Lecture 10
Lecture date: May 13, 2011
Scribe: Assa Naveh

In this lesson we talk about Hölder continuity of BM and about its differntiability. We then go on to scaling and time-inversion invariance of BM, and we explore a few examples of their applications. Finaly, we introduce Markov property of BM and Blumenthal's 0-1 law.

Tags for today's lecture: Holder, scaling invariance, time inversion, Markov, Blumenthal $0-1$.

1 Previously, on RW and BM

A Brownian Motion starting at $x \in \mathbb{R}$ is a random continuous function on $[0, \infty)$ such that:

1. $B(0)=x$ a.s.
2. Independent increments: $\forall n, \forall 0=t_{0}<t_{1}<t_{2}<\ldots<t_{n}$ the random variables $\left\{B\left(t_{i}\right)-B\left(t_{i-1}\right)\right\}_{i=1}^{n}$ are independent.
3. $\forall 0 \leq t, 0<h \quad B(t+h)-B(t) \sim N(0, h)$

Last time we discussed the modulus of continuum of BM:

1. $\exists C>0$ s.t. a.s. for every sufficiently small h and every $0 \leq t \leq 1-h$ we have $|B(t+h)-B(t)| \leq C \sqrt{h \log \left(\frac{1}{h}\right)}$
2. $\forall c<\sqrt{2}$ a.s. $\forall \varepsilon>0 \exists 0<h<\varepsilon$ and $\exists t \in[0,1-h]$ s.t. $|B(t+h)-B(t)| \geq c \sqrt{h \log \left(\frac{1}{h}\right)}$

2 Hölder Continuity

Defenition: A function $f:[0, \infty\} \rightarrow \mathbb{R}$ is called locally α-Hölder continuous at x if there exist $\varepsilon>0$ and $c>0$ s.t. $|f(x)-f(y)| \leq c|x-y|^{\alpha}$ for every y s.t. $|x-y|<\varepsilon . \alpha$ is called the Hölder exponent.

Corollary: $\forall \alpha<\frac{1}{2}$ a.s. BM is locally α-Hölder continuous at every $x \in[0, \infty)$

Proof: The previous results imply this for $B[0,1]$. Now, $B[1,2]$ is a new BM run up to time 1 started at $B(1)$. Hence this also holds for $B[k, k+1]$ for any of the countably many k 's. (The right endpoints also satisfy the Hölder estimate for $y<x$, because $B[0,1$) has the same distribution as the BM run backwards: $\{B(1-t)-B(1) \mid 0 \leq t \leq 1\})$

Property 2 above shows that a.s. there is $t \in[0,1]$ where the BM is not $\frac{1}{2}$ - HC . We will not show this, but a.s. for any $\alpha>\frac{1}{2} \mathrm{BM}$ is nowhere α - HC . There do exist random points, called slow times, where the BM is $\frac{1}{2}-\mathrm{HC}$, but they are very rare.

Notice that differentiability imply $1-\mathrm{HC}$. Next we show the weaker claim that the BM is not differentiable.

Theorem (Paley, Wiener, Zygmund, 1993): a.s. BM is nowhere differentiable.

Moreover, for every t , either $D^{*} B(t)=\infty$ or $D_{*} B(t)=\infty$ or both, where

$$
\begin{aligned}
D^{*} f(t) & =\underset{h \downarrow 0}{\limsup } \frac{f(t+h)-f(t)}{h} \\
D_{*} f(t) & =\liminf _{h \downarrow 0} \frac{f(t+h)-f(t)}{h}
\end{aligned}
$$

Proof: It suffices to prove this for $t \in[0,1]$.

Assume that there exists $t_{0} \in[0,1]$ with

$$
-\infty<D_{*} B(t) \leq D^{*} B(t)<\infty
$$

In other words,

$$
\limsup _{h \downarrow 0} \frac{\left|B\left(t_{0}+h\right)-B\left(t_{0}\right)\right|}{h}<\infty
$$

Hence, for some (random) M, by the continuity of BM,

$$
\sup _{h \in[0,1]} \frac{\left|B\left(t_{0}+h\right)-B\left(t_{0}\right)\right|}{h} \leq M \star
$$

We need to show that for any $M \in \mathbb{N}$, the probability that there exists a t_{0} satisfying \star is 0.

Fix an $M \in \mathbb{N}$ and also $4 \leq n \in \mathbb{N}$. Suppose there exists a $t_{0} \in\left[\frac{k-1}{n}, \frac{k}{n}\right]$ for some $1 \leq k<n$. Then, for every $1 \leq j \leq n-1$ we have:

$$
\left|B\left(\frac{k+j}{n}\right)-B\left(\frac{k-1+j}{n}\right)\right|_{\text {tri. }} \leq\left|B\left(\frac{k+j}{n}\right)-B\left(t_{0}\right)\right|+\left|B\left(\frac{k-1+j}{n}\right)-B\left(t_{0}\right)\right| \lesssim M \frac{2 j+1}{n}
$$

Now, define $\Omega_{n, k}=\left\{\left|B\left(\frac{k+j}{n}\right)-B\left(\frac{k-1+j}{n}\right)\right| \leq M \frac{2 j+1}{n} j=1,2,3\right\}$
$P\left(\Omega_{n, k}\right)=\prod_{j=1}^{3} P\left(\left|B\left(\frac{k+j}{n}\right)-B\left(\frac{k-1+j}{n}\right)\right| \leq M \frac{2 j+1}{n}\right)=\prod P\left(|B(1)| \leq M \frac{2 j+1}{\sqrt{n}}\right) \leq\left(\frac{14 M}{\sqrt{n}}\right)^{3}$
as $\left|B\left(\frac{k+j}{n}\right)-B\left(\frac{k-1+j}{n}\right)\right| \sim N\left(0, \frac{1}{n}\right) \sim \frac{B(1)}{\sqrt{n}}$.
Hence, $P\left(\bigcup_{k=1}^{n} \Omega_{n, k}\right) \leq n\left(\frac{14 M}{\sqrt{n}}\right)^{3} \rightarrow 0$.
But if there exists $t_{0} \in[0,1]$ satisfying \star then for every $n \geq 4, \bigcup_{k=1}^{n} \Omega_{n, k}$ holds. Hence no such t_{0} exists with prob. 1.

3 Distributional prob. of the BM Process

3.1 Scaling Invariance (or Brownian scaling)

Note: Standard BM $\leftrightarrow x=0$
Theorem: If B is a SBM and $a>0$, then the process $\{X(t) \mid t \geq 0\}$ given by $X(t)=\frac{1}{a} B\left(a^{2} t\right)$ is a SBM.

Proof: It is straighforward that X is a.s. a continuous function, and X has the correct finite dimension distribution.

Application: For $a, b>0$ let $T(a, b)=\min \{t \mid B(t) \in\{-a, b\}\}$
Letting $X(t)=\frac{1}{a} B\left(a^{2} t\right)$ we have:

$$
\mathbf{E} T(a, b)=a^{2} \mathbf{E} \min \left\{t \geq 0 \left\lvert\, X(t) \in\left\{-1, \frac{b}{a}\right\}\right.\right\}=a^{2} \mathbf{E} T\left(1, \frac{b}{a}\right)
$$

and furthermore, $\mathbf{E} T(a, a)=a^{2} \mathbf{E} T(1,1)$.
Similarly, $P(B(T(a, b))=b)$ is a function of $\frac{b}{a}\left(=P\left(X\left(T\left(1, \frac{b}{a}\right)\right)=\frac{b}{a}\right)\right.$.

3.2 Time Inversion Invariance

Theorem: If B is a SBM then the process $\{X(T) \mid t \geq 0\}$ given by

$$
X(t)= \begin{cases}t B\left(\frac{1}{t}\right) & t>0 \\ 0 & t=0\end{cases}
$$

is a SBM.
Proof: It is straightforward that $X(t)$ is continuous on $(0, \infty)$. for any $t_{1}, \ldots, t_{n}\left(X\left(t_{1}\right), \ldots, X\left(t_{n}\right)\right)$ is a Gaussian vector, and $\mathbf{E} X\left(t_{i}\right)=0$, and one can check that the covariance of BM is preserved $\operatorname{cov}\left(\mathrm{X}\left(\mathrm{t}_{i}\right), X\left(t_{j}\right)\right)=\min \left(t_{i}, t_{j}\right)$ so the finite dim. dist. are preserved. Hence it remains only to verify continuity at 0 . Since $\{X(t)\}_{t \in \mathbb{Q}} \stackrel{d}{=}\{B(t)\}_{t \in \mathbb{Q}}$ then a.s. $\quad \lim _{t \downarrow 0} X(t)=0$. Since the rationals are dense and

$$
c \downarrow 0
$$

$$
t \in \mathbb{Q}
$$

X is continuous on $[0, \infty)$, we deduce $\lim _{t \downarrow 0} X(t)=0$ a.s.
Remark: The Ornstein-Uhlenbeck process: $\{Y(t) \mid t \in \mathbb{R}\}$ is defined by $Y(t)=e^{-t} B\left(e^{2 t}\right)$ using a SBM B. This process is a stationary Markov process (and is the limit of a RW with drift towards the origin proportional to its location). The time inversion is equivalent to saying that Y is a reversible process $\{Y(t) \mid t \in \mathbb{R}\} \stackrel{d}{=}\{Y(-t) \mid t \in \mathbb{R}\}$.

3.3 Applications to basic properties of BM

1) Law of Large Numbers: $\lim _{t \rightarrow 0} \frac{B(t)}{t}=0$ a.s.

Proof: Define $X(t)$ as the time inversion of B , and note $\lim _{t \rightarrow 0} \frac{B(t)}{t}=\lim _{t \rightarrow 0} X\left(\frac{1}{t}\right)=0$ a.s.
2) a.s. $\limsup _{t \rightarrow \infty} \frac{B(t)}{\sqrt{t}}=\infty, \liminf _{t \rightarrow \infty} \frac{B(t)}{\sqrt{t}}=-\infty$

Proof: It is sufficient to prove this as $t \rightarrow \infty$ along the integers. Note $\left\{\limsup _{t \rightarrow \infty} \frac{B(t)}{\sqrt{t}}=\infty\right\}=$ $\bigcap_{M=1}^{\infty}\left\{\limsup _{n \rightarrow \infty} \frac{B(n)}{\sqrt{n}}>M\right\}$. Fix M, we will show that $P(B(n)>M \sqrt{n}$ i.o. $)=1$. Noticing $\{B(n) \mid n \geq 0\}$ is a RW with $N(0,1)$ increments, we deduce from the Hewitt-Savage $0-1$ law that $P(B(n)>M \sqrt{n}$ i.o. $) \in\{0,1\}$.

For any sequence of events A_{n}, we have $P\left(A_{n}\right.$ occursi.o. $) \geq \limsup _{n \rightarrow \infty} P\left(A_{n}\right)$ by a form of Fatou's lemma, or by writing:

$$
\left\{A_{n} \text { occurs i.o. }\right\}=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}=\bigcap_{n=1}^{\infty} B_{n}
$$

where B_{n} is a decreasing sequence ofevents, so $P\left(\bigcap_{n=1}^{\infty} B_{n}\right)=\lim P\left(B_{n}\right)$ by monotone convergence. But $P\left(B_{n}\right) \geq \lim \sup P\left(A_{k}\right)$.

Hence, we deduce the result from noting $\lim \sup P(B(n)>M \sqrt{n})=P(B(1)>M)>0$
3) a.s. $\limsup _{h \downarrow 0} \frac{B(h)}{\sqrt{h}}=\infty, \liminf _{h \downarrow 0} \frac{B(h)}{\sqrt{h}}=-\infty$

Proof: Same as 2), by time inversion.
4) Letting $\tau=\inf \{t>0 \mid B(t) \geq 0\}$ and $\sigma=\inf \{t>0 \mid B(t) \leq 0\}$ then $P(\tau=0)=P(\sigma=$ $0)=1$. (Follows from 3)
5) a.s BM has no interval of monotonicity.

Proof: If BM has an interval of monotonicity then it also has one with rational endpoints. Fix $q_{1}, q_{2} \in \mathbb{Q} a<q_{1}<q_{2}<b$. We will show $P\left(\left[q_{1}, q_{2}\right]\right.$ is an int.of mon. $)=0$. Dividing $\left[q_{1}, q_{2}\right.$] into n distinct subintervals, by the independent increments property $P($ increments on each sub interval have same sign $)=2 \cdot 2^{-n} \rightarrow 0$

4 Markov Property and Blumenthal's 0-1 Law

Defenition: A d-dimensional BM is a process of the form $\left\{\left(B_{1}(t), B_{2}(t), \ldots, B_{d}(t)\right) \mid t \geq 0\right\}$ where the B_{i} are independent 1D BM .

Defenition: Two continuous (sample path continuous) stochastic processes X, Y are called independent if for every $t_{1}, \ldots, t_{n}, s_{1}, \ldots, s_{n} \in \mathbb{R}$ we have that $\left(X\left(t_{1}\right), \ldots, X\left(t_{n}\right)\right)$ is independent of $\left(Y\left(s_{1}\right), \ldots, Y\left(s_{n}\right)\right)$.

Remark: Since the processes have continuous paths, if follows that any event measurable with respect to X is independent of any event measurable with respect to Y. This remains true if you have just right-continuity or continuity in probability.

Theorem (Markov property of BM)

If $\{B(t) \mid t \geq 0\}$ is a BM , then for any $s>0\{B(t+s)-B(s) \mid t \geq 0\}$ is a SBM independent of $\{B(t) \mid 0 \leq t \leq s\}$.

Proof: The independence follows from the independent increments property. Continuity and finite dim. dist. are easily checked.

1) A Filtration $\{\mathcal{F}(t)\}_{t \geq 0}$ is a sequence of σ-algebra, satisfying $\mathcal{F}(t) \subseteq \mathcal{F}(s) \forall t \leq s$.
2) A Filtered probability space (Ω, \mathcal{F}, P) and $\{\mathcal{F}(t)\}_{t \geq 0}$ is a probability space with a filtration s.t. $\mathcal{F}(t) \subseteq \mathcal{F}$ for all $t \geq 0$.
3) A process X is called adapted to the filtration $\{\mathcal{F}(t)\}$ of $\sigma(\{X(s) \mid 0 \leq s \leq t\}) \subseteq \mathcal{F}(t)$.
4) For BM , we let $\mathcal{F}^{0}(t)=\sigma(\{B(s) \mid 0 \leq s \leq t\})$. We also define $\mathcal{F}^{+}(t)=\bigcap_{\varepsilon>0} \mathcal{F}^{0}(t+\varepsilon)$.

We have $\mathcal{F}^{0}(t) \subseteq \mathcal{F}^{+}(t)$. Both are filtrations and B is adapted to both.

Theorem: (Markov property for \mathcal{F}^{+})
If B is a BM and $s \geq 0$ then $\{B(t+s)-B(s) \mid t \geq 0\}$ is a SBM independent of $\mathcal{F}^{+}(s)$. That is, any event in $\sigma(\{B(t+s)-B(s)\})$ is independent of any event in $\mathcal{F}^{+}(s)$.

Proof: It suffices ti show that any event depending only on finitely many coordinates $\left\{\left(B\left(t_{1}+s\right)-B(s), \ldots, B\left(t_{n}+s\right)-B(s)\right)\right\}$ is independent of $\mathcal{F}^{+}(s)$, by continuity of B. Any event of this form is independent if $\mathcal{F}^{0}(s+\varepsilon)$ for small enough ε. Hence, independence of $\mathcal{F}^{+}(s)$.

Corollary: (Blumenthal's 0-1 law)

The germ σ-algebra $\mathcal{F}^{+}(0)$ is trivial (all events have $0-1$ probability) for a BM.
Proof: For a $\mathrm{SBM}, \mathcal{F}^{+}(0) \subseteq \sigma(\{B(t)\})$ but is independent of it by the previous theorem. for any different starting point, the result follows since we can apply the transformation $B \rightarrow B-x$ to B and $\mathcal{F}^{+}(0)$ and get a SBM and its germ σ-algebra.

Application: (Triviality of the tail σ-algebra)
The tail σ-algebra $\tau=\bigcap_{t>0} \sigma(\{B(s) \mid s \geq t\})$. Then for a BM, τ is trivial.
Proof: Time inversion maps $\mathcal{F}^{+}(0)$ to τ. Hence the result follows, from the Blumenthal's 0-1 law.

Remark: For any $A \in \tau P^{x}(A) \in\{0,1\}$ and is either 0 for all x or 1 for all x. But this is not the case for $\mathcal{F}^{+}(0)$.

References

[Brownian Motion] Peter Morters and Yuval Peres, 2008.

