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In this lesson we talk about Hölder continuity of BM and about its di�erntiability. We then
go on to scaling and time-inversion invariance of BM, and we explore a few examples of their
applications. Finaly, we introduce Markov property of BM and Blumenthal's 0-1 law.

Tags for today's lecture: Holder, scaling invariance, time inversion, Markov, Blumenthal
0-1.

1 Previously, on RW and BM

A Brownian Motion starting at x ∈ R is a random continuous function on [0,∞) such that:

1. B(0) = x a.s.

2. Independent increments: ∀n, ∀0 = t0 < t1 < t2 < ... < tn the random variables
{B(ti)−B(ti−1)}ni=1 are independent.

3. ∀0 ≤ t, 0 < h B(t+ h)−B(t) ∼ N(0, h)

Last time we discussed the modulus of continuum of BM:

1. ∃C > 0 s.t. a.s. for every su�ciently small h and every 0 ≤ t ≤ 1 − h we have

|B(t+ h)−B(t)| ≤ C
√

h log( 1h)

2. ∀c <
√
2 a.s. ∀ε > 0 ∃0 < h < ε and ∃t ∈ [0, 1−h] s.t. |B(t+h)−B(t)| ≥ c

√
h log( 1h)

2 Hölder Continuity

Defenition: A function f : [0,∞} → R is called locally α-Hölder continuous at x if there
exist ε > 0 and c > 0 s.t. |f(x)− f(y)| ≤ c|x − y|α for every y s.t. |x − y| < ε . α is
called the Hölder exponent.

Corollary: ∀α < 1
2 a.s. BM is locally α-Hölder continuous at every x ∈ [0,∞)
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Proof: The previous results imply this for B[0, 1]. Now, B[1, 2] is a new BM run up to time
1 started at B(1). Hence this also holds for B[k, k+1] for any of the countably many
k's. (The right endpoints also satisfy the Hölder estimate for y < x, because B[0, 1)
has the same distribution as the BM run backwards: {B(1− t)−B(1) | 0 ≤ t ≤ 1} ) �

Property 2 above shows that a.s. there is t ∈ [0, 1] where the BM is not 1
2 -HC. We will

not show this, but a.s. for any α > 1
2 BM is nowhere α-HC. There do exist random points,

called slow times, where the BM is 1
2 -HC, but they are very rare.

Notice that di�erentiability imply 1-HC. Next we show the weaker claim that the BM is not
di�erentiable.

Theorem (Paley, Wiener, Zygmund, 1993): a.s. BM is nowhere di�erentiable.

Moreover, for every t, either D∗B(t) = ∞ or D∗B(t) = ∞ or both, where

D∗f(t) = lim sup
h↓0

f(t+ h)− f(t)

h

D∗f(t) = lim inf
h↓0

f(t+ h)− f(t)

h

Proof: It su�ces to prove this for t ∈ [0, 1].

Assume that there exists t0 ∈ [0, 1] with

−∞ < D∗B(t) ≤ D∗B(t) < ∞

In other words,

lim sup
h↓0

|B(t0 + h)−B(t0)|
h

< ∞

Hence, for some (random) M, by the continuity of BM,

sup
h∈[0,1]

|B(t0 + h)−B(t0)|
h

≤ M F

We need to show that for any M ∈ N, the probability that there exists a t0 satisfying F is
0.

Fix an M ∈ N and also 4 ≤ n ∈ N. Suppose there exists a t0 ∈ [k−1
n , kn ] for some 1 ≤ k < n.

Then, for every 1 ≤ j ≤ n− 1 we have:∣∣∣∣B(
k + j

n
)−B(

k − 1 + j

n
)

∣∣∣∣ ≤
tri. ineq.

∣∣∣∣B(
k + j

n
)−B(t0)

∣∣∣∣+∣∣∣∣B(
k − 1 + j

n
)−B(t0)

∣∣∣∣ ≤
F

M
2j + 1

n
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Now, de�ne Ωn,k =
{∣∣∣B(k+j

n )−B(k−1+j
n )

∣∣∣ ≤ M 2j+1
n j = 1, 2, 3

}
P (Ωn,k) =

3∏
j=1

P (

∣∣∣∣B(
k + j

n
)−B(

k − 1 + j

n
)

∣∣∣∣ ≤ M
2j + 1

n
) =

∏
P (|B(1)| ≤ M

2j + 1√
n

) ≤ (
14M√

n
)3

as
∣∣∣B(k+j

n )−B(k−1+j
n )

∣∣∣ ∼ N(0, 1
n) ∼

B(1)√
n
.

Hence, P (
n⋃
Ωn,k
k=1

) ≤ n
(
14M√

n

)3
→ 0.

But if there exists t0 ∈ [0, 1] satisfying F then for every n ≥ 4,
n⋃
Ωn,k
k=1

holds. Hence no such

t0exists with prob. 1. �

3 Distributional prob. of the BM Process

3.1 Scaling Invariance (or Brownian scaling)

Note: Standard BM↔ x = 0

Theorem: If B is a SBM and a > 0, then the process {X(t)|t ≥ 0} given byX(t) = 1
aB(a2t)

is a SBM.

Proof: It is straighforward that X is a.s. a continuous function, and X has the correct
�nite dimension distribution.�

Application: For a, b > 0 let T (a, b) = min {t |B(t) ∈ {−a, b}}

Letting X(t) = 1
aB(a2t) we have:

ET (a, b) = a2Emin

{
t ≥ 0|X(t) ∈ {−1,

b

a
}
}

= a2ET (1,
b

a
)

and furthermore, ET (a, a) = a2ET (1, 1).

Similarly, P (B(T (a, b)) = b) is a function of b
a ( = P (X(T (1, b

a)) =
b
a).

3.2 Time Inversion Invariance

Theorem: If B is a SBM then the process {X(T ) | t ≥ 0} given by

X(t) =

{
tB(1t ) t > 0

0 t = 0
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is a SBM.

Proof: It is straightforward that X(t) is continuous on (0,∞). for any
t1, ..., tn (X(t1), ..., X(tn)) is a Gaussian vector, and EX(ti) = 0, and one can
check that the covariance of BM is preserved cov(X(ti), X(tj)) = min(ti, tj) so the
�nite dim. dist. are preserved. Hence it remains only to verify continuity at 0. Since

{X(t)}t∈Q
d
= {B(t)}t∈Q then a.s. lim

t ↓ 0
t ∈ Q

X(t) = 0. Since the rationals are dense and

X is continuous on [0,∞), we deduce lim
t↓0

X(t) = 0 a.s.�

Remark: The Ornstein-Uhlenbeck process: {Y (t) | t ∈ R} is de�ned by Y (t) = e−tB(e2t)
using a SBM B. This process is a stationary Markov process (and is the limit of a
RW with drift towards the origin proportional to its location). The time inversion is

equivalent to saying that Y is a reversible process {Y (t) | t ∈ R} d
= {Y (−t) | t ∈ R}.

3.3 Applications to basic properties of BM

1) Law of Large Numbers:lim
t→0

B(t)
t = 0 a.s.

Proof: De�ne X(t) as the time inversion of B, and note lim
t→0

B(t)
t = lim

t→0
X(1t ) = 0 a.s. �

2) a.s. lim sup
t→∞

B(t)√
t
= ∞, lim inf

t→∞
B(t)√

t
= −∞

Proof: It is su�cient to prove this as t → ∞ along the integers. Note

{
lim sup
t→∞

B(t)√
t
= ∞

}
=

∞⋂
M=1

{
lim sup
n→∞

B(n)√
n

> M

}
. Fix M, we will show that P (B(n) > M

√
n i.o.) = 1. Notic-

ing {B(n) |n ≥ 0} is a RW with N(0, 1) increments, we deduce from the Hewitt-Savage
0-1 law that P (B(n) > M

√
n i.o.) ∈ {0, 1}.

For any sequence of events An, we have P (An occurs i.o.) ≥ lim sup
n→∞

P (An) by a form of

Fatou's lemma, or by writing:

{An occurs i.o.} =
∞⋂
n=1

∞⋃
k=n

Ak =
∞⋂
n=1

Bn

where Bnis a decreasing sequence ofevents, so P (
∞⋂
n=1

Bn) = limP (Bn) by monotone conver-

gence. But P (Bn) ≥ lim supP (Ak).

Hence, we deduce the result from noting lim supP (B(n) > M
√
n) = P (B(1) > M) > 0�
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3) a.s. lim sup
h↓0

B(h)√
h

= ∞, lim inf
h↓0

B(h)√
h

= −∞

Proof: Same as 2), by time inversion.

4) Letting τ = inf {t > 0 |B(t) ≥ 0} and σ = inf {t > 0 |B(t) ≤ 0}then P (τ = 0) = P (σ =
0) = 1. (Follows from 3)

5) a.s BM has no interval of monotonicity.

Proof: If BM has an interval of monotonicity then it also has one with rational endpoints.
Fix q1, q2 ∈ Q a < q1 < q2 < b. We will show P ([q1, q2] is an int. of mon.) = 0.
Dividing [q1, q2] into n distinct subintervals, by the independent increments property
P (increments on each sub interval have same sign) = 2 · 2−n → 0 �

4 Markov Property and Blumenthal's 0-1 Law

Defenition: A d-dimensional BM is a process of the form {(B1(t), B2(t), ..., Bd(t)) | t ≥ 0}
where the Bi are independent 1D BM.

Defenition: Two continuous (sample path continuous) stochastic processes X,Y are called
independent if for every t1, ..., tn, s1, ..., sn ∈ R we have that (X(t1), ..., X(tn)) is inde-
pendent of (Y (s1), ..., Y (sn)).

Remark: Since the processes have continuous paths, if follows that any event measurable
with respect to X is independent of any event measurable with respect to Y . This
remains true if you have just right-continuity or continuity in probability.

Theorem (Markov property of BM)

If {B(t) | t ≥ 0} is a BM, then for any s > 0 {B(t+ s)−B(s) | t ≥ 0} is a SBM independent
of {B(t) | 0 ≤ t ≤ s}.

Proof: The independence follows from the independent increments property. Continuity
and �nite dim. dist. are easily checked.

1) A Filtration {F(t)}t≥0 is a sequence of σ-algebra, satisfying F(t) ⊆ F(s) ∀t ≤ s.

2) A Filtered probability space (Ω,F , P ) and {F(t)}t≥0 is a probability space with a �ltra-
tion s.t. F(t) ⊆ F for all t ≥ 0.

3) A process X is called adapted to the �ltration {F(t)} of σ({X(s)|0 ≤ s ≤ t}) ⊆ F(t).

4) For BM, we let F0(t) = σ({B(s) | 0 ≤ s ≤ t}). We also de�ne F+(t) =
⋂
ε>0

F0(t+ ε).
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We have F0(t) ⊆ F+(t). Both are �ltrations and B is adapted to both.

Theorem: (Markov property for F+)

If B is a BM and s ≥ 0 then {B(t+ s)−B(s) | t ≥ 0} is a SBM independent of F+(s). That
is, any event in σ({B(t+ s)−B(s)}) is independent of any event in F+(s).

Proof: It su�ces ti show that any event depending only on �nitely many coordinates
{(B(t1 + s) − B(s), ..., B(tn + s) − B(s))}is independent of F+(s), by continuity of
B. Any event of this form is independent if F0(s + ε) for small enough ε. Hence,
independence of F+(s).�

Corollary: (Blumenthal's 0-1 law)

The germ σ-algebra F+(0) is trivial (all events have 0-1 probability) for a BM.

Proof: For a SBM, F+(0) ⊆ σ({B(t)}) but is independent of it by the previous theorem.
for any di�erent starting point, the result follows since we can apply the transformation
B → B − x to B and F+(0) and get a SBM and its germ σ-algebra. �

Application: (Triviality of the tail σ-algebra)

The tail σ-algebra τ =
⋂
t>0

σ({B(s)|s ≥ t}). Then for a BM, τ is trivial.

Proof: Time inversion maps F+(0) to τ . Hence the result follows, from the Blumenthal's
0-1 law.

Remark: For any A ∈ τ P x(A) ∈ {0, 1} and is either 0 for all x or 1 for all x. But this is
not the case for F+(0).
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