PERCOLATION: HOMEWORK ASSIGNMENT 10

INSTRUCTOR: RON PELED, TEL AVIV UNIVERSITY

This homework assignment needs to be submitted in class on June 18.

(1) Consider bond percolation on the edges of $[-n, n]^d$. Recall that a crossing cluster of $[-n, n]^d$ is a connected set $A \subseteq [-n, n]^d$ satisfying that for every $1 \leq i \leq d$ there exist $x, y \in A$ with $x_i = -n$ and $y_i = n$. Recall that for $B \subseteq \mathbb{Z}^d$ we denote diam_{∞} $(B) = \max\{||x - y||_{\infty} : x, y \in B\}$.

Let $T_{m,n}$ denote the event that after bond percolation on the edges in $[-n,n]^d$ there are (at least) two distinct connected components $A, B \subseteq [-n,n]^d$ such that A is a crossing cluster and diam_{∞}(B) $\geq m$. Prove that for every $d \geq 3$, $p > p_c(\mathbb{Z}^d)$ and integers $n, m \geq 1$, $m \leq 2n + 1$, there exist some C, c > 0, depending only on d and p, such that

$$\mathbb{P}_p(T_{m,n}) \leqslant Cn^{2d} \exp(-cm).$$

Hint: Similar to a lemma from class.

(2) (continuing an exercise from last homework) Consider bond percolation on \mathbb{Z}^d . Prove that for every $d \ge 3$ and $p > p_c(\mathbb{Z}^d)$ there exists some constant C = C(d, p) such that for every $x, y \in \mathbb{Z}^d$,

 $\mathbb{E}_p(d_{\text{open graph}}(x, y) \cdot 1_{(x, y \text{ in infinite component})}) \leqslant C \cdot d_{\mathbb{Z}^d}(x, y),$

where d_G is the graph distance in G and by 'open graph' we mean the subgraph of \mathbb{Z}^d of open edges.

Hint: Static renormalization.

Date: June 13, 2013.