.

3. Increasing limit: If Tn are stopping times and Tn ↑ T a.s. and F(t) contains all
negligible sets (completeness) (Note it includes the event {Tn 9 T}), then T is a
stopping time since

{T ≤ t} =

∞∩
n=1

{Tn ≤ t} ⊂ F(t),

where the last step is obtained by the fact that Tn is a stopping time.

4. Upper approximation: For a stopping time T , one can define

Tn := (m+ 1)2−n

if
m2−n ≤ T < (m+ 1)2−n

and ∞ if T = ∞, then Tn is a stopping time.

For BM, which filtration to use, F0(t) or F+(t) ? We will take F+(t) and even complete it.

Points to note:

1. F0(t) ⊂ F+(t), so we only gain more stopping times.

2. First hitting time of a closed set is a stopping time w.r.t F0(t).

3. First hitting time of an open set

T = inf(t ≥ 0|B(t) ∈ G( open set ))

is not a stopping time w.r.t F0(t), but is a stopping time w.r.t F+(t).

Definition 7 A filtration {F(t)}t≥0 is right continuous if

F(t) =
∩
ϵ>0

F 0(t+ ϵ) ∀ t.

F0(t) is not right continuous, but F+(t) is right continuous.

Proposition 8 If T is a RV taking values in [0,∞] s.t. {T < t} ∈ F(t) for all t and a
right continuous filtration F(t), then T is a stopping time.
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Proof

{T ≤ t} =
∩
n

{T < t+
1

n
} ∈

∩
n

F(t+
1

n
) = F(t),

where the last step used right continuity. 2

From now on, we always complete F+(t) and we work with this larger filtration and still
call it F+(t).

Definition 9 For a stopping time T , w.r.t F+(t), let

F+(T ) = { event A|A ∩ {T ≤ t} ∈ F+(t)}.

This is the collection of events known by time T . In particular, every event depending on
{B(s)|0 ≤ s ≤ T}.

Theorem 10 Strong Markov property For a d − dimensional BM B and any a.s. finite
time T w.r.t F+(t), {B(T+t)−B(T )|t ≥ 0} is a standard d−dimensional BM independent
of F+(t).

Remark 11 If S = max{t ≤ 1|B(t) = 0}, note {X(t) := B(S + t) − B(S)|t ≥ 0} does
satisfy

P[inf(t > 0|X(t) = 0) = 0] = 0,

Hence X is not a standard BM.

Proof of theorem 10

Suppose first that T takes any countably many values. For the kth value ak, let {Bk(t)(t ≥
0)} be defined by Bk(t) = B(ak + t)−B(ak) (a standard BM by Markov property), let also
{B⋆(t)|t ≥ 0} be defined by {B⋆(t) = B(T + t) − B(T )}. Finally fix E ∈ F+(T ), we need
to show that for any event {B⋆ ∈ A}, we have

P({B⋆ ∈ A} ∩ E) = P({B ∈ A})P(E).
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In fact,

P({B⋆ ∈ A} ∩ E) =
∑
k

P({B⋆ ∈ A} ∩ E ∩ {T = ak})

=
∑
k

P({Bk ∈ A} ∩E ∩ {T = ak}︸ ︷︷ ︸
measurable w.r.t. F+(ak)

)

=
∑
k

P({Bk ∈ A})︸ ︷︷ ︸
Markov property at ak

P(E ∩ {T = ak})

= P({B ∈ A})
∑
k

P(∩E ∩ {T = ak})

= P(E),

For a general T , let Tn be an upper approximation, Tn = (m+1)2−n on the event m2−n ≤
T < (m+1)2−n. Notice Tn ↓ T a.s.. We know {B(Tn+ t)−B(Tn)|t ≥ 0} is a standard BM
independent of F+(Tn) ⊃ F+(T ) (since Tn ≥ T ). Finally,

B(T + t)−B(T ) = lim
n→∞

B(Tn + t)−B(Tn),

so the process B(T + t)−B(T ) has the same finite dimensional distribution as a standard
BM and continuous paths, hence it is a standard BM.

Furthermore, since B(Tn + t) − B(Tn) is independent of F+(Tn), the limit {B(T + t) −
B(T )}t≥0 is independent of

∩
nF+(Tn) = F+(T ). 2

3 Application of Strong Markov Property

3.1 Reflection Principle

Given a 1D BM, if T is a stopping time w.r.t F+, then the process

B⋆(t) =

{
B(t), if t ≤ T ;

2B(T )−B(t), if t > T .

(B⋆(t) = B(t) for all t, if T = ∞)is also a standard BM.

Proof First assume T is finite a.s.. By the strong Markov property, {B(T+t)−B(T )|t ≥ 0}
and {−(B(T + t) − B(T ))|t ≥ 0} are both standard BM independent of F+(T ). Gluing
the first process to {B(t)|0 ≤ t ≤ T}, We get back B(t). Gluing the second process, giving
B⋆(t), gives a process distributed (having the same distribution) as B.

For general T , we can first apply the principle to Tn = min(T, n), obtaining B⋆
n, B

⋆
n → B⋆

stabilizing each initial segment. 2
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Corollary 12 Denote M(t) = max0≤s≤tB(s). If a > 0, then

P(M(t) ≥ a) = 2P(B(t) ≥ a).

Proof Apply reflection principle to T = inf{t > 0|B(t) = a},

{M(t) ≥ a} = {B(t) ≥ a} ⊎ {B(t) < a,M(t) ≥ a} = {B⋆(t) > a},

where
⊎

means disjoint union. 2

3.2 Area of planar BM

Theorem 13 (Lévy 1940) A.s. the area of points visited by a planar BM is 0.

Remark 14 However, this set has Hausdorff dimension 2. Stronger statement is true:

dim(B(A)) = 2dim(A) ∧ d,

where A ⊂ [0,∞) is closed set, ∧ means minimum, and d is the dim of the BM, only
important for d = 1. See BM book, Eaufman’s doubling (theorem 9.28) or earlier result of
M-Kean (theorem 4.33).

Denote Ld the Lebesgue measure in Rd, and f ⋆ g the convolution of the given functions f
and g, whenever well-defined, by

(f ⋆ g)(x) =

∫
f(y)g(x− y)dy.

Lemma 15 If A1, A2 are Borel sets in Rd with positive measure, then

Ld({x ∈ Rd|Ld(A1 ∩ (A2 + x)) > 0}) > 0.

Proof Assume WLOG, A1, A2 are bounded sets. Note 1A1 ⋆ 1−A2(x) = Ld(A1 ∩ (A2 + x)).
By Fubini’s theorem,∫

Rd

1A1 ⋆ 1−A2(x)dx =

∫
Rd

∫
Rd

1A1(y)1−A2(x− y)dydx

=

∫
Rd

1A1(y)

∫
Rd

1−A2(x− y)dxdy

= Ld(A1)Ld(A2) > 0.
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2

Proof of Lévy’s theorem

It is sufficient to show a.s. L2(B[0, 1]) = 0. Let X = L2(B[0, 1]). First, we show EX < ∞.
Let W be 1D BM. Note

P(X > a) ≤ 2P(max
0≤t≤1

|W (t)| >
√
a

2
)

≤ 4P(max
0≤t≤1

W (t) ≥
√
a

2
)

= 8P(W (1) ≥
√
a

2
)

decays exponentially in a. Second, by scaling invariance, {B(t)} and {
√
3B( t3)|t ≥ 0} are

standard BM. Hence
EL2(B[0, 3]) = 3EL2(B[0, 1]) = 3EX

Next, note that

L2(B[0, 3]) ≤
2∑

j=0

L2(B[j, j + 1]) ∀ 0 ≤ i < j ≤ 2

with equality if and only if L2(B[i, i+ 1] ∩ B[j, j + 1]) = 0 ∀ 0 ≤ i < j ≤ 2. We need only
i = 0, j = 2. Now notice

3EX = EL2(B[0, 3]) ≤ E

2∑
j=0

L2B[j, j + 1] = 3EX,

So L2(B[0, 3]) =
∑2

j=0 L2B[j, j + 1] a.s.. In particular, a.s. L2(B[0, 1] ∩ B[2, 3]) = 0.
Without writing all details, this implies L2(B[0, 1]) = 0 a.s.. In fact, L2(B[0, 1]) is identically
distributed and independent of L2(B[2, 3]) and the overlap of these two sets is determined
by B(2)−B(1) which is an independent Gaussian, and we can use the lemma. 2

Corollary 16 For d ≥ 2, ∀ x, y ∈ Rd, Px(y ∈ B(0,∞)) = 0, i.e. BM does not hit points.

Proof WLOG, we may assume d = 2. Note by Fubini’s theorem,∫
R2

Py(x ∈ B[0,∞))dx = EL2(B[0,∞)) = 0.

Hence for every y and a.e. x(Lebesgue measure)

Py(x ∈ B[0,∞]) = 0.
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To get rid of a.e., note

Py(x ∈ B(0,∞)) = P0(x− y ∈ B(0,∞))

= P0(y − x ∈ B(0,∞))︸ ︷︷ ︸
by symmetry of BM

= Px(y ∈ B(0,∞))

for every y and a.e. x. Now we finish since

Px(y ∈ B(0,∞)) = lim
ϵ↓0

Px(y ∈ B[ϵ,∞))

= lim
ϵ↓0

ExP
B(ϵ)(y ∈ B[ϵ,∞))︸ ︷︷ ︸

by Markov property

= 0

2

3.3 Zero Set of 1D BM

Denote
Zero = {t ≥ 0|B(t) = 0}.

Theorem 17 For a 1D BM, a.s. Zero is a perfect set(i.e. closed with no isolated points).

Proof Zeros is closed since BM is a.s. continuous. For a ≥ 0, let

τa = min{t ≥ a|B(t) = 0}(i.e. first zero after a).

This is a stopping time. It follows from distribution of maximum in previous corollary that
τa is a.s. finite. By the strong Markov property at τa and theorem 3, we have

P(inf(t > τa|B(t) = 0) = τa) = 1.

Hence the zero at τa not isolated from right. This holds simultaneously for τq for all rational
q a.s..

This remains to show any z ∈ Zero not equal to τq for a rational q is not isolated from left.
This follows by definition, since if qn ↑ z, then τq ↑ z. 2
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