
BROWNIAN MOTION HOMEWORK ASSIGNMENT 7

INSTRUCTOR: RON PELED, TEL AVIV UNIVERSITY

To get full credit for this exercise it suffices to solve correctly three of the problems. You
are encouraged, however, to consider all problems in order to practice your understanding of
martingale theory. If you solve more than three problems, your grade will be based on the three
problems with the highest score.

(i) (Superharmonic functions on graphs) Let G be an infinite connected, locally finite graph.
A simple random walk on G starting at a vertex v0 is a Markov chain (Xn), n > 0, with
X0 = v0 and P (Xn+1 = w|Xn = v) = 1/degree(v) for each pair of neighboring vertices
v, w. We say that G is recurrent if a simple random walk starting from a fixed vertex of G
returns to the starting vertex infinitely often. It is not difficult to check that this property
does not depend on the starting vertex. We say G is transient otherwise. A function f on
the vertices of G is called superharmonic if

f(v) >
1

degree(v)

∑
w : w∼v

f(w) for all vertices v

where we write w ∼ v to say that w is a neighbor of v.
(a) Show that if G is recurrent than any superharmonic function which is either bounded

or positive is necessarily constant.
(b) Show that if G is transient there exists a positive, bounded superharmonic function

which is not constant.

(ii) Consider the probability space [0, 1] endowed with the Borel sigma algebra and uniform
probability measure. Denote In,k := [k/2n, (k + 1)/2n), n > 1, 0 6 k < 2n. For a point
x ∈ [0, 1) let In(x) := In,k for the unique k such that x ∈ In,k.
(a) (Lebesgue density theorem) Let A ⊆ [0, 1] be a Borel set. Prove that for almost every

x ∈ [0, 1] we have

lim
n→∞

2n|In(x) ∩A| →

{
1 x ∈ A
0 x /∈ A

,

where |B| denotes the Lebesgue measure of a set B.
Hint: Use the filtration (Fn) where Fn is the sigma algebra generated by (In,k)k.

(b) (Rademacher’s theorem) Let F : [0, 1]→ R be a Lipschitz function. That is, a function
for which there exists some L <∞ such that

|F (x)− F (y)| 6 L|x− y| for all x, y ∈ [0, 1].

Prove that there exists an integrable function f : [0, 1]→ R such that

F (x)− F (y) =

∫ y

x
f(t)dt for all x, y ∈ [0, 1].

Hint: Consider the sequence of random variables

Xn(x) := 2n
(
F

(
k + 1

2n

)
− F

(
k

2n

))
where k is such that In(x) = In,k.

(iii) (Galton-Watson branching process) Let X be a random variable taking non-negative integer
values and satisfying EX < ∞. Assume that P(X = 1) < 1. Define a Markov chain (Zn),
n > 0, by setting Z0 := 1 and

Conditioned on Z0, . . . , Zn−1, Zn :=

Zn−1∑
k=1

Xn,k
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where the (Xn,k), n, k > 1 are independent, identically distributed random variables with
the distribution of X. One may think of Zn as the size of a population at generation n with
the rule that each generation is obtained from the previous one by replacing each individual
with a random number of children distributed according to X, independently between the
individuals and generations. Denote by E the event of extinction of the population, that
is,

E := {there exists some n > 1 for which Zn = 0}.
(a) Let m := EX. Prove that the process (Mn), n > 0, defined by Mn := Zn/m

n is a
martingale. Deduce that P(E) = 1 if m 6 1.

(b) Define f(s) := E(sX) for 0 6 s 6 1 (where we use the convention that f(0) = P(X = 0)
so that f is real analytic on [0, 1]). Suppose there exists some 0 6 ρ < 1 satisfying
f(ρ) = ρ. Prove that the process (Gn), n > 0, defined by Gn := ρZn is a martingale.
Deduce that P(E) = ρ and P(Zn →∞) = 1− ρ. Infer also that the equation f(ρ) = ρ
has at most one solution in [0, 1).

(c) Observe that f ′(s) = E(XsX) and in particular f ′(1) = m. Deduce that P (E) < 1 if
m > 1.

(d) Suppose that m > 1. Write M∞ = limn→∞Mn (why does it exist?). Since (Mn) is a
martingale one may speculate that Zn grows as mn on the event of non-extinction, i.e.,
that M∞ > 0 on Ec. The Kesten-Stigum theorem shows that the sharp condition for
this to occur is EX log(X + 1) <∞. We will instead prove it here under the stronger
condition that

E(X2) <∞. (1)

Prove that EM∞ = 1 under the assumption (1).
Hint: Bound E(M2

n).
(e) Still under the assumptions m > 1 and (1), observe that θ := P(M∞ = 0) satisfies

f(θ) = θ and deduce that P (M∞ = 0) = P(E).
Hint: Condition on Z1.

(iv) (Kolmogorov’s three series theorem) Let (Xn), n > 1, be a sequence of independent (not
necessarily identically distributed) random variables. Define their truncated versions,

Yn :=

{
Xn |Xn| 6 1

0 |Xn| > 1
.

In this exercise we prove Kolmogorov’s theorem, that the conditions

(i)
∞∑
n=1

P(|Xn| > 1) <∞ (ii)
∞∑
n=1

E(Yn) converges (iii)
∞∑
n=1

Var(Yn) <∞

are necessary and sufficient for the almost sure convergence of
∑∞

n=1Xn.
(a) Use the Borel-Cantelli lemma and the L2 martingale convergence theorem to deduce

that the above conditions suffice for the convergence.
(b) Prove that condition (i) is necessary for the convergence.
(c) To prove that (ii) and (iii) are necessary we require the following lemma. Suppose that

(ξn), n > 1, are independent and satisfy E(ξn) = 0 and |ξn| 6 K for some K <∞ and
all n. Let Sn :=

∑n
k=1 ξk and s2n :=

∑n
k=1 E(ξ2k). Prove that (S2

n − s2n), n > 1, is a
martingale and use this together with optional stopping to show that

P
(

max
16k6n

|Sk| 6 t

)
6

(t+K)2

Var(Sn)
.

(d) Assume that
∑

n Yn converges almost surely. Let (Y ′n) be a sequence of independent

random variables, independent also from (Yn), with Y ′n
d
=Yn. Define Zn := Yn − Y ′n

and apply the previous part to deduce that
∑

n Var(Zn) <∞.
(e) Deduce that conditions (ii) and (iii) are necessary for the convergence.

(v) (Biased random walk) Let 1
2 < p < 1 and let (Xn), n > 1, be a sequence of independent

identically distributed random variables with P(X1 = 1) = 1 − P(X1 = −1) = p. Let
Sn :=

∑n
k=1Xk. Fix integers a, b > 0 and let T := min(n : Sn ∈ {−a, b}).

(a) Find a martingale of the form αSn with 0 < α < 1.
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(b) Prove that T is almost surely finite and use the above martingale to calculate P(ST =
−a).

(c) Deduce that P(∃n, Sn = b) = 1 and calculate P(∃n, Sn = −a).
(d) Let Tb = min(n : Sn = b). Find a martingale of the form Sn−αn and use it to calculate

ETb.
Hint: To apply optional stopping consider first the truncated hitting times Tb∧n. Use
the previous part.

The Brownian motion book is available at: http://research.microsoft.com/en-us/um/people/peres/brbook.pdf


