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Continuing Long-Range Order for Spin O (1) models in d > 3 at low tem-
peratures

d
Let L be an even number. Denote A = Aj, = {f% +1,... %} the d-dimensional discrete torus of side length L,
and define the Shifted Partition Function as:
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where Q4 = {o: A = S"7'}, f: A — R, and where do = [I,ex dm (0y), and m is the Lebesgue measure on
Sn=t,

Definition. Gaussian Domination (GD) is said to occur if and only if for all f : A — R, Z(0) > Z (f).

We will prove GD for 25 using reflection positivity. Open problem: find robust proofs for GD that will work in

other domains.

Reflection Positivity

AO Al

Let Ag, A1 be the two halves of A, split at the first coordinate. Let R : A — A be the reflection mapping Ag to A1 and
vice versa, i.e. R(x1,22,...,24) = (1 —x1,22,...,24), and for functions f : Ag — R define (Rf) (x) = f (Rx),
and similarly for f : Ay — R. For f : A — R, define fo = f [a, and f1 = f [A,, and write Z (f) = Z (fo, f1)-

Definition. Z is said to be reflection positive if for all f, fi as above:

Z (fo, 1) <V Z (fo,Rfo) Z (Rf1, f1)

Proposition. [Reflection positivity] Z is reflection positive.

Remark. Reflection positivity is a more general technique, sometimes used with cuts going through vertices instead of

edges, whose main consequences are:
e The infra-red bound
® The chessboard estimate

(See lecture notes of Peled-Spinka/Biskup).



Proof of Gaussian Domination from Proposition

Proof. First, note that if the difference in f along an edge is large, then Z (f) will be small. Thus, maximizers of Z (-)
exist, since one can look for them in a compact set (noting that Z (f + ¢) = Z (f) for constant c). Let f be a maximizer
of Z, which also minimizes k (f) := #{{u,v} € E | f, # f,}. We wish to show that k (f) = 0. Indeed, suppose
k>1,and let e = {u7 v} be an edge such that ?u #* ?v‘ By rotating and translating, one may assume that e connects
Ao and A1. Now by the proposition:

7 (For T1) < /2 (Fo. BFo) Z (RT 1. ).

Thus, since f is a maximizer of Z, so are (TO,RfO) , (R?l,fl). Now, note that % ( (fO,RfO) + k (Rfl,fl)) <
k (?0, ?1)' since on the boundaries between A, A1, both (?0, Rfo) and (R?l, ?1) agree. So one of k ( fo, RS 0) ( Rf,,
O

is smaller than k (f), and thus f is not the minimal maximizer.

Proof of Reflection Positivity
Proof. Two tricks will be used here:
1. The first trick has several names:
e Fourier transform of the Gaussian distribution
e Habbard-Stratonovich transformation

e Introduce a complex field to decouple the interaction

non-negative measure _ X
Linear in a
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2. Cauchy-Schwarz inequality.

Then, letting f = (fo, f1),
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Using trick #1 in the cut edges:
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is a non-negative measure. Using Cauchy-Schwarz:
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And now, remember that |Z|2 = 2Z, and
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as a reflection, and similarly for f1, and so Z (fo, f1) < \/Z (fo, Rfo) Z (Rf1, f1). O
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Disordered Spin Systems

Lattice spin systems in a random environment.

Examples

1. Random-Field Ising Model (RFIM): 0 : A — {—1,1},

H (o) =H"(0) = —Zauav —/\vaav

where A > 0 is a parameter governing the strength of the disorder, (7)) vezd 1ID, Eng = 0, Var (no) =1. E.g.,

(1) are IID N (0,1) or IID %. 7) is the environment. For each fixed value of 7), we have an Ising model,

with “apriori tendencies” of the spins to follow the signs of 7 and with A controlling the relative strength of the
neighbours’ effect vs. the apriori tendency. A is called the “disorder strength”.

2. Random-Field Potts Model (RFPM) with ¢ states: o : A — {1,...,q},

q
H(o)=— Z Ls,=0, — )‘Z va,j]lffu:j

U~ v g=1
where 1 : Z% x {1,...,q} — R IID as before.

3. Random-Field Spin O (n) model, n > 2: o : A — S"~1

H(J):—Zau-av—)\2m~av

u~v v
n IID taking values in R"™, e.g. A/ (0, I,,). We write - for standard inner product in R™.

4. Disordered Ferromagnet and Edwards-Anderson Spin Glasses: o : 74 — {—17 1}

H(o)=- Z N0 0u0w

u~v
T TID.

o Disordered Ferromagnet: 1 > 0.

e Spin Glasses: 7) is both positive and negative.

In all the examples above, form a probability measure in a finite volume A with boundary conditions 7, by fixing
0 [pae= T|Ac and setting the density proportional to exp (— BH/T\’W (0')) with 3= inverse temperature.

Quenched: Write <->};’n = (-)7 for expectation in the above measure.

Averaged: We use P and E for averages over 7.

Ground State: The case of zero temp. ([ = 00) corresponds to a uniform distribution over energy minimizing
configurations. We will talk of cases where there is a unique such configuration (in finite volume) and denote this
configuration by o7 = o7,

Understanding the ground state is usually the main challenge in understanding the low-temperature behaviour.

Random-Field models were first analyzed by Imry-Ma (1975):

Imry-Ma Phenomenon

Random-Field Spin Models do not have an ordered phase in low dimensions.

e d=2: All such models are not ordered!

e 2 < d < 4: Random-Field Spin O (n) models with 7 > 2 with O (n)-invariant 7 are disordered.
e d > 3: RFIM, RFPM have low temp. and small \ ordered phase.

The last claim (regarding d = 3) was challenged by other physicists, but eventually proved true by mathematicians
Imbrde (1985) and Bricmont-Kupiainen (1988).
Heuristic: RFIM with (+) boundary: Is the configuration of all (+) more likely than all (—)?
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A=H"(sg) — H"(s1) ~ —L* ' + N (0,L%)
A < 0 means that the boundary wins. Is L4~ > AN (O, Ld)?
Yes, when d > 3; No, when d = 1. In d = 2 we have a constant (m efk%) probability that the field wins, whence

the field wins in some random sufficiently large box.
Heuristic in continuous-symmetry case:

bdry. conflict field
— ——
the energetic cost A &~ —L% 72 4+ AN (0, Ld) is balanced in d = 4.
Theorem. [Aizenman-Wehr 1989, version here from Dario-Harel-Peled 2021]
e RFIM, RFPM in d = 2:
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e RF Spin O (n),n > 2, 2 < d < 4, 1 rotationaly invariant:
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DHL showed that:
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More is known for RFIM in d = 2 Aizenman-Wehr: By monotonicity ((+) boundary conditions implies more (+)s),
there is no need to average over Ay :

L
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The rate of decay was refined until recently it was shown by Ding-Xia 2019 (1" = 0 and then 17" > () and Aizenman-
Harel-Peled, m;, < Che L,
—44o(1)

Ding-Wirth (2020): For T' > 0 and low temp., d = 2, boundary conditions lose their effect at L ~ e* as
A} 0. Conjecturally, similar behaviour holds for other models, e.g. RFPM:

Conjecture. V0 < < o0o,A >0, d=2:V1 < j < qin RFPM:

E |:SuP |<JU>EL - <JU>ZQL|] —0 1)

71,72
(1) is not known, even at 5 = co.

Conjecture. [Unique infinite volume ground state pair in d = 2 spin glass] In d = 2, there is a unique ground state
pair in Z2. A finite-volume manifestation: Y0 < 8 < 0o,
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Only a spatially-averaged version is known (Aizenman-Wehr, Dario-Harel-Peled).



