
Random Walks and Brownian Motion Exercise 3

Instructor: Ron Peled, Tel Aviv University

July 5, 2011

The exercise needs to be handed in by July 12'th by email or by putting it
in the Schreiber mailbox for Ron Peled.

In all of the following, unless otherwise indicated, B(t)
∞
t=0 is a one-dimensional

Brownian motion and we write Px or Ex to indicate that B(0) = x a.s. and P
or E to indicate B(0) = 0 a.s..

1. Let {X(t)}∞t=0 be a continuous martingale and T be a stopping time for
which there exists an integrable random variable X satisfying |X(t∧T )| ≤
X a.s., for all t > 0.

(a) Prove that X(t ∧ T )t≥0 converges a.s. and in L1 as t→∞.
Hint: Use the corresponding theorem for discrete-time martingales.

(b) Prove the optional stopping theorem: E(X(T )) = E(X(0)). Here, on
the event T =∞, X(T ) refers to the limit RV from part (a).

2. Prove that for each σ ∈ R, the process
{

exp(σB(t)− σ2t
2 )
}
t≥0

is a continu-

ous martingale. Deduce that for a, b > 0, P(B(t) = a+bt for some t>0) =
exp(−2ab).

3. For t ≥ 0, let M(t) := maxs∈[0,t]B(s).

(a) Show that for each t > 0, the joint density of (B(t),M(t)) exists

(under P) and equals 2(2m−b)√
2πt3

e−(2m−b)2/2t at the point (m, b) (for

m ≥ 0 and −∞ < b ≤ m).
Hint: Re�ection principle.

(b) Use the Donsker invariance principle to prove that for any RW (Sn)n≥0

with ES1 = 0 and ES2
1 = 1, we have ( Sn√

n
,max0≤k≤n

Sk√
n

)→ (B(1),M(1))

in distribution, as n→∞.
Hint: Explain why it is su�cient to show convergence in distribution
of any linear combination of the two RVs.

4. Show that for a tail event A ∈ T the probability Px(A) is independent of
x whereas for a germ event A ∈ F+(0) the probability Px(A) may depend
on x (reminder: T = ∩t≥0 σ(B(s) | s ≥ t)).

5. Recall that a perfect set is a closed set with no isolated points. Prove that
any non-empty perfect set in R is uncountable.
Remark: Since we have shown that P-a.s., the zero set of BM {t ≥ 0 | B(t) = 0}
is perfect, the exercise implies that it is uncountable P-a.s..
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6. Complete the proof of the Azéma-Yor embedding theorem. Let X be a RV
with EX = 0 and EX2 <∞. Let Ψ(x) := E(X | X ≥ x) if P(X ≥ x) > 0
and Ψ(x) = 0 otherwise. For t ≥ 0, let M(t) := maxs∈[0,t]B(s) and let
T := inf {t ≥ 0 | M(t) ≥ Ψ(B(t))} be the Azéma-Yor stopping time.

(a) Show that there are �nitely supported RVs {Xn}n≥0 with EXn = 0
such thatXn converges toX in distribution and Tn := inf {t ≥ 0 | M(t) ≥ Ψn(B(t))}
converge P-a.s. to T . Here, Ψn(x) := E(Xn | Xn ≥ x) if P(Xn ≥
x) > 0 and Ψn(x) = 0 otherwise.

(b) Deduce that T solves the Skorohod embedding problem for X. That
is, B(T ) has the same law as X and ET = EX2.

7. In this exercise we use the law of the iterated logarithm for simple random
walk to derive similar laws for the Brownian motion and other random
walks. Let Ψ(t) :=

√
2t log log t.

(a) Let f : [0,∞)→ R be a continuous function and {tn}n≥0 ⊆ R satisfy
tn
n → 1 as n → ∞. Show that lim supt→∞

f(t)
Ψ(t) = lim supn→∞

f(tn)
Ψ(tn)

if the following condition holds:

∀2 > q > 1∃k0 s.t max
t∈[qk−1,qk]

|f(t)− f(qk−1)| ≤ 50Ψ(qk)

√
1− 1

q
for all k > k0.

(1)

(b) Show that condition (1) holds P-a.s. when f is a 1D BM.

Remark: You may use that if Z ∼ N(0, 1) then P(Z > x) ≤ e−x
2/2

for x > 1.

(c) Use the law of the iterated logarithm for simple random walk and

Skorohod embedding to deduce that lim supt→∞
B(t)
Ψ(t) = 1 P-a.s..

(d) Conclude that for any RW (Sn)n≥0 with ES1 = 0 and ES2
1 = 1, we

have lim supn→∞
Sn

Ψ(n) = 1 a.s.. This is the Hartman-Wintner law of

the iterated logarithm.

8. Let {H(s, ω) | s ≥ 0, ω ∈ Ω} be a progressively measurable stochastic pro-

cess and T a stopping time such that E
´ T

0
H(s)2ds < ∞. Prove that

E
´ T

0
H(s)dB(s) = 0 and E

(´ T
0
H(s)dB(s)

)2

= E
´ T

0
H(s)2ds.

9. Let f1(x) := |x|, f2(x) := log |x| and fd(x) := |x|2−d for d ≥ 3 (where |x|
is the Euclidean norm of x). fd is harmonic on Rd \ {0} (this is not part
of the exercise).

(a) Fix 0 < r < R < ∞ and x ∈ Rd with r < |x| < R. Let T :=
inf {t | |B(t)| /∈ (r,R)}. Prove using Itô's formula that {fd(B(t ∧ T ))}t≥0

is a martingale under Px for a d-dimensional BM B.
Hint: Apply Itô's formula to (g · fd)(B(t)) for a smooth function
g : Rd → R satisfying g(x) = 1 whenever r < |x| < R and g(x) = 0
outside some compact set K ⊆ Rd \ {0}.

(b) Use part (a) to �nd Px(|B(T )| = r) for all d ≥ 1.

(c) Deduce that P(limt→∞ |B(t)| =∞) = 1 if and only if d ≥ 3.
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