## BROWNIAN MOTION HOMEWORK ASSIGNMENT 5

## INSTRUCTOR: RON PELED, TEL AVIV UNIVERSITY

(i) (a) (One-sided Chebyshev inequality) Let $X$ be a random variable with $\mathbb{E} X^{2}<\infty$. Denote $\sigma:=\sqrt{\operatorname{Var}(X)}$. Prove that for any $t>0$,

$$
\mathbb{P}(X-\mathbb{E}(X) \geqslant t \sigma) \leqslant \frac{1}{t^{2}+1}
$$

Hint: If an event $A$ and random variable $Y$ satisfy $1_{A} \leqslant Y$ almost surely then $\mathbb{P}(A) \leqslant$ $\mathbb{E}(Y)$.
(b) (Paley-Zygmund inequality) Deduce (or prove directly) that if $X$ is a non-negative random variable with $\mathbb{E}\left(X^{2}\right)<\infty$ then for any $\lambda \in[0,1]$,

$$
\mathbb{P}(X>\lambda \mathbb{E}(X)) \geqslant(1-\lambda)^{2} \frac{(\mathbb{E} X)^{2}}{\mathbb{E}\left(X^{2}\right)}
$$

(c) (Kochen-Stone lemma): Deduce the following statement, of a similar flavor to the Borel-Cantelli lemma. If $\left(A_{n}\right)$ is a sequence of events, not necessarily independent, satisfying

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)=\infty \quad \text { and } \quad \liminf _{k \rightarrow \infty} \frac{\sum_{1 \leqslant m, n \leqslant k} \mathbb{P}\left(A_{m} \cap A_{n}\right)}{\left(\sum_{n=1}^{k} \mathbb{P}\left(A_{n}\right)\right)^{2}}<\infty
$$

then

$$
\mathbb{P}\left(\text { infinitely many of the }\left(A_{n}\right) \text { occur }\right)>0
$$

(ii) Solve exercise 3.3 from the Brownian motion book.
(iii) Solve exercise 3.9 from the Brownian motion book.

The Brownian motion book is available at: http://research.microsoft.com/en-us/um/people/peres/brbook.pdf

