PERCOLATION: HOMEWORK ASSIGNMENT 1

INSTRUCTOR: RON PELED, TEL AVIV UNIVERSITY

This homework assignment needs to be submitted in class on March 5.

- (1) Let G = (V, E) be an infinite connected graph. Perform a percolation on G, retaining each edge with probability $0 \leq p \leq 1$ independently. Let G_p be the subgraph of G obtained after the percolation. Let E be the event that there exists an infinite connected component in G_p .
 - (a) Prove that E is an event, i.e., that it is measurable. Here, we identify a subgraph G_p as an element of $\{0, 1\}^E$, and take our probability space to be $\{0, 1\}^E$ with the Borel sigma-algebra induced by the product topology. By saying that G is a graph we implicitly mean that V and E are countable (or finite) sets.
 - (b) Prove that $\mathbb{P}_p(E) \in \{0, 1\}$ for every p (hint: the Kolmogorov 0-1 law).
 - (c) For a vertex $v \in V$, let C_v be the connected component of v in G_p . Prove that the following are equivalent: $\mathbb{P}_p(E) = 1$, $\mathbb{P}_p(|\mathcal{C}_v| = \infty) > 0$ for every $v \in V$, $\mathbb{P}_p(|\mathcal{C}_v| = \infty) > 0$ for some $v \in V$.
- (2) Complete the proof of the theorem that a Galton-Watson tree has positive probability to be infinite if and only $\mathbb{E}(X) > 1$ (or $\mathbb{P}(X = 1) = 1$), where Xis a random variable with the offspring distribution of the tree. As in class, assume (without loss of generality) that $m := \mathbb{E}(X) < \infty$, $\mathbb{P}(X = 1) < 1$ and $0 < \mathbb{P}(X = 0) < 1$. Let (Z_n) be the generation sizes of the Galton-Watson tree $(Z_n \text{ is the size of the nth generation})$, with $Z_0 := 1$. Use the following steps:
 - (a) Define the moment-generating function $f(s) := \mathbb{E}(s^X)$. Prove that
 - (i) f is continuous and non-decreasing on [0, 1].
 - (ii) f is strictly convex on [0, 1] if $\mathbb{P}(X \ge 2) > 0$.
 - (iii) f(1) = 1 and 0 < f(0) < 1.
 - (iv) f'(s) exists on [0,1] and satisfies $f'(s) = \mathbb{E}(Xs^{X-1})$.
 - (b) Define $f_n(s) := \mathbb{E}(s^{\mathbb{Z}_n})$. Recall from class (no need to prove again) that $f_{n+1}(s) = f(f_n(s))$. Let $q_n := \mathbb{P}(\mathbb{Z}_n = 0) = f_n(0)$. Prove that $q_n \to q = \mathbb{P}(\text{tree is finite})$ and q satisfies f(q) = q.
 - (c) Use the previous parts to conclude that q < 1 if and only if m > 1, proving the theorem (hint: by the first part, m = f'(1)).

Date: February 27, 2013.