
Advanced Topics in Probability - Lecture 12

Lecturer: Prof. Ron Peled, Scribe: Roey Zemmel

29 Dec, 2021

Continuing Long-Range Order for Spin O (n) models in d ≥ 3 at low tem-
peratures

Let L be an even number. Denote Λ := ΛL =
{
−L

2 + 1, . . . L
2

}d
the d-dimensional discrete torus of side length L,

and define the Shifted Partition Function as:

Z (f) =

ˆ

ΩΛ

exp

−β
∑
u∼v

u,v∈V

∥σu − σv + fue1 − fve1∥22

 dσ

where ΩΛ =
{
σ : Λ → Sn−1

}
, f : Λ → R, and where dσ =

∏
v∈Λ dm (σv), and m is the Lebesgue measure on

Sn−1.

Definition. Gaussian Domination (GD) is said to occur if and only if for all f : Λ → R, Z (0) ≥ Z (f).

We will prove GD for ΩΛ using reflection positivity. Open problem: find robust proofs for GD that will work in
other domains.

Reflection Positivity

Let Λ0,Λ1 be the two halves of Λ, split at the first coordinate. LetR : Λ → Λ be the reflection mapping Λ0 to Λ1 and
vice versa, i.e. R (x1, x2, . . . , xd) = (1− x1, x2, . . . , xd), and for functions f : Λ0 → R define (Rf) (x) = f (Rx),
and similarly for f : Λ1 → R. For f : Λ → R, define f0 = f �Λ0

and f1 = f �Λ1
, and write Z (f) = Z (f0, f1).

Definition. Z is said to be reflection positive if for all f0, f1 as above:

Z (f0, f1) ≤
√

Z (f0, Rf0)Z (Rf1, f1)

Proposition. [Reflection positivity] Z is reflection positive.

Remark. Reflection positivity is a more general technique, sometimes used with cuts going through vertices instead of
edges, whose main consequences are:

• The infra-red bound

• The chessboard estimate

(See lecture notes of Peled-Spinka/Biskup).
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Proof of Gaussian Domination from Proposition

Proof. First, note that if the difference in f along an edge is large, then Z (f) will be small. Thus, maximizers of Z (·)
exist, since one can look for them in a compact set (noting that Z (f + c) = Z (f) for constant c). Let f be a maximizer
of Z, which also minimizes k (f) := # {{u, v} ∈ E | fu ̸= fv}. We wish to show that k

(
f
)
= 0. Indeed, suppose

k ≥ 1, and let e = {u, v} be an edge such that fu ̸= fv. By rotating and translating, one may assume that e connects
Λ0 and Λ1. Now by the proposition:

Z
(
f0, f1

)
≤

√
Z
(
f0, Rf0

)
Z
(
Rf1, f1

)
.

Thus, since f is a maximizer of Z, so are
(
f0, Rf0

)
,
(
Rf1, f1

)
. Now, note that 1

2

(
k
(
f0, Rf0

)
+ k

(
Rf1, f1

))
<

k
(
f0, f1

)
, since on the boundaries betweenΛ0,Λ1, both

(
f0, Rf0

)
and

(
Rf1, f1

)
agree. So one of k

(
f0, Rf0

)
, k

(
Rf1, f1

)
is smaller than k (f), and thus f is not the minimal maximizer.

Proof of Reflection Positivity

Proof. Two tricks will be used here:

1. The first trick has several names:

• Fourier transform of the Gaussian distribution

• Habbard-Stratonovich transformation

• Introduce a complex field to decouple the interaction

∀a ∈ R. exp
(
− 1

2a
2
)
=
´∞
−∞

non-negative measure︷ ︸︸ ︷
dξ√
2π

e−
1
2 ξ

2

Linear in a︷︸︸︷
eiξa .

2. Cauchy-Schwarz inequality.

Then, letting f = (f0, f1),

Z (f0, f1) =

ˆ

ΩΛ

h0︷ ︸︸ ︷∏
u∼v

u,v∈Λ0

e−β∥σu−σv+fue1−fve1∥2
2

h1︷ ︸︸ ︷∏
u∼v

u,v∈Λ1

e−β∥σu−σv+fue1−fve1∥2
2

cut edges︷ ︸︸ ︷∏
u∼v

u∈Λ0,v∈Λ1

e−β∥σu−σv+fue1−fve1∥2
2 dσ.

Using trick #1 in the cut edges:

=

ˆ

ΩΛ

dσh0h1

∏
u∼v

u∈Λ0,v∈Λ1

n∏
j=1

∞̂

−∞

d ξju,v√
2π

e−
1
2 (ξ

j
u,v)

2

eiξ
j
u,v

√
2β(σu,j−σv,j+fue1,j−fve1,j)

=

ˆ
dµ (ξ)

ˆ

ΩΛ0

h0

∏
u on Λ0 ’s boundary

eiξ
j
u,v

√
2β(σu,j+fue1,j)dσ0

ˆ

ΩΛ1

h1

∏
v on Λ1 ’s boundary

e−iξju,v

√
2β(σv,j+fve1,j)dσ1

where

dµ (ξ) =
∏
u∼v

u∈Λ0,v∈Λ1

n∏
j=1

d ξju,v√
2π

e−
1
2 (ξ

j
u,v)

2

is a non-negative measure. Using Cauchy-Schwarz:

Z (f0, f1) ≤√√√√√√ˆ dµ (ξ)

∣∣∣∣∣∣∣
ˆ

ΩΛ0

h0

∏
u onΛ0 ’s boundary

eiξ
j
u,v

√
2β(σu,j+fue1,j)dσ0

∣∣∣∣∣∣∣
2√√√√√ˆ dµ (ξ)

ˆ

ΩΛ1

∣∣∣∣∣h1

∏
v onΛ1 ’s boundary

e−iξju,v

√
2β(σv,j+fve1,j)dσ1

∣∣∣∣∣
2

And now, remember that |z|2 = zz, and
ˆ

ΩΛ0

h0

∏
u on Λ0 ’s boundary

eiξ
j
u,v

√
2β(σu,j+fue1,j)dσ0 =

ˆ

ΩΛ1

h0 (Rf0)
∏

v on Λ1 ’s boundary

e−iξju,v

√
2β(σv,j+(Rf)ve1,j)dσ1

as a reflection, and similarly for f1, and so Z (f0, f1) ≤
√

Z (f0, Rf0)Z (Rf1, f1).
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Disordered Spin Systems

Lattice spin systems in a random environment.

Examples

1. Random-Field Ising Model (RFIM): σ : Λ → {−1, 1},

H (σ) = Hη (σ) := −
∑
u∼v

σuσv − λ
∑
v

ηvσv

where λ > 0 is a parameter governing the strength of the disorder, (ηv)v∈Zd IID, Eη0 = 0, Var (η0) = 1. E.g.,

(ηv) are IID N (0, 1) or IID δ1+δ−1

2 . η is the environment. For each fixed value of η, we have an Ising model,
with “apriori tendencies” of the spins to follow the signs of η and with λ controlling the relative strength of the
neighbours’ effect vs. the apriori tendency. λ is called the “disorder strength”.

2. Random-Field Potts Model (RFPM) with q states: σ : Λ → {1, . . . , q},

H (σ) = −
∑
u∼v

1σu=σv − λ
∑
v

q∑
j=1

ηv,j1σv=j

where η : Zd × {1, . . . , q} → R IID as before.

3. Random-Field Spin O (n) model, n ≥ 2: σ : Λ → Sn−1

H (σ) = −
∑
u∼v

σu · σv − λ
∑
v

ηv · σv

η IID taking values in Rn, e.g. N (0, In). We write · for standard inner product in Rn.

4. Disordered Ferromagnet and Edwards-Anderson Spin Glasses: σ : Zd → {−1, 1}

H (σ) = −
∑
u∼v

ηu,vσuσv

ηu,v IID.

• Disordered Ferromagnet: η ≥ 0.

• Spin Glasses: η is both positive and negative.

In all the examples above, form a probability measure in a finite volume Λ with boundary conditions τ , by fixing
σ �Λc= τ�Λc and setting the density proportional to exp (−βHτ,η

Λ (σ)) with β= inverse temperature.
Quenched: Write ⟨·⟩τ,ηΛ = ⟨·⟩τ for expectation in the above measure.
Averaged: We use P and E for averages over η.
Ground State: The case of zero temp. (β = ∞) corresponds to a uniform distribution over energy minimizing

configurations. We will talk of cases where there is a unique such configuration (in finite volume) and denote this
configuration by σΛ,η,τ = στ .

Understanding the ground state is usually the main challenge in understanding the low-temperature behaviour.
Random-Field models were first analyzed by Imry-Ma (1975):

Imry-Ma Phenomenon

Random-Field Spin Models do not have an ordered phase in low dimensions.

• d=2: All such models are not ordered!

• 2 ≤ d ≤ 4: Random-Field Spin O (n) models with n ≥ 2 with O (n)-invariant η are disordered.

• d ≥ 3: RFIM, RFPM have low temp. and small λ ordered phase.

The last claim (regarding d = 3) was challenged by other physicists, but eventually proved true by mathematicians
Imbrde (1985) and Bricmont-Kupiainen (1988).

Heuristic: RFIM with (+) boundary: Is the configuration of all (+) more likely than all (−)?
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∆ = Hη (s0)−Hη (s1) ≈

bdry. conflict︷ ︸︸ ︷
−Ld−1 +

field︷ ︸︸ ︷
λN

(
0, Ld

)
∆ < 0 means that the boundary wins. Is Ld−1 > λN

(
0, Ld

)
?

Yes, when d ≥ 3; No, when d = 1. In d = 2 we have a constant
(
≈ e−

c
λ2

)
probability that the field wins, whence

the field wins in some random sufficiently large box.
Heuristic in continuous-symmetry case:

the energetic cost ∆ ≈

bdry. conflict︷ ︸︸ ︷
−Ld−2 +

field︷ ︸︸ ︷
λN

(
0, Ld

)
is balanced in d = 4.

Theorem. [Aizenman-Wehr 1989, version here from Dario-Harel-Peled 2021]

• RFIM, RFPM in d = 2:

∀0 < β ≤ ∞. E

[
sup
τ1,τ2

∣∣∣∣∣ 1

L2

∑
v∈ΛL

(
⟨1σv=j⟩τ1ΛL

− ⟨1σv=j⟩τ2ΛL

)∣∣∣∣∣
]

L→∞−−−−→ 0

• RF Spin O (n) , n ≥ 2, 2 ≤ d ≤ 4, η rotationaly invariant:

E

[
sup
τ1

∣∣∣∣∣ 1

L2

∑
v∈ΛL

⟨σv⟩τΛL

∣∣∣∣∣
]

L→∞−−−−→ 0

DHL showed that:

E

[
sup
τ1

∣∣∣∣∣ 1

L2

∑
v∈ΛL

⟨σv⟩τΛL

∣∣∣∣∣
]
≤


c/L

1
3 d = 2

c/L
1
5 d = 3
c√

log logL
d = 4
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More is known for RFIM in d = 2 Aizenman-Wehr: By monotonicity ((+) boundary conditions implies more (+)s),
there is no need to average over ΛL:

mL := E
[
⟨σ0⟩+ΛL

]
L→∞−−−−→ 0

The rate of decay was refined until recently it was shown by Ding-Xia 2019 (T = 0 and then T > 0) and Aizenman-
Harel-Peled, mL ≤ Cλe

−cλL.

Ding-Wirth (2020): For T > 0 and low temp., d = 2, boundary conditions lose their effect at L ≈ eλ
− 4

3
+o(1)

as
λ ↓ 0. Conjecturally, similar behaviour holds for other models, e.g. RFPM:

Conjecture. ∀0 < β ≤ ∞, λ > 0, d = 2 : ∀1 ≤ j ≤ q in RFPM:

E
[
sup
τ1,τ2

∣∣⟨σv⟩τ1ΛL
− ⟨σv⟩τ2ΛL

∣∣] L→∞−−−−→ 0 (1)

(1) is not known, even at β = ∞.

Conjecture. [Unique infinite volume ground state pair in d = 2 spin glass] In d = 2, there is a unique ground state
pair in Z2. A finite-volume manifestation: ∀0 < β ≤ ∞,

E
[
sup
τ1,τ2

∣∣∣〈1σ0σe1=+1

〉τ1
ΛL

−
〈
1σ0σe1=+1

〉τ1
ΛL

∣∣∣] L→∞−−−−→ 0

Only a spatially-averaged version is known (Aizenman-Wehr, Dario-Harel-Peled).
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