
Advanced Topics in Probability (Fall 2021)

Homework Problems

Instructor: Ron Peled, Tel Aviv University

June 15, 2022

1 Random walks in a homogeneous environment and
one-dimensional random walks in random environment

1. (Recurrence/transience for homogeneous random walks on Zd)
Let X be a random variable taking values in Zd and satisfying the following
assumptions:

� (Finite second moment) E(∥X∥2) < ∞
(where ∥x∥ =

√∑d
j=1 |xj |2 is the Euclidean norm).

� (Full linear span) P(θ ·X ̸= 0) > 0 for all θ ∈ Rd \ {0}
(where x · y =

∑d
j=1 xjyj is the standard inner product).

Define the characteristic function ϕ : Rd → C by

ϕX(θ) := E exp(iθ ·X). (1)

(a) Prove that ϕX is continuous.
Prove that if ϕX(θ0) = 1 for some θ0 then ϕX(θ0 + θ) = ϕX(θ) for all θ.

(b) Prove that

ϕX(θ) = 1 + iθt E(X)− 1

2
θt E(XXt)θ + o(∥θ∥2) as ∥θ∥ ↓ 0 (2)

where At denotes the transpose of the matrix (or vector) A and where we
regard θ and X as column vectors.

Hint: It may help to use the fact that |eix−(1+ix− 1
2x

2)| ⩽ min
{
|x|2, |x|

3

6

}
for x ∈ R.

(c) Define the random walk

S0 := 0 and Sn := X1 + · · ·+Xn for n ⩾ 1, (3)

where the (Xj)j⩾1 are independent and distributed as X.

Prove that Sn is transient in dimensions d ⩾ 3.

(d) Assume additionally that X is symmetric, i.e., X
d
= −X.

In dimensions d = 1, 2, prove that Sn is recurrent.
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Remark 1: The Fourier inversion formula may be helpful. For any random
variable Z taking values in Zd it holds that

P(Z = z) = (2π)−d

∫
[−π,π]d

exp(−iθ · z)ϕZ(θ)dθ, z ∈ Zd. (4)

Remark 2: The assumptions of finite second moment, full linear span and
symmetry (in dimensions d = 1, 2) are not necessary for the conclusion of the
exercise.
In dimensions d ⩾ 3, any random walk for which the support of X has at least
a three-dimensional linear span is transient.
In dimension d = 2 recurrence follows from the assumption that Sn√

n
converges

to a Gaussian distribution.
In dimension d = 1, recurrence follows from the assumption that Sn

n converges
to 0 in probability (Chung-Fuchs theorem).

These facts, and their extensions to non-lattice random walks, can be found,
e.g., in the book ”Probability: Theory and Examples” by Rick Durrett.

For the next two exercises we remind Birkhoff’s ergodic theorem.

Let (A,A) be a measurable space. Let Ω := {(yn)n⩾1 : yn ∈ A for all n}. Define
the shift map T : Ω → Ω by T (y1, y2, . . .) = (y2, y3, . . .). The invariant sigma algebra
I is the set of all measurable E ⊂ Ω satisfying TE = E (where TE = {Ty : y ∈ E}).
A random sequence Y = (Y1, Y2, . . .) ∈ Ω is called stationary if Y

d
=T (Y ).

The ergodic theorem: Let Y be a stationary sequence. For each f : Ω → R
satisfying E |f(Y )| < ∞ it holds that

lim
n→∞

1

n

n−1∑
k=0

f(T k(Y )) = E(f | I) a.s. and in L1. (5)

2. (Partial sums of a stationary sequence)
Let Y be a real-valued stationary and ergodic sequence (i.e., A = R). Define
Sn :=

∑n
k=1 Yk for n ⩾ 1. Prove that

P
({

lim
n→∞

Sn = ∞
}
\
{
lim inf
n→∞

1

n
Sn > 0

})
= 0 (6)

(that is, the sums of a stationary sequence cannot increase to infinity at a slower
than linear rate).

Hint: For fixed k ⩾ 1, consider the event {Sn > 1 for all n ⩾ k}.
Remark 1: The ergodicity assumption is not needed as follows from the state-
ment above by decomposing into ergodic components (i.e., conditioning on I).
Remark 2: This result is called Kesten’s lemma.

3. (Transience/recurrence in a stationary and ergodic environment)
Recall Solomon’s recurrence/transience criterion for one-dimensional random
walk in random environment:
Let P be a stationary and ergodic measure on ω = (ωn)n∈Z (where ωn is the
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transition probability from n to n+1 in the random walk). Define ρn := 1−ωn
ωn

.
Assume that for some ε > 0, P (ω0 ∈ [ε, 1− ε]) = 1.
Then the random walk is (i) transient to +∞ if E log(ρ0) < 0, (ii) recurrent if
E log(ρ0) = 0 and (iii) transient to −∞ if E(log(ρ0)) > 0.

We proved this in class when P is IID. Extend the proof to the stationary and
ergodic case.

Hint: The result (6) may be helpful. Also note that our derivation in class of
the exit probability vR,L is valid for any value of the transition probabilities ω.

4. (Second moment of the hitting time)
In the notation of one-dimensional random walk in random environment: Let P
be IID and uniformly elliptic. Prove that E(τ21 ) < ∞ if and only if EP (ρ

2
0) < 1.

5. (Annealed central limit theorem)
In the notation of one-dimensional random walk in random environment:
Let P be IID and uniformly elliptic. Assume that EP (ρ

2
0) < 1.

Prove that as n tends to infinity,
Tn−nv−1

P√
n

converges in distribution to N(0, σ2)

for some σ > 0.

Hint: Use the central limit theorem for the partial sums of a stationary sequence
presented in class.

Remark: You may use the fact stated in class that the assumption EP (ρ
2
0) < 1

implies that E(τ2+δ
1 ) < ∞ for some δ > 0.

2 Random walks in a random environment in general
dimensions

We consider nearest-neighbor random walks in random environment on Zd. We use
the usual notation from class:

� The environment measure P is a measure on (ωx)x∈Zd , where each ωx is a proba-
bility distribution on the 2d unit vectors e1,−e1, e2,−e2, . . . (ei = (0, . . . , 0, 1, 0, . . . , 0)
with the 1 in the ith position). We often make the assumption that the (ωx) are
independent and identically distributed and the assumption of uniform elliptic-
ity (i.e., there exists ε > 0 such that ωx(e) > ε for all x ∈ Zd and e ∈ {±ei}di=1,
P -a.s.).

� The quenched measures Px
ω are the measures on the random walk (Xn)n⩾0 in

the environment ω when X0 = x.

� The annealed measures Px are the joint distribution of the environment ω sam-
pled from P and the walk (Xn)n⩾0 sampled from Px

ω (sometimes Px refers to
the marginal of this distribution on the walk).

1. (Walking in uncharted territory)
Let the environment measure P be independent (P need not be IID or elliptic).
Let x, y ∈ Zd. In this problem we formalize the idea that two random walks
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starting at x and y evolve independently if their trajectories do not intersect,
even under the annealed measure.

Denote by Px,y the joint distribution on ω sampled from P and on two random
walks (X1

n)n⩾0 and (X2
n)n⩾0 sampled independently from Px

ω and Py
ω, respec-

tively.

(a) Let k, ℓ ⩾ 1 be integers and let p = (p0, p1, . . . , pk), q = (q0, q1, . . . , qℓ) be
nearest-neighbor paths in Zd of lengths k and ℓ respectively. Assume that
Py((X2

n)
ℓ
n=0 = q) > 0. Prove that

Px,y((X1
n)

k
n=0 = p, (X1

n)
k−1
n=0 ∩ (X2

n)
ℓ−1
n=0 = ∅ | (X2

n)
ℓ
n=0 = q)

= Px((X1
n)

k
n=0 = p)1(pn)k−1

n=0∩(qn)
ℓ−1
n=0=∅. (7)

(b) Let k, ℓ ⩾ 1 be integers. Deduce that for any A ⊂ (Zd){0,1,...,k} it holds
that

Px,y((X1
n)

k
n=0 ∈ A, (X1

n)
k−1
n=0 ∩ (X2

n)
ℓ−1
n=0 = ∅ | (X2

n)
ℓ
n=0)

= Px((X1
n)

k
n=0 ∈ A, (X1

n)
k−1
n=0 ∩ (X2

n)
ℓ−1
n=0 = ∅), Px,y-almost surely. (8)

(In this notation we mean that the the right-hand side is a function of
(X2

n)
ℓ
n=0. Precisely, if we define for each q = (q0, . . . , qℓ) the function

f(q) := Px((X1
n)

k
n=0 ∈ A, (X1

n)
k−1
n=0 ∩ (qn)

ℓ−1
n=0 = ∅) then the right-hand side

of (8) should be understood as f((X2
n)

ℓ
n=0).)

(c) Deduce that for any measurable A ⊂ (Zd){0,1,...} it holds that

Px,y((X1
n)n⩾0 ∈ A, (X1

n)n⩾0 ∩ (X2
n)n⩾0 = ∅ | (X2

n)n⩾0)

= Px((X1
n)n⩾0 ∈ A, (X1

n)n⩾0 ∩ (X2
n)n⩾0 = ∅), Px,y-almost surely. (9)

(again, the right-hand side equals f((X2
n)n⩾0) where now

f(q) := Px((X1
n)n⩾0 ∈ A, (X1

n)n⩾0 ∩ (qn)n⩾0 = ∅) with q ∈ (Zd){0,1...}).

Remark: Note in particular that the right-hand side of (8) is deterministically
at most Px((X1

n)
k
n=0 ∈ A). An analogous fact holds for (9).

Remark: A version of (8) can be devised when the length of the paths involved
is itself random. Another version can be devised involving a single random walk
whose trajectory has two disjoint parts (e.g., as with “regeneration times”).

2. (Making trajectories intersect - part of the Merkl-Zerner proof of the 0− 1 law
in two dimensions)
Fix d = 2. Let P be independent (P need not be IID or elliptic). Let L ⩾ 1
integer.

Prove that there exists yL ∈ Z such that the following holds. Set x = (−L, 0)
and y = (L, yL). Let Px,y, (X1

n)n⩾0 and (X2
n)n⩾0 be as in the previous problem.

Then

Px,y(X1
n · (1, 0) → ∞, X2

n · (1, 0) → −∞, (X1
n)n⩾0 ∩ (X2

n)n⩾0 = ∅)

⩽
1

2
Px(X1

n · (1, 0) → ∞)Py(X2
n · (1, 0) → −∞). (10)
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3 Lattice spin systems

1. (Localization of 1-Lipschitz integer-valued height functions at low temperature)

Let d ⩾ 2 and L ⩾ 1 be integers. Let x > 0. Let G = (V,E) be the d-
dimensional discrete cube of side length 2L+ 1: the graph with

V = {−L,−L+ 1, . . . , L}d (11)

with two vertices adjacent if they differ in exactly one coordinate, and by exactly
one in that coordinate. The configuration space of 1-Lipschitz integer-valued
height functions with zero boundary conditions is

Ω :=

{
ϕ : V → Z :

ϕ(u)− ϕ(v) ∈ {−1, 0, 1} for {u, v} ∈ E,

ϕ(v) = 0 for v with ∥v∥∞ = L

}
. (12)

We place a probability measure µx on Ω by setting the probability of each ϕ ∈ Ω
to be proportional to xN(ϕ) where

N(ϕ) := {{u, v} ∈ E : ϕ(u) ̸= ϕ(v)} (13)

is the number of nearest-neighbor pairs where the values of ϕ differ.

Prove that there exists some x0 > 0, which may depend on d but not on L,
such that whenever 0 < x < x0 then

µx(ϕ(v) ̸= 0) < 0.01 for all v ∈ V . (14)

Hint: Find a way to adapt the Peierls argument to this setting.

2. (Delocalization of two-dimensional real-valued height functions)

Let U : R → R be a twice-continuously differentiable function satisfying

(a) (even function) U(x) = U(−x) for all x ∈ R.

(b) (growth at infinity) U(x)
log x → ∞ as x → ∞.

(c) (bounded second derivative) supx∈R U ′′(x) < ∞.

(one example to have in mind is the function U(x) = x2).

Let L ⩾ 1 be an integer. Let G = (V,E) be the two-dimensional discrete square
of side length 2L+ 1, as in (11) but now with d = 2. The configuration space
of real-valued height functions with zero boundary conditions is

Ω := {ϕ : V → R : ϕ(v) = 0 for v with ∥v∥∞ = L}. (15)

We place a probability measure µ on Ω by setting the density of each ϕ ∈ Ω to
be proportional to

exp

−
∑

{u,v}∈E

U(ϕ(u)− ϕ(v))

 . (16)
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Here, the density is with respect to the natural product Lebesgue measure
(
∏

v dϕ(v) over all v ∈ V with ∥v∥∞ ̸= L). It is not obvious that (16) can
indeed be normalized to be a probability measure but this is ensured by the
growth at infinity assumption on U .

Let ϕ be sampled from µ. Prove that there exists some c > 0, which may
depend on U but not on L, such that

Var(ϕ(0, 0)) ⩾ c logL. (17)

Hint: Adapt the proof of the Mermin–Wagner theorem (no continuous-symmetry
breaking in two dimensions) to this setting.

3. (Decay of correlations in the two-dimensional XYmodel: the Dobrushin–Shlosman
method)

Let L ⩾ 1 be an integer. Let G = (V,E) be the two-dimensional discrete square
of side length 2L + 1 as in the previous problem. The configuration space of
the XY model with zero-angle boundary conditions is

Ω := {θ : V → R/2πZ : θ(v) = 0 for v with ∥v∥∞ = L}. (18)

Let β > 0. The probability measure µ of the XY model at inverse temperature
β is the measure on Ω assigning density proportional to

exp

β
∑

{u,v}∈E

cos(θ(u)− θ(v))

 (19)

to each θ ∈ Ω. The density is with respect to the natural product Lebesgue
measure (product of the Lebesgue measures on R/2πZ at each v ∈ V with
∥v∥∞ ̸= L).

Let θ be sampled from µ. Consider the sigma algebra generated by all the
differences in angles θ(u)− θ(v) when ∥u∥∞ = ∥v∥∞. Precisely,

F := σ
(
θ(u)− θ(v) : u, v ∈ V, ∥u∥∞ = ∥v∥∞

)
. (20)

(given the information in this sigma algebra, the only degrees of freedom left
in θ is to perform a uniform rotation to the spins in each ‘layer’ (by layer we
mean the set of v ∈ V with fixed ∥v∥∞).

(a) For 0 ⩽ j ⩽ L−1, let Xj := θ(je1)−θ((j+1)e1), where e1 = (1, 0). Prove
that the (Xj) are conditionally independent given F .

Deduce that

E
(
eiθ(0,0)

)
= E

L−1∏
j=0

E
(
eiXj | F

) . (21)

(b) Prove that there exists some c > 0, which does not depend on β or L, such
that for each 0 ⩽ j ⩽ L− 1,

E
(
eiXj | F

)
⩽ 1− c

max{β, 1}(j + 1)
. (22)
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Deduce power-law decay of correlations - that is, deduce that there exists
c̃ > 0, which does not depend on β or L, such that

E
(
eiθ(0,0)

)
⩽

1

Lc̃/max{β,1} . (23)

Hint: One way to prove (22) is to use an argument of Mermin–Wagner
type, by introducing a suitable ‘spin wave’.

Remark: The proof may be easily adapted to the spin O(n) model for all n ⩾ 2
(the XY model is the case n = 2), by conditioning on all but the first two
components of each spin.

Remark: The idea to condition on the sigma algebra F is based on the 1975
work of Dobrushin–Shlosman.

4. (The XY model at strong external magnetic field)

Let G = (V,E) be a finite connected graph of maximal degree ∆. Let V0 ⊂ V
be a non-empty subset (the ‘boundary subset’). For each τ : V0 → R/2πZ
define the configuration space of the XY model with boundary condition τ as

Ωτ := {θ : V → R/2πZ : θ(v) = τ(v) for v ∈ V0}. (24)

At external field strength h > 0, the energy of a configuration θ is defined to be

Hh(θ) := −
∑
u∼v

u,v∈V

cos(θ(u)− θ(v))− h
∑
v∈V

cos(θ(v)). (25)

At inverse temperature β > 0, external field strength h > 0 and boundary
condition τ : V0 → R/2πZ, define the probability measure Pβ,h,τ of the XY
model as the measure on Ωτ assigning density proportional to exp(−βHh(θ))
to each θ ∈ Ωτ (with respect to the Lebesgue measure

∏
v∈V \V0

dθ(v)). The

associated expectation is denoted Eβ,h,τ .

Denote by ρ the metric on R/2πZ given by ρ(α1, α2) = |eα1−eiα2 | =
√

2− 2 cos(α1 − α2).
A function f : R/2πZ → R is called Lipschitz if |f(α1)− f(α2)| ⩽ ρ(α1, α2) for
all α1, α2 ∈ R/2πZ.
Prove that there exists h0, C, c > 0, depending only on the maximal degree ∆,
such that if h > h0 then for all v ∈ V and all Lipschitz f : R/2πZ → R,

sup
τ1,τ2:V0→R/2πZ

|Eβ,h,τ1 f(θ(v))− Eβ,h,τ2 f(θ(v))| ⩽ Ce−c dG(v,V0), (26)

with dG(v, V0) the graph distance in G between v and the boundary subset V0.

Hint: Use the Dobrushin uniqueness theorem.

Remark: One standard choice for the graph G is a cube in Zd, as in (11), with
V0 chosen as its vertex boundary in Zd.

Remark: A similar result holds for the Ising model and for the spin O(n) models
with n ⩾ 3. Additionally, as the result is uniform in the temperature, it holds
also at zero temperature (i.e., in the limit β → ∞).

Remark: The decay estimate (26) holds, in fact, for all h > 0 (without restrict-
ing to large h, but with C, c depending on h) but this is harder to establish.
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4 Disordered lattice spin systems

The random-field Ising model is defined as follows: In a finite domain Λ ⊂ Zd with
boundary conditions τ : ∂◦Λ → {−1, 1} (here, ∂◦Λ := {v ∈ Zd \ Λ: ∃u ∈ Λ, u ∼ v} is
the external vertex boundary of Λ), the energy of a configuration σ : Λ → {−1, 1} is
given by

HΛ,τ,η(σ) = −
∑
u∼v
u,v∈Λ

σuσv −
∑
u∼v

u∈Λ,v∈Λc

σuτv − λ
∑
u∈Λ

ηuσu, (27)

where λ > 0 is the disorder strength and (ηv)v∈Zd is the disorder, given by indepen-
dent and identically distributed standard Gaussian random variables (more general
disorder distributions are possible but we restrict to the Gaussian case for simplicity).

The model is considered here only at zero temperature (β = ∞), in which case
it is supported on the (almost surely) unique configuration σΛ,τ,η minimizing the
energy (27). Such a configuration is called a finite-volume ground state.

We use P and E for probability and expectation over η.

1. (Infinite-volume ground states in the random-field Ising model)

A configuration σ : Zd → {−1, 1} is called a ground state (in infinite volume)
if whenever σ′ : Zd → {−1, 1} differs from σ in finitely many vertices we have
Hη(σ) ⩽ Hη(σ′).

One should note that the energies Hη(σ) above are not well defined them-
selves, as the formula (27) involves an infinite non-convergent sum in infinite
volume. However, the difference Hη(σ) − Hη(σ′) is well defined: It equals
HΛ,τ,η(σ)−HΛ,τ,η(σ′) for any finite domain Λ such that σ = σ′ outside Λ, with
the boundary conditions τ taken to be the restriction of σ (or σ′) to ∂◦Λ.

(a) Let Λ ⊂ Zd be finite. Let τ1, τ2 : ∂◦Λ → {−1, 1} satisfy τ1 ⩾ τ2 pointwise.
Prove that for each fixed (ηv)v∈Zd we have σΛ,τ1,η ⩾ σΛ,τ2,η pointwise.

Remark: Related facts hold true at positive temperatures, by the fa-
mous Fortuin-Kasteleyn-Ginibre (FKG) inequality. However, the zero-
temperature case is more elementary.

(b) Let d = 2. Prove that almost surely (in η), there exists a unique ground
state σ : Zd → {−1, 1} (in infinite volume).

Hint: Rely on the theorem from class which proves that the ground state of
the two-dimensional random-field Ising model is disordered at all positive
disorder strengths.

(c) Let d ⩾ 3 and suppose λ > 0 is small (as small as is needed for the proof,
but still positive). Prove that almost surely (in η) there are at least two
different ground states (in infinite volume) for the d-dimensional random-
field Ising model.

Hint: Rely on the theorem from class which proves that the d ⩾ 3 random-
field Ising model exhibits long-range order at weak disorder strength.

2. (Strong disorder regime of the random-field Ising model)

For each dimension d ⩾ 1, prove that there exists λ0(d) > 0 (depending only
on d) such that the following holds for all λ > λ0(d): There exists C, c > 0 such
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that for all L ⩾ 1 we have

E
(
σΛL,+,η
0 − σΛL,−,η

0

)
⩽ Ce−cL, (28)

where ΛL = {−L,−L+1, . . . , L}d is the lattice cube of side length 2L+1, and
where + stands for the constant +1 boundary condition while − stands for the
constant −1 boundary condition.

Remark: We focus here on the ground state for simplicity but the same result
continues to hold at every positive temperature (even if the temperature de-
pends on the disorder). If the temperature is sufficiently high then a similar
result holds at all disorder strengths due to the Dobrushin Uniqueness theorem.

Remark: In dimension d = 1, one may take λ0(d) = 0 meaning that (28) holds
at all λ > 0.

3. (A fact about convex Lipschitz functions - an exercise from the last lecture)

There exists C > 0 such that the following holds. Let g : R → R be convex,
differentiable and λ-Lipschitz (the Lipschitz assumption means that |g(x) −
g(y)| ⩽ λ|x− y| for all x, y ∈ R). Define, for r > 0,

Nr(g) := {h : R → R : h is convex, differentiable and λ-Lipschitz : sup
x∈R

|h(x)−g(x)| ⩽ r}.

(29)
Prove that, for each r, δ > 0,

Leb({x ∈ R : ∃h ∈ Nr(g), |h′(x)− g′(x)| ⩾ δ} ⩽
Cλr

δ2
, (30)

where Leb stands for Lebesgue measure on R.
Remark: The differentiability assumptions are made for simplicity. A version
of this fact holds with left and right derivatives.
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