BROWNIAN MOTION HOMEWORK ASSIGNMENT 12

INSTRUCTOR: RON PELED, TEL AVIV UNIVERSITY

(i) (a) Solve exercise 7.6 from the Brownian motion book.
(b) Solve exercise 7.7 from the Brownian motion book.
(ii) Let $(B(t)), t \geqslant 0$, be a standard Brownian motion. For every Borel set $S \subseteq \mathbb{R}$ define the occupation time of S up to time t as

$$
\Gamma_{t}(S):=\int_{0}^{t} 1_{S}(B(s)) d s
$$

i.e., the Lebesgue measure of the time which B spends at S up to time t. The local time process $\left(L_{t}(x)\right),(t, x) \in[0, \infty) \times \mathbb{R}$, is a random field, continuous in both variables together, which satisfies

$$
\Gamma_{t}(S)=\int_{S} L_{t}(x) d x, \quad t \geqslant 0, S \text { Borel. }
$$

Assuming that a local time process as above exists, prove that the Brownian motion B is almost surely not differentiable at any point.

Remark: Of course, your proof should rely on the local time process, you cannot just cite the non-differentiability theorem we proved in class.

Hint: If B is differentiable at t then $|B(t+h)-B(t)| \leqslant C h$ for small h and large C.
(iii) (Kolmogorov-Čentsov theorem). Let $(X(t)), 0 \leqslant t \leqslant 1$, be a stochastic process (we assume no continuity or other regularity properties of X so that only the probability of events depending on countably many of the $(X(t))$ is defined). Suppose there exist $\alpha, \beta, C>0$ such that

$$
\begin{equation*}
\mathbb{E}|X(t)-X(s)|^{\alpha} \leqslant C|t-s|^{1+\beta}, \quad 0 \leqslant s, t \leqslant 1 \tag{1}
\end{equation*}
$$

Then there exists a continuous modification $(Y(t)), 0 \leqslant t \leqslant 1$, of X. I.e., a continuous stochastic process Y satisfying $\mathbb{P}(X(t)=Y(t))=1$ for every $0 \leqslant t \leqslant 1$. Moreover, Y is almost surely locally γ-Hölder continuous for each $0<\gamma<\frac{\beta}{\alpha}$. That is, for each such γ there exists a constant $\delta>0$ and a random variable h with $\mathbb{P}(h>0)=1$ such that

$$
\mathbb{P}\left(|Y(t)-Y(s)| \leqslant \delta|t-s|^{\gamma} \text { for all } 0 \leqslant t, s \leqslant 1 \text { satisfying }|t-s| \leqslant h\right)=1
$$

In this exercise we establish the above theorem. Thus we assume X satisfies (1) and aim to show the existence of Y as above.
(a) Prove that X is continuous in probability. That is, for any $\varepsilon>0$ and any $0 \leqslant t \leqslant 1$,

$$
\mathbb{P}\left(\left|X_{s}-X_{t}\right| \geqslant \varepsilon\right) \rightarrow 0 \quad \text { as } s \text { tends to } t
$$

(b) For the rest of the question let $D_{n}:=\left\{\frac{k}{2^{n}}: 0 \leqslant k \leqslant 2^{n}\right\}, D:=\cup_{n \geqslant 0} D_{n}$ and fix $0<\gamma<\frac{\beta}{\alpha}$. Prove that there exists a random integer N such that almost surely,

$$
\max _{1 \leqslant k \leqslant 2^{n}}\left|X\left(\frac{k}{2^{n}}\right)-X\left(\frac{k-1}{2^{n}}\right)\right|<2^{-\gamma n} \quad \text { for all } n \geqslant N
$$

(c) Let $\delta:=\frac{2}{1-2^{-\gamma}}$. Deduce that almost surely,

$$
|X(t)-X(s)| \leqslant \delta|t-s|^{\gamma} \quad \text { for all } t, s \in D \text { with }|t-s|<2^{-N}
$$

Hint: It may help to show first that for every $m>n \geqslant N$ we have almost surely, $|X(t)-X(s)| \leqslant 2 \sum_{j=n+1}^{m} 2^{-\gamma j}$ for all $t, s \in D_{m}$ satisfying $|t-s|<2^{-n}$.
(d) Deduce that the required modification Y exists.

Remark: An analogous theorem holds when the index set of X is multi-dimensional.
The Brownian motion book is available at: http://research.microsoft.com/en-us/um/people/peres/brbook.pdf

