# PERCOLATION: HOMEWORK ASSIGNMENT 1 

INSTRUCTOR: RON PELED, TEL AVIV UNIVERSITY

This homework assignment needs to be submitted in class on March 5.
(1) Let $G=(V, E)$ be an infinite connected graph. Perform a percolation on $G$, retaining each edge with probability $0 \leqslant p \leqslant 1$ independently. Let $G_{p}$ be the subgraph of $G$ obtained after the percolation. Let $E$ be the event that there exists an infinite connected component in $G_{p}$.
(a) Prove that $E$ is an event, i.e., that it is measurable. Here, we identify a subgraph $G_{p}$ as an element of $\{0,1\}^{E}$, and take our probability space to be $\{0,1\}^{E}$ with the Borel sigma-algebra induced by the product topology. By saying that $G$ is a graph we implicitly mean that $V$ and $E$ are countable (or finite) sets.
(b) Prove that $\mathbb{P}_{p}(E) \in\{0,1\}$ for every $p$ (hint: the Kolmogorov 0-1 law).
(c) For a vertex $v \in V$, let $\mathcal{C}_{v}$ be the connected component of $v$ in $G_{p}$. Prove that the following are equivalent: $\mathbb{P}_{p}(E)=1, \mathbb{P}_{p}\left(\left|\mathcal{C}_{v}\right|=\infty\right)>0$ for every $v \in V, \mathbb{P}_{p}\left(\left|\mathcal{C}_{v}\right|=\infty\right)>0$ for some $v \in V$.
(2) Complete the proof of the theorem that a Galton-Watson tree has positive probability to be infinite if and only $\mathbb{E}(X)>1$ (or $\mathbb{P}(X=1)=1)$, where $X$ is a random variable with the offspring distribution of the tree. As in class, assume (without loss of generality) that $m:=\mathbb{E}(X)<\infty, \mathbb{P}(X=1)<1$ and $0<\mathbb{P}(X=0)<1$. Let $\left(Z_{n}\right)$ be the generation sizes of the Galton-Watson tree $\left(Z_{n}\right.$ is the size of the $n$th generation), with $Z_{0}:=1$. Use the following steps:
(a) Define the moment-generating function $f(s):=\mathbb{E}\left(s^{X}\right)$. Prove that
(i) $f$ is continuous and non-decreasing on $[0,1]$.
(ii) $f$ is strictly convex on $[0,1]$ if $\mathbb{P}(X \geqslant 2)>0$.
(iii) $f(1)=1$ and $0<f(0)<1$.
(iv) $f^{\prime}(s)$ exists on $[0,1]$ and satisfies $f^{\prime}(s)=\mathbb{E}\left(X s^{X-1}\right)$.
(b) Define $f_{n}(s):=\mathbb{E}\left(s^{Z_{n}}\right)$. Recall from class (no need to prove again) that $f_{n+1}(s)=f\left(f_{n}(s)\right)$. Let $q_{n}:=\mathbb{P}\left(Z_{n}=0\right)=f_{n}(0)$. Prove that $q_{n} \rightarrow q=\mathbb{P}$ (tree is finite) and $q$ satisfies $f(q)=q$.
(c) Use the previous parts to conclude that $q<1$ if and only if $m>1$, proving the theorem (hint: by the first part, $m=f^{\prime}(1)$ ).

