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ABSTRACT: A first-principles approach to describe electron
dynamics in open quantum systems driven far from equilibrium
via external time-dependent stimuli is introduced. Within this
approach, the driven Liouville-von Neumann methodology is used
to impose open boundary conditions on finite model systems whose
dynamics is described using time-dependent density functional
theory. As a proof of concept, the developed methodology is applied
to simple spin-compensated model systems, including a hydrogen
chain and a graphitic molecular junction. Good agreement between
steady-state total currents obtained via direct propagation and those
obtained from the self-consistent solution of the corresponding
Sylvester equation indicates the validity of the implementation. The
capability of the new computational approach to analyze, from first
principles, non-equilibrium dynamics of open quantum systems in terms of temporally and spatially resolved current densities is
demonstrated. Future extensions of the approach toward the description of dynamical magnetization and decoherence effects are
briefly discussed.

1. INTRODUCTION
The need to realize miniaturized electronic devices with
optimal efficiency has led to the extensive study of electronic
transport in nanoscale constrictions over the past decades.
Nowadays, various aspects of steady-state conductance are
routinely explored,1−5 including current switching6−10 and
rectification,11−16 thermopower,6−9,11−23 Kondo physics,24

interference effects,25−29 as well as the role of lead-molecule
coupling8,30−32 and chemical composition.33 Despite the many
advancements made in the field, the study of time-dependent
phenomena in molecular junctions still poses scientific
challenges with potentially significant technological merits,
ranging from high-speed and quantum computing to opto-
electronic devices operating at the nanoscale.

To model electron dynamics in molecular junctions,
theoretical methods have been developed,34,35 which can be
broadly divided into two categories: (i) methods that use
model Hamiltonians (usually formulated in energy space)
treating general transport phenomena while circumventing
detailed descriptions of specific junctions,36−44 and (ii)
methods that explicitly take into account the chemical
composition and structure of the system, thus allowing for a
direct comparison with experimental findings.45−57 The latter
are often highly computationally demanding and thus limited
to treating relatively small systems.

Recently, the driven Liouville-von Neumann (DLvN)
approach has been introduced as an efficient scheme for
simulating time-dependent electronic transport in fully atom-
istic junction models.37,58−79 For a recent perspective article,
see ref 35. Within the DLvN methodology, a finite atomistic
model system is coupled to implicit external Fermionic
reservoirs by imposing appropriate nonequilibrium boundary
conditions in energy space, thus harnessing the advantages of
both phenomenological and explicit treatments. The DLvN
method can be used with any single-particle description of the
system, such as tight-binding59,60,65,66 (TB) and extended
Hückel63,67 (EH) Hamiltonians. For such simplistic electronic
structure treatments, the approach was shown to provide good
agreement with both short-term discharge dynamics,59,63 non-
equilibrium Green’s function dynamical simulations,61 and
steady-state calculations.59,62−64 However, simulations of
electron dynamics in realistic molecular junctions often require
a more accurate description of the underlying electronic
structure. To this end, time-dependent density functional
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theory (TDDFT)80 offers a tractable and reliable framework
for describing the electronic response of the fully interacting
system to varying external stimuli, in terms of a fictitious
single-particle system.35,81 In this work, we present an
implementation of the DLvN approach within the framework
of TDDFT and demonstrate its performance for two systems:
a hydrogen chain “toy” model and a graphene nano-ribbon
(GNR)-based molecular junction.

2. METHODOLOGY
2.1. Driven Liouville-von Neumann Formalism. The

DLvN formalism relies on a unitary transformation from a
finite real-space representation of the junction model to its
spectral state representation,59,60,62,63,65−67 where the states of
the left and right lead sections couple to those of an extended
molecule. This allows one to apply non-equilibrium boundary
conditions to absorb outgoing electrons and inject incoming
electrons with an appropriate thermal distribution at the far
edges of the finite model system. Notably, the DLvN equation
of motion (see below) ensures positive semi-definiteness of the
density matrix and prevents violation of Pauli’s exclusion
principle.62

The general DLvN scheme can be divided into four steps:
(i) Spatial partitioning: the molecular junction is represented

by a fully atomistic finite model system that is formally
partitioned into three sections: the left lead (L), the extended
molecule (EM), and the right lead (R, see illustration in Figure
1). The EM includes the active molecule and its adjacent lead

subsections that serve to buffer the molecule from the lead
regions, where boundary conditions are applied. In a non-
orthogonal, atom-centered basis-set representation of the
Kohn−Sham (KS) molecular orbitals, the partitioned KS
Hamiltonian and overlap matrices (HKS and S, respectively)
can then be written in the following block form

i

k

jjjjjjjjjjjj

y

{

zzzzzzzzzzzz
H

H V V

V H V

V V H
KS

L L,EM L,R

EM,L EM EM,R

R,L R,EM R

=

and

i

k

jjjjjjjjjjjjj

y

{

zzzzzzzzzzzzz
S

S S S

S S S

S S S

L L,EM L,R

EM,L EM EM,R

R,L R,EM R

=

(1)

For simplicity, in what follows we assume that the lead
sections are spatially well separated such that the VL,R and SL,R
blocks (and their conjugate counterparts) are negligible and
can be safely replaced by zero matrix blocks of appropriate
dimensions.
(ii) Block orthogonalization: when a non-orthogonal basis-set

representation is used, one must ensure that the boundary
conditions applied at the far edges of the systems do not
directly affect the dynamics of the extended molecule region.63

To this end, the block orthogonalization procedure of Kwok et
al.82 is adopted to transform the localized basis functions of the
EM section into new EM basis functions that are mutually
orthogonal to those of the finite L/R lead models. This block
orthogonalization procedure involves a non-unitary trans-
formation matrix of the form:82

i

k

jjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzz
U

I S S

I

S S I

U

I S S

I

S S I

0

0 0

0

0

0 0

0

;b

L L
1

L,EM

EM

R
1

R,EM R

b
1

L L
1

L,EM

EM

R
1

R,EM R

=

(2)

where 0 and I are null and unit matrices of the relevant
dimensions, respectively. Following this transformation, the
overlap matrix becomes block diagonal:
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1
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(3)

and the KS Hamiltonian matrix retains its block form (see
Supporting Information Section 1):

i
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(4)

whose transformed blocks become:
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and

H H S S V V S S

V S S S S V

S S H S S S S H S S

EM EM EM,L L
1

L,EM EM,L L
1

L,EM

EM,R R
1

R,EM EM,R R
1

R,EM

EM,L L
1

L L
1

L,EM EM,R R
1

R R
1

R,EM

=

+ +
(6)

Figure 1. Real-space formal partitioning of a molecular junction
model composed of (a) a hydrogen chain and (b) two finite graphene
nanoribbons bridged by a benzene molecule, into left (L) and right
(R) lead sections and an extended molecule (EM) region.
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Since the transformation leaves the diagonal lead blocks, SL,
SR, HL, and HR unaffected, the procedure for applying
boundary conditions is not affected by this step, which can
be skipped if an orthogonal basis-set is used.

(iii) Site-to-state transformation: To allow the application of
open boundary conditions, a basis transformation is performed
on the block-orthogonal matrices, shifting them from the real-
space representation to the basis of the eigenstates of the
diagonal blocks of the KS Hamiltonian corresponding to the L,
EM, and R sections. This site-to-state transformation is
represented by the unitary matrix:
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y

{

zzzzzzzzzzz
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R
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R

= =†

†

†

†

(7)

where Ui=L,EM,R are the unitary matrix blocks that transform the
generalized eigenvalue equations:

H Sc ci
i i

i
i= (8)

to their diagonal representation, where εi and ci are the
generalized eigenvalues and eigenvectors matrices of each
block, respectively. Within this representation, H U H Ui i i i= † is
a diagonal matrix containing the eigenvalues of Hi, and
S U S U Ii i i i i= =† . With this, the full overlap matrix becomes the
identity:

S I= (9)

and the KS Hamiltonian adopts the following form:

i

k

jjjjjjjjjjjjjjjj

y
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zzzzzzzzzzzzzzzz
H U H U
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V H V

V H

0

0

KS KS

L L,EM

EM,L EM EM,R

R,EM R

= =†

(10)

where the off-diagonal Vi j, blocks represent couplings between
the eigenstates of sections i and j, and the lead−lead couplings
remain zero. Following the site-to-state transformation, the
atomistic representation of the junction is replaced by a state
representation, where the single-particle states of the EM
section are coupled to the corresponding lead states (see
Figure 2).

(iv) Application of the open boundary conditions: The final
step in the DLvN scheme is enforcing the boundary conditions
on the lead sections using the following equation of motion
(given in atomic units (au), see Supporting Information
Section 1 for a detailed derivation):59,60,62−67

i
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jjjjjjjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzzzzzzz

Hi 0,

1
2

1
2

1
2

1
2
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L L
0

L,EM LR

EM,L EM,R

RL R,EM R R
0

= [ ]

(11)

Here, U U U U( ) ( )1
b

1
b

1 1= † † is the single-particle
density matrix of the entire system, given in the state
representation (see eqs S23 and S28 in the Supporting
Information), and = † is its site representation, where

is the column matrix of the KS orbitals expansion
coefficients in the atom-centered basis-set representation and

is a diagonal matrix holding the occupation numbers of the
different single-particle states on its diagonal (see eqs S6 and
S9 of the Supporting Information). The first term of eq 11
represents the unitary dynamics according to the standard
Liouville-von Neumann equation of motion, where [.,.]
denotes the commutator and i 1= . The second term
drives the lead sections toward the equilibrium state of the
corresponding reservoirs at a driving rate Γ, by coupling them
to implicit baths. Here, the upper and lower diagonal blocks,

( )L L
0

and ( R R
0

), drive the lead state occupations

toward diagonal target density matrices, ( )nL/R
0 L/R =

1 e k T( )/( ) 1n
L/R

L/R B L/R[ + ] , which represent Fermi−Dirac
occupation distributions of the manifolds of lead levels of
energies εnL/R, where kB is the Boltzmann constant. These target
density matrices encode the electronic temperatures (TL/R)
and chemical potentials (μL/R) of the equilibrium reservoirs to
which the driven leads are implicitly coupled. With this, a bias
voltage, V, can be effectively applied by setting the target
chemical potentials of the leads to μL/R = εF ± 0.5 × |e| × V,
where εF is the Fermi level of the unbiased full model system
and e is the electron charge (e = −1 in au). The off-diagonal
blocks serve to dampen the coherences of electrons that exit
the extended molecule region into the driven lead sections.
This scheme allows for the use of reservoirs that differ with
respect to their material properties, chemical potentials, and
electronic temperatures. In such cases, a non-equilibrium state
is obtained, inducing a time-dependent current flow through
the system.

The lead driving rate, Γ, appearing in eq 11, represents the
inverse timescale at which thermal relaxation takes place in the
leads due to their coupling to the implicit baths. While the
value of Γ can be extracted from the self-energy of the semi-
infinite implicit bath models,64 it is usually sufficient to
approximate it as the typical lead level spacing in the vicinity of
the Fermi energy of the lead models, Γ ∼ Δεi=L/R. With this
choice, the discrete density of states of the finite lead model is
sufficiently broadened to represent that of the corresponding
semi-infinite lead. In practice, the simulated electron dynamics
weakly depends on the value of the driving rate over a wide
parameter range (see Supporting Information Section
2).70−72,83−86

2.2. DLvN Scheme within TDDFT. The formal
foundation for using the DLvN approach within the framework
of TDDFT is given by the extension of TDDFT to include
dissipative systems evolving under a master equation,
presented in ref 87. In practice, unlike the simplified TB and

Figure 2. Schematic illustration of the state representation, in which
extended molecule single-particle states (EM, red lines) couple to left
(L) and right (R) lead states (blue lines).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00311
J. Chem. Theory Comput. 2023, 19, 7496−7504

7498

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00311/suppl_file/ct3c00311_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00311/suppl_file/ct3c00311_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00311/suppl_file/ct3c00311_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00311/suppl_file/ct3c00311_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00311/suppl_file/ct3c00311_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00311?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00311?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00311?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00311?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00311?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


EH electronic structure approximations previously used in
conjunction with the DLvN equation of motion (EOM),
within a TDDFT framework eq 11 becomes non-linear as the
KS Hamiltonian depends explicitly on the electron density and
thus implicitly on time. Moreover, the KS Hamiltonian is
evaluated from the real-space single-particle density matrix,
whereas the boundary conditions are applied in the state
representation. Therefore, at each propagation time-step one
needs to go back and forth between the site and the state
representations. As discussed above, this involves the block-
orthogonalization procedure of eq 2 and the site-to-state
transformation of eq 7. The former remains constant in time as
it depends only on the stationary atomic orbital overlaps (as
long as the nuclei positions are kept fixed), whereas the latter
depends on the KS Hamiltonian and thus has to be updated at
every time-step to account for the varying eigenfunctions.
Further details on this issue are provided in Section 1 of the
Supporting Information.

The first TDDFT implementation of the DLvN EOM
circumvented repeated site-to-state transformations by using as
reference the polarized state of the finite model junction under
an axial electric field.75,77 This resulted in considerable gain in
computational efficiency at the expense of a less accurate
representation of the equilibrium state of the Fermionic
reservoirs, loss of a unique definition of the bias voltage and
electronic temperatures, and possible violations of Pauli’s
exclusion principle.78 Furthermore, approaches based on field-
induced polarized boundary conditions are limited in practice
to linear two-lead setups, where a uniform field is applied along
the main axis of the junction model.

Therefore, we opt to pursue a full-fledged implementation of
the DLvN scheme, where at each time-step the following
workflow is followed:

(a) Obtain the KS Hamiltonian matrix representation, HKS,
in a general non-orthogonal atomic orbital basis.

(b) Transform to the state representation to obtain HKS.

(c) Build the target density matrices L
0

and R
0

and
construct the driving term.

(d) Transform the driving term to the site representation.
(e) Propagate the single-particle density matrix, .
Note that to avoid the implicit time-dependence of the Ũ

transformation (via H[ ]), the propagation of the density
matrix in item (e) is performed in real-space (see Supporting
Information Section 1 for further details.). To this end, we use
an implicit Euler propagation scheme (see Supporting
Information Section 3), where

t t t t f t t t t( d ) ( ) d ( d , ( d ))+ = + · + + (12)

and f t t t t( d , ( d ))+ + represents the right-hand-side of eq
11 in the site representation. To solve eq 12, an iterative fixed-
point scheme is implemented at each time step, where
f t t t t( d , ( d ))+ + at a given iteration is evaluated using

t t( d )+ of the previous iteration, keeping t( ) on the right-
hand-side of eq 12 fixed. The fixed-point iterations proceed
until the convergence criterion is met, such that

t t t t N( d ) ( d ) / 10i i1 Bas
4| + + | <+ , where i is the

fixed-point iteration index, NBas is the dimension of the
matrices (the total number of basis functions), and |···|
represents the Euclidean norm. Upon convergence, the time
propagation continues with the same time step, dt, unless

convergence is achieved in the very first fixed-point iteration, in
which case the propagation proceeds with a doubled time-step.
In case the iterations fail to converge within 5 cycles, dt is
halved and the dynamics is rolled-back to the previous time-
step. The computational cost of an individual propagation step
in our test cases is dominated by the construction of the KS
matrix. However, as the system size grows, linear-scaling
techniques can be employed for this task, such that the most
time-consuming operation is expected to be the construction
of the site-to-state transformation matrices. This involves the
O(N3) diagonalization of matrices of the size of the lead
sections. More information can be found in Section 4 of the
Supporting Information.

An important measurable that this time propagation scheme
provides is the temporal dependence of the current flowing
through the active molecule, which resides in the EM section.
To evaluate this quantity, one may invoke the equation of
motion (eq 11) to isolate the dynamics of the EM single-
particle density matrix block. Care, however, should be taken
regarding which representation is to be used for this purpose.
In the site representation, the overlap matrix mixes
contributions of the L, R, and EM blocks, thus preventing a
straight-forward separation of their contributions to the
current. In the state representation, within a TDDFT
treatment, an equation of motion for is lacking. Note that

eq 11 describes the dynamics of and not of which, in
turn, involves the unknown explicit dynamics of the trans-
formation matrix U (see Supporting Information Section 1 for
further details). These issues are absent in the block diagonal
representation, which we use in order to perform the particle
current calculation (see Supporting Information Sections 5 and
6):

V VJ t tr t t t t( )
1

( ) ( ) ( ) ( )EM EM,L L,EM EM,R R,EM= { [ ]}

(13)

where tr[.] is the trace operation, and .{ } represents the
imaginary part.

For steady-state current evaluations, the right-hand-side of

eq 11 is nullified, 0= , resulting in a Sylvester-type equation
of the form:37,65,67
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ÅÅÅÅÅÅÅÅ
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ÑÑÑÑÑÑÑÑ
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ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑH H

i i
L R L R

2
( )

2
( )KS

sts sts
KS

0

+ + +

= (14)

Here,
sts

is the steady-state density matrix in the state
representation,

i

k

jjjjjjjjj

y

{

zzzzzzzzz

i

k

jjjjjjjjj

y

{

zzzzzzzzz
L

I
R

I

0 0

0 0 0
0 0 0

0 0 0
0 0 0
0 0

and
L

R

= =
(15)

are the projection matrices onto the left and right lead states,
respectively, and

i

k

jjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzz

0 0

0 0 0

0 0

0
L
0

R
0

=

(16)
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Equation 14 is solved iteratively using the following procedure:

Given the density matrix at iteration i, i
sts

, the KS
Hamiltonian is constructed, and the Sylvester equation is

solved to give i 1
sts
+ . A damping scheme, admixing these two

density matrices with weights amix and (1 − amix), respectively,
is then used to construct the next step KS Hamiltonian matrix,

HKS. At each iteration step, i
sts

is transformed to the block
diagonal basis, i

sts, and the particle current is calculated using
eq 13. The process is repeated until the steady-state current is
converged, such that the RMS of the norm of the density
matrix variation over N = 20 consecutive time steps is smaller
than a preset value (chosen as 10−10 au for the hydrogen chain
calculations).

The entire simulation scheme is implemented in Python,88

which makes recurrent calls at each time-step to the Gaussian
suite of programs89 to evaluate the KS Hamiltonian (and
overlap) matrix elements in the atomic orbital basis. We note
that the current proof-of-concept implementation employs
spin-compensated electron densities.

3. RESULTS
The developed methodology is first benchmarked using a
simple linear hydrogen chain molecular junction model system.
The real-space model consists of two 180 hydrogen atom leads,
bridged by a 20-atom EM section, out of which the central two
atoms serve as the scattering molecular region. A uniform
inter-atomic separation of 0.988 Å is used throughout the
chain except for the distance between the two central atoms
and the adjacent extended molecule sections, which is
purposely stretched to 1.4 Å. This serves to weaken the
coupling between the central hydrogen molecule and the
hydrogen chain leads. The Perdew−Burke−Ernzerhof
(PBE)90,91 generalized gradient exchange−correlation density
functional approximation is used along with the atomic
centered Gaussian type STO-3G basis-set92 for the two lead
models, and the double-ζ 6-31G** basis-set93−95 for the
extended molecule section (see Supporting Information
Section 7 for further details). The driving rate is chosen as
ℏΓ = 0.61 eV to yield a reasonably smooth density of states
(DOS) at the lead sections (see Supporting Information
Section 2).

Figure 3 presents the time dependent total current flowing
through the EM section, calculated using eq 13 for several bias
voltages. To improve numerical stability, the simulation starts
from the ground state density of the system and the bias
voltage is turned on gradually using a hyperbolic tangent
switching function (see Supporting Information Section 8).
We confirm that during the propagation, all state occupations
remain bound to [0:1], namely the positive semi-definiteness
condition and Pauli’s exclusion principle are both obeyed (see
inset of Figure 3). Steady-state values (represented by crosses)
are obtained by solving eq 14, using the Sylvester equation
solver implemented in the SciPy96 package, starting from a
density matrix (and its corresponding KS Hamiltonian) from
the plateau region of the dynamic calculation. The excellent
correspondence between the steady-state currents obtained
using the dynamical and the Sylvester calculations indicates
that the DLvN EOM indeed reached a stable stationary state.

Going beyond the total current flowing through the system,
our approach also allows to analyze the spatially resolved
current density within the chain:

j A At e
m

tr tr r r( , )
2

( ) ( ( ) ( ))
e

T= [ · ]
(17)

where A(r) is a matrix defined in the real atomic orbital basis
as A r r r( ) ( ) ( )

i
= (see Supporting Information

Section 5). Figure 4 illustrates the spatially resolved steady-
state current density for the hydrogen chain junction, whose
total current is shown in Figure 3, under a bias voltage of 0.3 V
obtained using eq 17. The axial (z) component of the steady-
state current density is mostly uniform along the EM section
with some expected variations near the nuclei positions (see
Section 9 of the Supporting Information for a plot of the
current density integrated over the xy-plane along the EM
section). In the streamline between the weakly coupled
molecule and the lead sections of the EM region (vertical
black dashed lines) the current density reduces, indicating that
it spreads over a larger cross section. The driven lead sections
exhibit a less uniform current density map. This can be
attributed to the fact that the uniform driving rate, Γ, applied
in the state representation of the junction translates to a
spatially varying driving rate in real-space, with a larger value
near the lead/EM interface region, where electrons are
absorbed or injected. As a consequence, near the interface
region of the sink lead, the direction of the current is reversed
(see streamlines on the right side of Figure 4). This artificial
behavior in the (unphysical) driven lead regions, however, has
minor influence on the EM currents and negligible effect on
the current flowing through the molecule itself. Far away from
the interface, the current in the leads decays indicating that the
lead approaches the equilibrium state of the implicit bath to
which it is coupled.

Following the benchmark hydrogen chain calculations, we
now turn to discuss a more realistic model junction consisting
of two graphene nanoislands bridged by a benzene molecule
(see Figure 1b, junction model coordinates can be found in

Figure 3. Time-dependent current calculated at various bias voltages
for a 380 atoms hydrogen chain with NM = 2, NEM = 20, and NL/R =
180. Bias voltages of 0.1 (blue), 0.2 (orange), 0.3 (yellow), and 0.4
(green) V are considered with reservoir electronic temperatures of TL
= TR = 315.7 K and a driving rate of ℏΓ = 0.61 eV. The colored ×
marks designate the corresponding Sylvester steady-state currents
calculated via eq 14 with an admixture weight of amix = 0.99. Inset: left
lead (purple), right lead (gray), and extended molecule (black)
steady-state occupations obtained at t = 25 fs under a bias voltage of
0.2 V.
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Supporting Information Section 10). The geometry of the
system was optimized via the LAMMPS97 software using the
reactive empirical bond-order potential (REBO).98,99 The
energy minimization was performed using the Fast Inertial
Relaxation Engine (FIRE) algorithm100 with a force tolerance
of 10−6 eV/Å. The vertical coordinates of all carbon atoms
were fixed to keep the structure planar, so as to mimic a
substrate supported junction model. The EM section is chosen
to include the benzene unit and its two adjacent CH2 groups.
The total current was calculated using eq 13 with the PBE90,91

functional and the STO-3G and 6-31G** atomic centered
Gaussian type basis-sets for the lead and EM sections,
respectively.92 A driving rate of ℏΓ = 1.09 eV was used to
yield a smooth lead section DOS (see Supporting Information
Section 2). Figure 5 shows the current dynamics flowing

through the EM section for several bias voltages calculated
using the DLvN EOM, as well as the corresponding steady-
state currents obtained from the solution of the Sylvester eq
14. The good agreement between the DLvN and the Sylvester
steady-state currents indicates that the DLvN EOM has
reached a true stationary state of the system.

4. CONCLUSIONS
The simple hydrogen chain and graphitic junction examples
presented above demonstrate the potential of the first-
principles DLvN methodology introduced herein for describ-
ing electron dynamics and thermodynamics in open quantum
systems driven far from equilibrium. Using the DLvN approach
to impose open boundary conditions on finite systems
described by TDDFT opens the door for studying key
dynamical phenomena related to the fields of molecular
electronics and spintronics, thermodynamics, and quantum
technology. The continuous improvement of the underlying
TDDFT and TD-current DFT approximations ensures the
increased accuracy and reliability of predictions made using the
developed methodology. Future generalizations toward spin-
uncompensated and non-collinear descriptions, as well as
coupled electron-nuclear dynamics,68,101−108 will extend the
applicability of the DLvN approach to describe magnetization
dynamics and decoherence under external time-dependent
stimuli. This will pave the way for studying key dynamical
phenomena, such as high-speed current switching67 and
routing109 in molecular interferometers, transient dynamics,110

transport under time dependent bias voltages, coherent control
using shaped pulses to obtain programed response, and
transport-driven chemical reactivity.111
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