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1. The driven Liouville von Neumann equation of motion in the realm of
time-dependent density functional theory

In this section, we provide a detailed formulation of the driven Liouville von Neumann (DLvN) equation
of motion (EOM) within the framework of time-dependent density functional theory in an atom-centered
non-orthogonal basis-set representation. We start from the standard time-dependent Kohn-Sham (KS)
equation written for the individual KS orbitals |¢,,) as follows (atomic units are used throughout):

|¢n> = —iHys|pn). (S1)
Here, Hs is the KS Hamiltonian operator and i = +/—1. Next, we span the KS orbitals within a localized
basis-set representation {|x,,)}:

|pn) = Ty it xu)s (S2)
where c;; is the u'" expansion coefficient of KS orbital |¢,). Plugging Eq. (S2) into Eq. (S1) and

assuming that the basis orbitals are constant in time we obtain:

Zu éﬁl%t) = —iHks 2y C[tll)(u)- (S3)
Multiplying Eq. (S3) by (x| we obtain:
2u é;?(XV|X#> =iy Cﬁ<XV|}[KS|Xu>- (S4)

Defining the overlap and KS Hamiltonian matrix elements as SVME<)(V|)(M) and HKSWE

(xv|#xks|x,), respectively, Eq. (S4) becomes:

YuSvull = —iZ“HKSWc;Z. (S5)
Since this equation is valid for all values of the indices v and n it can be written in matrix form as:
SC = —iHsC. (S6)
Multiplying by the inverse of the overlap matrix, $~1, on the left we obtain:
C = —iS 'HysC. (S7)

Accordingly, one can write the EOM for the complex transpose coefficient matrix as follows:

Ct = [—is 1 HsClT = iCTHT (ST = i€t H s (ST) ! = iCTH S, (S8)
where we used the relation (S DT = (8Nt U=I"= (S H = (S HIst = (sHt =(sHD
and the fact that the overlap and Kohn-Sham matrices are Hermitian, such that ST = S and # 5 = }t;r(s.
The latter relation stems from the fact that the density matrix, upon which # ¢ depends, is Hermitian
by construction (see Eq. (S9) below) and so are all the operators within # ks (kinetic energy, Hartree,

exchange, correlation, and external potential).



We can now define the single-particle density matrix in the localized basis-set representation as:

P = enct, (S9)
where #n is a diagonal matrix holding the occupation numbers of the different single-particle states on
its diagonal. The time evolution of the density matrix is obtained by its time derivative:

P = €enct + enet + enct. (S10)

Here, the first two terms on the right-hand-side correspond to pure orbital dynamics, whereas the third
term represents the dynamics of the orbital occupations. Inserting Egs. (S7) and (S8) into Eq. (S10) we
obtain:

P=—iS'HCnCt + iCnC H ;S + CACT = —iST H P + iPH S + Cact.  (S11)
In microcanonical and canonical time-domain time-dependent density functional theory simulations, the
overall number of particles in the system is conserved. In these cases, a customary ansatz is to propagate
only the occupied subspace thus setting 72 = 0, assuming that the occupied KS orbital populations do
not vary with time and that the virtual orbitals remain unpopulated. The entire dynamics is thus
overloaded on the occupied molecular orbital manifold via the corresponding expansion coefficients.
This resembles choosing the Schrodinger representation (propagating the wave functions) instead of its
Heisenberg counterpart (propagating the number operator). For open systems, however, one can no
longer assume that 72 = 0 and an explicit equation of motion should be provided to describe its
dynamics. Within the DLvN approach the following EOM governs this dynamics:

CHCt = —iSTVH 1y P + iPH (S = —iS T H g P — iPH 1S = —i[ST1H 1y P + PH S, (S12)
Here, H 4y = —J{ZH is an anti-Hermitian matrix that, in principle, can assume the most general form of
H oy = HLE — iH, where F75¢ is a real anti-symmetric matrix such that (H%5¢)" = —#7¢, and
FT is a real symmetric matrix obeying (#£5% " = 36im . To rationalize this choice, we now plug Eq.
(S12) in Eq. (S11) to obtain:

P=—iS\H P+ iPH S —iS HyP — iPH S = —iS W (Hys + Hu)P +
iP(Hys— Ha)S L= —iS Y (FHys + Hy)P + iP(Hys + Hap)TS™ (S13)
This equation assumes the form of a Liouville-von Neumann equation for a microcanonical (or
canonical) system but with a general Hamiltonian matrix, # x5 + H 45, that is neither Hermitian nor
anti-Hermitian. The latter can be viewed as a dressed Hamiltonian, where we identify # 4, as a self-
energy like term representing the effects of the coupling of the system to an implicit bath. Note, however,
that 7€,y is energy independent and hence should be viewed as an approximation of the self-energy
within the wide band limit.



To obtain the explicit expression of H ,; within the DLVN EOM we divide the system into three sections
comprising of the left lead, the (extended-)molecule, and the right lead. #€ 4 then serves to mimic the
effect of coupling of the lead sections to implicit Fermionic baths, characterized by equilibrium Fermi-
Dirac distributions with given chemical potentials and electronic temperatures. To this end, we first
neglect 7%, which is equivalent to neglecting the real-part of the implicit baths' self-energies that
induce lead level shifts due to the lead/implicit-bath couplings. This approximation becomes valid for
sufficiently large lead models, with a relatively uniform and dense manifold of states, such that the level
shifts become small with respect to the inter-level spacing. The remaining imaginary part, # 7%, marked
for brevity as T, introduces a finite lifetime (broadening) to the various lead levels due to their coupling
to the implicit single-particle states of the reservoir. Hence, within the DLVN approach, the dressed KS
Hamiltonian acquires the form:
Hys > Hys — il (S14)

In this form, T can be identified as an imaginary absorbing potential added to the lead sections of the
original KS system serving to absorb outgoing electrons near the system boundaries (thus preventing
their back-reflection into the system). Naturally, in order to avoid complete electronic depletion of the
system, complementary emitting potentials should also be introduced in order to inject thermalized
electrons into the system, as shown below.
Using the dressed Hamiltonian form of Eq. (S14) in Eq. (S13) we obtain:
P=—iS W (Hys — iDP +iPFHys — DS = —iST H P + iPH S —STP —
Prisl=—iS1H P+ iPHS 1 —S TP —-Pris-1, (S15)
We can now multiply Eq. (S15) by § from left and from right to obtain:

SPS = —iH s PS + iSPH s — TPS — SPTT, (S16)
Next, we introduce a block diagonalization transformation, U, into Eq. (S16) to nullify the off-diagonal

overlap matrix blocks as follows:!

(W) i) stv,u; 12 (Uh) " uh] stu, U] =

= —i[(u}) " vl ] #eslupus 1P [(UF) U] slUs U +

+i[(UD) " Ub| s, Uz P (V) U} 3kslU, U5 - TP | (U)) T UY | s1U, U5 -

[(w}) v} s, vy, (517)



where

I, —S;'Sipm O I, S;'Siem O
0 —Sz'Spem Ir 0 Sx'Spem Ir
Defining
S=ulsu
{~ vl (S19)
Eq. (S17) can be rewritten as follows:
1 .. 1 ) 1 1
(ul) "Suytp(Ul) Suyt=-i(Ul) FsUptP(UL) SUL+
i(U) 3UtP(Ul)  F UG - TP(UD) SUpt — (Ul) SuUptert, (S20)
Next, we multiply Eq. (S20) by UZ on the left and by U, on the right, to obtain:
~ . -1~
Su,'P(Ul) 5=
= i U5 P(UL) '3 + i8U5P(UL) Fys — UITP(UD) S - SUsiPrtUY, (S21)
Introducing U,U;" and (UZ)_lUZ in the last two terms, respectively, yields:
~ . -1~ — -1~ ~ -1 — -1~
5U; P (UL) '8 = —iTFysUp P(UD) 8 + iU P(UL) Fys — UITUL U P(US) 'S -
~ -1
su,'p(Ul) ulrtu, (S22)
Next, we define:
~ -1
P =U;'P(U))
~ . -1
P =U;tP(Ul) - (S23)

r=vulru,
We note that since U, is a fixed transformation (time-independent within the fixed nuclei Born-
Oppenheimer approximation) the relation P = P holds. With these definitions we obtain:
SPS = —iF (s PS + iSPH s — IPS — SPIT, (S24)
where we have used the fact that It = (Uiru,)" = Ul rtu,,.

Next, we introduce the site-to-state transformation:
u, 0 0
U= ( 0 Ugy O ) (S25)
0 0 Ui
such that IziKSi = UZFFIKSL.UL- is diagonal and U}LS‘iUi = I; are unit submatrices of the appropriate

dimensions. With this, Eq. (524) can be rewritten as:
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whH-tutsvu-1PwhH-wtsuu-t =
= (U)W H U PWUNHWUTSUU + i(UDWUTSUU ' P(UT)WUTH ( UU T —
rvv—tpwhH-vtsvu— — (uhHtutsvutPWwHtuttt.
Using the relation UTSU = I we get:
WuhH-ty-1pUhH-tut =
= —i(UD W H U PWUNH W0 +i(UH WU PWUNH WU H S UUL —
rvvpuhH)-wt - whH v tpwhH Uttt
Next, we define:

Hys = UH U

P=UuPWH,

P=U-1PUH?
to obtain:

WD 1PU = —i(UD) T PUL + i(UD BT sU! — FUPU — (U BUTTT,
Multiplying by UT on the left and U on the right we arrive at:
P = TP + iPH s — UTTUP — PUITHU.

Defining:

We finally obtain:

where [t = (UTFU)" = UTFTU. In its simplest form T is written as:

o I, 0 0
fsz=y<0 0 0),

0 0 I

(S26)

(S27)

(S28)

(S29)

(S30)

(S31)

(S32)

(S33)

which represents uniform broadening of all left and right lead levels. Hence, the last two terms in Eq.

(S32) can be written as:

I, o o /I, 0 O
—y(O 0 0)?—@(0 0 0):

0 0 I 0 0 I

I, 0 0
=—y(0 0 0)
0 0 I

~ ~ ~

?L,EM :PLR ?L ?L,EM ?LR

P “PR,EM “PR ?RL “PR,EM :PR

L & N B & - I, 0 O
EM,L Pew P EMR | Y P EM,L Pew P EM,R (0 0 0
RL



P L P LEM P LR P 0 P 2P Prpm 2P
0

=Y - zo 3 -Y jSEM,L 0 iJEM,R =Y §5EM,L 0 i)EM,R =
Pro Prem  Pr P 0 Pp 2P, jSR,EM 2Py
= 1= =
( P, P Pu
1 1%
= —2y Efp EM,L 0 5? EM,R (S34)

“‘%RL %i’)R,EM jz)R
The source term is then obtained by considering electrons that travel in the implicit reservoir toward the
left and right leads with equilibrium distributions 7’2 and 7’2. Upon reaching the reservoir/lead interface
they are adsorbed at a rate of 2y and are injected into the system at the same rate. This can be described
by the following term, which drives the system at the lead sections towards the equilibrium state of leads

that are coupled to the corresponding external implicit reservoirs and decoupled from the extended

molecule section:

I, 0 on/P. O 0 P, 0 0\, 0 0 P 0 o0
y<0 0 0) 0 P2, 0 |ty Poy O (0 0 0>=y 0 0 o0 |+
0

0
0 0 I/\o o 0 py) N0 O Ik 0 0 P;
P 0 0 P 0 0
vilo o ol]=2yl0 o o (S35)
0 0 PY 0 0 %Y

Inserting the expressions of Egs. (S34) and (S35) into Eq. (S32) and defining I' = 2y we obtain:

[

=~ = 1=
P.-P! SPLEM LR
= = = 1=

T=—l[ﬂks;?]—r SPemL 0 EMR |- (S36)

= 1= = =0
?RL E“PR,EM TR_‘?R

N | =
[

Note that within the realm of TDDFT, 55, which is the state representation of 2, is not the time derivative

of 53, namely P + P. This results from the fact that the KS Hamiltonian matrix has implicit time-

dependence via its dependence on the density matrix and hence the U transformation matrix varies with

time as well. Since P = U—tPU)™! (see Eq. (528)), its time derivative, 53 should include the time
derivative of U. Lacking an explicit equation of motion for U, we are thus forced to perform the
propagation step in the site representation. To this end, we use Egs. (S19), (S23), and (S28) within Eq.
(S36) as follows:



vtz P (Ul) T (UhHt =

= 1
L_“PL E L.EM “PLR

[

= —i[UtU} a0, 0,005 P(U]) W - T —.‘PEML 0  ~Puur
ﬁRL ZTREM ?R ﬁg

= —i[UtU} 3,0, UU U P(US) T (U - U P(UL) T (UD UTU U, U |

= 1: =
/ Po-Pl 3Pum P
= |
_F| Z:PEML 0 E?EM,R |:
?RL E:PR,EM Pr—Pr

( Po-P) Pm Pu \
-1 _ ~ —
= —iUtU}HP(U]) (UD) + iU 0, PH UL U —T| S Ppy, 0 2Prur

> (S37)

= 1= = =

:PRL E?R,EM “PR_:P?Q/
Multiplying by U, U on the left and UTUZ on the right we obtain:

B,-F 15 7
L~ 9L E L.EM LR
P = —iU,UUULH P + iPHU,UUTUS —TU,U| 2P 0 P vtul (S38)
= b bJtKs KsYb b b SV EM,L 5V EM,R b

gz)RL %g%R,EM :%R—f)?z
Since, by construction, the transformation U obeys the relation UTSU =1, we may write § =
(UMH~1U~1 = (WU, such that UUT = 1. Similarly, from Eq. (S19) we have § = U} SU,,. We
may therefore write 51 = (U}sU,)” = U;1s~(UL) . Solving for §~1 we obtain §~* = U, U},
Hence, we obtain U, UU'U} = U,$~ U} = §~1 such that:

1=

30
L —PL E‘?L,EM

[
[
o
~

R

P = —iS1H P + iPH S —TU,U utu?. (S39)

N | =

S
N |
he)
o]
<
>e]

EM,L 0
:TJRL %“%R,EM “}’:JR_‘:]%??

This is the DLVN EOM—our working equation—given in the site representation, which we use for the

time propagation.

To further simplify this expression and avoid the full matrix transformations appearing in the driving

term of Eq. (S39) we may separate it into the sink and source terms and treat them separately. Using



Egs. (S18), (S25), and (S34) the sink term can be written as:

= 1= =
P E?L,EM Prr
1~ "
Lsink =UbU E EM,L 0 _:PEM,R UTUb =

= 1: =
\ Pri E?R,EM Pr

I, 0 0 /I, 0 O\
(0 0 0)5)‘D+ff°<o 0 0) vtu} (S40)
0 0 Ig 0 0 I;/]
Using Egs. (S23) and (S28) we now obtain:

1
:EUbU

1 I, 0 0 .
Lsink =5 UpU (0 0 0>U—1U;13D(U;) (whH1

0 0 I

) I, 0 0O
+UuP(Ul) whHt(o o o ||utul =

0 0 I

I, 0 0 . I, 0 0
zgubu<o 0 o)u—1U;1?+§?(U;) (U*)-1<0 0 0>U+Ug (S41)
0 0 I 0 0 I,

I, 0 0 0 0 0
We may now use the relation (O 0 O> =1—-|0 Ig, O] towrite:
0 0 I 0O 0 O

1 0 0 0 1 » 0 0 O
Lsine = 5 UpU 1—(0 0) U‘1U;1?+E?(U;§) whHtlr-{o 1z ol|lUTU} =
0O 0 O 0O 0 O
) 0 0 0 ) o 0 0 O
=P —-UU(0 Ig, O|UU'P—-P(Uf) WH|0 Iz o0|U'U] (S42)
0O 0 O 0O 0 O
Using Eq. (S25) for the transformation matrix U we can write:
0 0 0 u, 0 0\ 0 o0\/U;* 0 0
U(O Iy 0) Ut =<0 Ury 0) 0 Igy 0) 0 Uz 0 |=
0 0 0 0 0 U\ o0 0o/ \o o vy
u, 0 0N O0 O 0 0 0 0 0 O
0 0 Ug/\0 0 O 0 0 0 0O 0 O

Therefore, we have

0o 0 o0 0O 0 0
UbU 0 IEM 0 U_1U;1=Ub 0 IEM 0 Ul;l:

0O 0 O 0O 0 O



0 IEM 0 0 IEM 0 0 IEM 0 =

I, —S;'Siem O <0 0 0) I, S;'S,em O
0 —Sg'Sgem Ix/ N0 0 0/\0 Sg'Spey I

I, —S;'Siem O <0 0 0) 0 —S;'Syem O
0 —SI_QlSR,EM I, 0 0 0 0 —SElsR,EM 0

where we have used Eq. (518) for the expressions of U, and U;*. Similarly,

AN t
0o 0 o0 / (v1) o 0 \ 0 0o o /Uy 0 0
(UT)—1<0 Ipw o>u+= o (U 0 (0 Ieu 0) o Ul o
0 0 0 . o w0 0 YN0 o u

-1
( ut 0 0 \ 0 0 0 0 0 0 0 0 0
— -1
- 0 UIE‘M 1 0 <0 UIJE*M 0>: 0 (UI"M) UE‘M 0 :<O Ten 0)' (S45)
- 0 0 O
\ 0 o Ul / 00 00 Ao 0 0

and therefore:

1 0 0 0
(Uh) WhHlo Iy o|Utuf=
0 0 0
I; 0 0 O 0 0 I; 0 0
= SEM,Lszl Iy SEM,RSI_?1 (0 Iy 0) —SEM,L521 Igy _SEM,RSEI =
0 0 I 0 0 0 0 0 Ip

I 0 0 0 0 0
= SemiSz' Iem  SemrSR' (‘SEM,LSZ1 Iy _SEM,RSEI>:

0 0 I 0 0 0
0 0 0
(_SEM,Lszl Iy _SEM,R51_21>- (S46)
0 0 0
Inserting Eqgs. (S44) and (S46) in Eq. (S42) yields:
1 0 —-S;'S.em O P, Prem  Pir
Lging =P — E 0 Igy 0 P EM,L Pey P EM,R
0 —SElsR,EM 0 Pr. Prem  Pr
1 P Prem  Pir 0 0 0
—=| Pemr  Pem Pempr <_SEM,LS[_,1 Iy _SEM,RS}_21> =
Pr.  Prem Pr 0 0 0

10



-1 -1 -1
_SL SL,EM?EM,L _SL SL,EM*‘PEM _SL SL,EM“])EM,R

=P —% PemL Pem Pemr -
_SI_leR,EM:PEM,L _SﬁlsR,EM?EM _S}_?ISR,EM?EM,R
—PLemSem St P LEmM —P L,EMSEM,Rsi_?l
1 _ _
P _?EMSEM,LSLl Pem _:PEMSEM,RSRl (S47)

-1 -1
_:PR,EMSEM,LSL ?R,EM _:PR,EMSEM,RSR
1 <_SLISL,EMPEM,L - ?L,EMSEM,LSZ_,l PrLem — SzlsL,EM?EM _Sl_,lsL,EM?EM,R - ?L,EMSEM,RS}_?1>
[/ > J——

?EM,L _:PEMSEM,LSZ_,I 2“-PEM J‘)EM,R - J‘)EMSEM,RS};l

-1 -1 -1 -1 -1
_SR SR,EM:PEM,L - “PR,EMSEM,LSL :PR,EM - SR SR,EM:PEM _SR SR,EM“PEM,R - “PR,EMSEM,RSR

or equivalently:

Lgink =
P + S SLEMPEML+PLEMSEMLSL.  PLEMASL'SLEMPEM P o4 S.'SLEMPEMRTPLEMSEMRSR'
L LR
2 2 2
Pemi+PemSEM LSLY Pemr+PEMSEM RSRY
EM,L EéVI EM,LSL, 0 EM,R E2M EM,RSR . (S48)
P SR'SREMPEM L+ PREMSEMLSL PRrEM+SR'SREMPEM P SR'SREMPEMR+PREMSEMRSR"
RL T 2 2 RT 2

Considering next the source term using Eq. (S25) we have:

P 0 0
Lsource =UpU|l 0 0 P UTUZ =
0 0 %%
U, 0 0\/P o o\/Ul O O
=Ub(0 Ugy 0) o0 o oflo ul, o |Ul=
0 0 U/\o o P/\o o U
u, 0 0\/PUI o o u,Put o 0
=U, ( 0 Ug O ) o o o |Ul=u, 0 0 0 Ul (S49)
0 0 U 0 o0 PUL 0 0 UxPUL

Using Egs. (S18) and (S49) we may now write:

I, —S;'S,em O\ (U, PUT 0 0 I, 0 0
Liource =1 0 Iy 0 0 0 0 —Sem1Stt Iy —SemgrSk' | =
0 —Sx'Srem Ir 0 0 UPWUL 0 0 I
I, —Si'Siem O\ (U, PUT o 0 u,Put o 0
=10 Ipy 0 0 0 0 = 0 0 0 : (S50)
0 —Sz'Spem Ir 0 0 U PUL 0 0 UgPUL

Since 532/,; are diagonal matrices, we obtain the following simplified expression for their transformed

matrix elements:

11



(UL/R‘%Q/RUI/R)U = Z Z(UL/R)ik (f’(L)/R)kl (UI/R)U = Z Z(UL/R)ikf(gf/R'HL/R)Skl(UI/R)U
kL koL

= Zk(UL/R)ik(UI/R)kjf(gllf/R'llL/R) = Zk(UL/R)ik(UL/R);kf(gllf/R'/'LL/R)' (S51)

where f(e,u) = [e(e‘”)/kBT + 1]_1 is the Fermi Dirac distribution, kg is Boltmann's constant, T is the

electronic temperature, sf/R is the k" eigenvalue of the L/R lead, and tr is the corresponding

chemical potential. We note that in the present implementation we resort to Eq. (S39) for the propagation

without considering the above simplifications. In practice, the propagation is performed as follows:

1.
2.

Construct a junction model with predefined lead and extended molecule sections.

Perform a ground state calculation to obtain the overlap matrix, §, and the initial # s and P
matrices in the site representation.

Build the matrix transformation U, (Eqg. (S18)).

Transform # x5 — H s from the site representation to the block diagonal basis (Eq. (S19)).

Calculate U, /gy g and &, /51 /r by solving the generalized eigenstate equations for ?tKSL/EM/R and

SL/EM/R, and transform # i — }:[KS from the block diagonal basis to the state representation (Eq.
(528)).
Construct the 532 and 532 blocks using the left and right lead model eigenstates, &, , obtained in

step 5 above.
Propagate 2 (Eq. (S39)).
Construct the new H kg from the new 2.

If the time has not exceeded the maximal time, return to step 4.

12



2. Driving rate sensitivity test

While the driving rate, T', appearing in Eg. (11) of the main text can, in principle, be determined from
the self-energy of the semi-infinite lead models,? in the current implementation we use it as a free
parameter. To determine the value to be used in the dynamical simulations, we broaden the discrete
energy levels of the finite lead models with Lorentzian functions of different widths and adopt the
Lorentzian width parameter that provides a density of states that represents well that of a semi-infinite
system (not too narrow to provide a discrete spectrum and not too wide to artificially wash out the
electronic structure features of the lead) as our T value for the time-dependent calculations.> Figure S1
compares the density of states of the hydrogen chain studied in Fig. 3 of the main text for several
Lorentzian broadening widths, from which we select the value of A’ = 0.61 eV for the dynamical
calculations performed for the hydrogen chain junction in the main text. To verify that our results are
relatively insensitive to this choice, we present in Figure S2: the steady-state current as a function of I'
showing that above a value of ~0.3 eV the steady-state current weakly depends on I" within the relevant

range, set by the density of states analysis discussed above.

' 2000 '
1600 - hI'=0.16 eV
- hI'=0.39 eV 1500 |
1400 [ hAr=0.61eV| o
— hT=1.31eV O 1000
1200 ALE13TeV) o
500 I
v 1000 [ I
O 0 1 A
O goot 0 50 100 150
600
400
200

10 5 0 5 10 15 20 25 30
E-E. (eV)

Figure S1: The artificially broadened density of states of the hydrogen chain junction model considered in Fig. 3

of the main text for four Lorentzian widths. The inset shows the full broadened spectra.
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Figure S2: Steady-state current of the hydrogen chain junction model considered in Fig. 3 of the main text

calculated at a bias voltage of 0.2 V with different values of the driving rate I'. The value used in the main text is

marked by the yellow arrow.

The broadened lead density of states for the graphitic junction model depicted in Fig. 1b of the main text
appears in Fig. S3. The adopted value of AI' = 1.09 eV provides adequate broadening of the energy
levels to results in a density of states that satisfactorily represents that of the infinite nanoribbon lead

electronic structure (Fig. S4).

1.2

1500 1

1000 1

DOS

500

"P"“w/
r

—hI'=0.05442 eV
—hI'=1.0885 eV
hI'=1.6327 eV

W

b\

b

Figure S3: The artificially broadened density of states of the graphitic nano-ribbon junction model shown in Fig.

1b of the main text for three Lorentzian widths.
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Figure S4: The artificially broadened density of states (A"’ = 1.09 eV) of the graphitic nano-ribbon junction

model shown in Fig. 1b of the main text compared to that obtained using explicit periodic boundary conditions

calculations.
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3. Propagators

The driven Liouville von Neumann equation of motion for the single-particle density matrix (Eq. (S39)
above) could, in principle, be propagated using one of many available propagation schemes.50
However, in this particular case, care must be taken, since the propagation involves a non-unitary time
evolution, where the number of electrons is not constant. Hence, we have implemented and tested the
numerical stability of several propagation schemes that can handle non-unitary propagation, including
the fourth-order Runge-Kutta, Heun, and Ralston methods using a solver based on Butcher tableaux, as
well as the implicit Euler, trapezoid, and midpoint methods with adaptive time steps*!. For the latter
three methods, the implicit equations are solved utilizing a simple fixed-point algorithm that
automatically adapts the time step according to the number of iterations needed to satisfy the implicit
equations in the fixed-point loop. More details regarding the algorithm are provided in the main text.

Figure S5 shows the time-dependent current obtained using the various propagation schemes considered
for the hydrogen chain of Fig. 3 of the main text under a bias voltage of 0.3 V and using a driving rate
of Al =0.61 eV. Among all non-unitary propagation methods considered, the currents dynamics
obtained using the Heun and Ralston methods (not shown in the figure) diverged within 0.2 fs with the
chosen parameters, whereas the implicit Euler demonstrated a superior stability for propagating the
DLvN EOM. Therefore, this method was adopted to perform the calculations presented in the main text.

16



3.4
3r _
3.35
251 T
i.; ol 3.3 i
5
E15¢ 3.25 i
3
o
1r 4 6 8 10 12 14 7
—trapezoid
05¢F —midpoint -
implicit Euler
0 =—Fourth Order Runge-Kutta .
0 5 10 15

time [fs]

Figure S5: Comparison of the performance of different propagation schemes including the fourth-order Runge-
Kutta (using a solver based on Butcher tableaux), implicit Euler, trapezoid, and the midpoint propagators. The
model system used for this comparison is the hydrogen chain studied in Fig. 3 in the main text, under a bias
voltage of 0.3 V and a driving rate of Al = 0.61 eV.
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4. Analysis of the computational cost

As stated in the main text, for the test cases considered in the present study, the most time-consuming
step is the construction of the H g matrix by the Gaussian software, which involves the evaluation of
the Hartree term and the real-space integration the exchange-correlation potential. The former task takes
~1 second using 64 cores on an Intel Xeon CPU E5-2680 v4 2.40 GHz processor for the hydrogen chain
junction model, and ~14 seconds on a 64 cores AMD EPYC 7H12 2.595 GHz processor for the GNR
junction mode. The quadrature task takes ~3 seconds for the hydrogen chain and ~7 seconds for the
GNR on the same platforms. Data 1/0O operations performed by the Python driver (e.g., reading the Hy¢
matrix) require an extra ~1 sec for the hydrogen chain and ~3 sec for the GNR junction per time-step.
Linear algebra operations involved in the calculation of the time-derivative of the density matrix, which
are performed by the Phyton driver using NumPy, require ~0.25 seconds for the hydrogen chain and
~2.4 seconds for the GNR on average. Finally, we note that since we use an implicit Euler propagation
scheme that involves convergence iterations, each propagation step may require several H k¢ evaluations

and linear algebra operations.
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5. Total current calculation

Within the DLVN scheme the construction of the Kohn-Sham Hamiltonian and the propagation are
performed in the site (atomic basis) representation (Eq. (S39)), whereas the boundary conditions are
applied in the state representation. For calculating the electronic current flowing through the extended
molecule section, however, one must transform to the block-diagonal representation. The reason for this
is that in the site representation the off-diagonal overlap blocks mix the EM and driven lead section
bases, making it unfeasible to calculate the pure EM current contribution. While in the state

representation this problem is remedied, one should recall that in this representation we lack an equation

for P, having instead an equation for 2. This, in turn, prohibits the actual current calculation. In the

block-diagonal basis, these two problems are eliminated as, on the one hand the off-diagonal overlap

blocks vanish and on the other hand there is an explicit equation of motion for f’, as demonstrated below.

We are interested in calculating the instantaneous particle current flowing between the L and R driven
lead sections through the EM region. This can be obtained from the expression for the time derivative
of the particle number in this region, Ng,,. To this end, the relation N = tr(PS) can be used, where N
is the total number of electrons, S is the overlap matrix, and 2 is the single particle density matrix. Note
that this expression holds also for the case of fractional occupations encountered in our out-of-
equilibrium calculations (see SI section 6. Total number of electrons for the case of fractional
occupations). Care should be taken, however, when taking the partial trace of this expression to obtain

the number of electrons in the EM section, as the density matrix is complex Hermitian. In this case we

have,

[trEM(:PS)]* = [Z Z?vlslv] = Z Z:Pwls/lv = Z Z“Plvslv = Z Z?Avsvl =
VEEM VEEM VEEM A VEEM A

= Yverm XA SvaPry = tren (SP), (S52)

and

[trEM(S:P)] - Z ZS A?Av] = Z ZS /1?/11/ Z ZSVATVA - Z ZS)WTVA =
VEEM VEEM VEEM VEEM A

= ZVEEM ZA PyaSay = tTEM(:PS)r (853)

where we used the fact that 2 is Hermitian and S is real and symmetric. We therefore see that tr(PS)

is not necessarily real and therefore cannot represent the particle number in the EM section. This can be
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remedied by using the Léwdin symmetric version of the trace formula:
11
N = tr(52P52), (S54)
whose partial trace is real:

e (st s2)] = | 3, 3 stpush| = -3 > sk 7, -

UEEM v UEEM vV

1 1 1 1

1 1
= YueEM v XA S#V:P,w = YueEm 2v 2153 ?lv = trgy (55?55)- (S55)
The full trace obeys the cyclic property so we can write:
N = tr ($2P52) = tr(PS) = tr(SP) = 5 [tr(PS) + tr(SP)]. (S56)

The reason for introducing the last term in Eq. (S56) is that per Eqgs. (S52) and (S53) its partial trace over
the EM section is real. This expression can be transformed to the block diagonal representation using
the transformations of Eqgs. (S18) and (S19) in Sl section 1:

N(t) = 1 [tr(fPS) + tr(SP)] =
==|er (Ubﬁ(t)U;(UZ)_lsugl) +or ((U}) 3050, P00} = (S57)

_ %[tT(UbIT’(t)SUgl) +tr ((U ) gg)(t)UT)] [tr(?(t)sublub) o (S?(t)UT(UT) )]

= %[tr(i’(t)g) + tr (Si)(t))]

Since the block diagonalization transformation only rotates the EM basis to make it diagonal to the L
and R bases without modifying the latter (while readjusting the L/EM and R/EM Kohn-Sham
Hamiltonian coupling blocks), the partial sums over the L, EM, and R indices retain their spatial
interpretation as belonging to the corresponding system sections. We can, therefore, write the full trace

as the sum of partial traces over the separate system sections:
N(E) =3 [or(B©)3) +tr (8P(1))| = (S58)
= %{[m (P(©)3) + tr, ($P(®))| + [trem (P(©)3) + trp (SP(®))| + |12 (P()) + trx (5P (®))]},
where we identify:
Ne-sema(t) = 5|t (P(O)) + tr, (8P(0))| = 5t [P()S + P (1)] (S59)

as the instantaneous number of electrons in the different sections.

Since 8 is time independent (for fixed nuclei positions) we may express the temporal change in the
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number of particles in the EM section as:

Ngw = >trgy (P35 +3P). (S60)
As explained above, to obtain an expression for the average total current flowing through the EM section
we now need to write the DLVN EOM for 2 in the block diagonal basis. This can be achieved by
transforming the DLVN EOM from the state representation, where the boundary conditions are readily
applied, to the block diagonal basis (see Eg. 11 of the main text). The DLVN EOM in the state

representation is given by:
= = = 1
P =—i|Fys, P|-T| Peus 0 Peur | (S61)
i’RL

Using the back transformation from the state- to the block diagonal representation (the inverse
transformation of Eq. (S28) of Sl section 1), and the fact that U, is time-independent (see Eq. (S18) of

Sl section 1) so that P = - [U;l?(UZ)_l] = U;'P(U})" = P, we may write:

[
<

1=
L~ g E“PL,EM
= 1
“PEM,L 0 E?EM,R UT (862)

= 1= = =
:PRL E“PR,EM “PR_“P?Q

LR

[

P=P=UuPut=—iU [37,(5,%] ut—ru

N |-

We shall first transform the driving term on the right-hand side from the state- to the block diagonal

representation. To this end, we rewrite it in the following form:

= = 1=~ =
?L_Pg E:PL,EM ?LR
I, 0 0 I, 0 0
~TU| =Py, 0 =Prur UT=—§U<0 0 0>?UT—§U?<0 0 0>UT+
2 2 0 0 I 0 0 I
= 1: = =
RL :PR,EM :PR_:PR
L (L 00 P? 0 0 . P20 0\,, 0 O
+5U<g g IO> o P% O UT+EU 0o P%, O (g g IO)UT. (S63)
\Xo o P 0o 0 P R

The first term on the right-hand-side in Eq. (S63) reads:

I, 0 0\ I, 0 0 _
U(O 0 0)56UT=U<0 0 0>U-1U§'>UT=

0 0 I 0 0 I
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U, 0 O0N\/I, 0 0\/U;* O 0
=<0 Ugy 0)(000) 0 Uz, 0 |P=

0 0 Ur 0 0 I 0 0 UE1
u, 0 O0N\/U;* 0 o I, 0 0
=(o Ugy 0) 0 0 0 :T-=<0 0 0)33:
0 0 Ug/\ 0 o0 Uzt 0 0 Ig
I, 0 O i’L i’L,EM jSL,R i’L i’L,EM i’L,R
= (O O 0) ?EM,L ?EM ?EM,R = 0 0 0
0 0 IR .‘FﬁR,L .‘FﬁR,EM i’R “PR,L “PR,EM “PR

Similarly, the second term on the right-hand-side reads:

/I, 0 0 _ I, 0 0
U3~D<0 0 o)uT = UPUt(UhH (0 0 0>UT =
0 0 I 0 0 I

-1
((UD 0 0 \IL 0 0 UI 0 0
=P o (ui,) o <o 0 0) o UL, o0 |=
0

o+

2 \o o 1
\ 0 o (ub) 1/ F 0o Uj
.l._l
(W) 0 % Vo o\ /L o0 0
=P o (ul,) 0 0 0 0 =?<0 0 o>=
_ T 0 0 1
0 0 (U;I;) 1 0 0 UR R

0 0 0
0 0 Ig

=|P EM,L Pem P EM,R

P Puem Pur <IL 0 O) P, 0 P
Pri Prem Pz

The third term gives:

I, 0 0\/P) 0 0 u, 0 o0,\/3 o o)\/Ul
U<0 0 0) 0 Py 0 U*=<0 Ugm 0) 0 0 o0]fo
u, 0 0\/PUI 0o o u,Put o 0 P9
0 0 Ug o o Pt 0 0 URPU! 0

and the fourth term gives:
ut

~

P20 0\, 0 0 U, 0 0\/P 0 o0 L
uf o P, O <0 0 0>U*=<0 Ugm 0> 0 0 0](o0
0o o0 P

0 0 I 0 0 Uy
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u, o0 0\/PUI 0o o u,Put o 0 P 0 o0
=(0 Ugym 0) 0 0 o0 |[= 0 0 0 =(0 0 0 | (S67)
= = D0
0 0 Ug 0 o PUL 0 0 UPUL 0 0 Pg
Summing all four contributions to the driving term we thus obtain:
= :0 1 = =
TL_?L E"PL,EM :PLR
1= 1=
—TU|[ =Ppu,. 0 Pemr Ut =
27 B 27 B
\ Pre SPrem Pr i)lo?/
r P, Piem Pur T ~?L 0 ;?L'R Ff’S 0 0 Fi’g 0 o
:_E 0 0 0 _E “PEM,L 0 ?EM,R +§ 0 0 0 +§ 0 0 0 =
Prr Prem Pr .‘TJR,L 0 P 0 0 P; 0 0 P
= = 1
(?L—?E P Pur w
1~ 1 ~
=T E?EM,L 0 EfPEM,R . (S68)
~ 1 ~ ~
\ ?RL E?R,EM ?R *‘Pg/
We now turn to treat the commutator term in Eq. (S62):
(S69)

U [??KS, 5”5] Ut = UFE s PUT — UPTH U =
=UU'H UUT PO WU —UU'PWUNWUTH (UUT = UUTH (P — PH ;UUT.

Since U obeys the relation UTSU = I, we may write $ = (UT)~'U~! = (UUT)™?, such that UUT =

(S70)

S~1. Therefore, we have:
U [.7':[1(5, %:I U-I- == 3_1?[1(5? - i’ﬁng_l.

Collecting the terms of P (Egs. (S62), (S68), and (S70)) we therefore obtain:
“T)L,R

~ ~ 1 ~
:PL - :P(L) E"PL,EM
~ (= _1o= =~ —_—— =_ 15 15
P=—i(§"HysP - PHsS™)~T| S Pruys 0 ~Prur (S71)
~ 1 ~ ~ ~
?R,L E"PR,EM “PR_:P??

Substituting this in Eq. (S60) for the time derivative of the particle number in the EM section yields:
— L trgy (37 F 5P — PH 53 1)8 + 53 HsP — PHs57)] - (S72)
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[/~ ~ 1_ ~ ~ ~ 1_ ~
R EIPL,EM PLr I E:PL,EM PLr
I 1. 1_ ~ =] 1. 1_
_EtrEM EIPEM,L 0 E:PEM,R $+$ E:PEM,L 0 E:PEM,R
~ 1_ — ~0 ~ 1_ ~ ~0
PriL E?R,EM Pr—Pr PriL E:PR,EM Pr—Pr
The overlap matrix in the block diagonal basis assumes the following form:
S=ulsu, =
IL 0 0 SL SL,EM 0 IL _Sl_,lsL,EM 0
= _SEM,LSZI Igy _SEM,RSE1 SEM,L Sem SEM,R 0 Iy 0 |=
0 0 Ip 0 Srem Sk 0 —Sz'Spem I
I, 0 0 S, 0 0
= _SEM,LSI_,l Iy —5151\/1,12551 Sem.L _SEM,LSZISL,EM + Sem — SEM,RS?SR,EM Sempr | =
0 0 I 0 0 Sk
S 0 0
=| 0 —Spm.Si'SLem +Sem — SemprSR SrEm 0 | = (S73)
0 0 Sk
S, 0 0
=0 Sz 0]
0 0 S;

where we have defined Sgzy = Sey — Sem ST SLeEm — SEm SR SrEm- We can now use this to

evaluate the different terms appearing in Eq. (§72). Starting from the driving term contributions we have:

- ~ 1_ - - ~ 1_ -
P.-P? E?L,EM PLr P.-P? E:PL,EM PLr
1 1 1 1 S, 00
> ~EM,L 0 _jsEM,R S = _i)EM,L 0 _i)EM,R 0 Sy 0 |=
2 2 2 2 0 0 S
- 1._ ~ - - 1._ ~ ~ R
PrL E:PR,EM Pr—Pi Pr1L E:PR,EM Pr— P

~ ~ 1 ~ ~ ~
(:PL - ?2)SL E:PL,EMSEM :PL,RSR
~ 1 ~
= E:PEM,LSL 0 E:PEM,RSR , (374)
~ 1 ~ ~ ~ ~
:PR,LSL E:PR,EMSEM (?R - ??e)SR

and
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_ ~1_ — — —. 1 —
) EIPL,EM PLr P, - P} E:PL,EM PLr
s, 0
~11_ 1_ ~ 1_ 1_
S E:P EM,L 0 E:P EMR |~ 0 Sgy O 5V EML 0 5V EMR =
_ 1. o 0 0 Sz/| " _ 1. o
PrL E«‘PR,EM Pr— P} PrL E«‘PR,EM Pr— P}

~ ~ 1~ ~ ~
SL(:PL _"Pg) ESL"PL,EM SL:PL,R
1 ~ 1 =~
ESEM“PEM,L 0 ESEM?EM,R ' (875)
~ 1~ ~ ~ ~
SR:PR,L ESR:PR,EM SR(“PR - ?g)

Altogether, the driving term contribution to Ng,, in Eq. (S72) is given by (Egs. (S74) and (S75)):

~ ~ 1 ~ ~ ~ ~ 1 ~ ~
P, -7 SPLEM PLr P, -7 >PLEM PLr
r 1= 1= ~ ~ 1 ~ 1 ~
— S UEM 5? EM,L 0 5? Emr |S+S Efp EM,L 0 5? EM,R =
~ 1 ~ ~ ~ ~ 1 ~ ~ ~
l PrL >PrEM Pr—P} PriL >PrEM Pr— P} J
o o 1o B o _ _
(PL—-P)S.+5.(P.—PY) E(TL,EMSEM +S8.PLem) PLrSR +S1.PLR |
r 1 /o ~ 1 ~
— S EM 2 (:PEM,LSL + SEM:PEM,L) 0 2 (?EM,RSR + SEM?EM,R)
~ ~ 1/~ ~ o~ ~ ~ ~ ~
Pr1SL + SrPr E(:PR,EMSEM + SR?R,EM) (:PR - ???)SR + SR(?R - ??e)
~ ~ 1/~ ~ o~ ~ ~
[(?L - «‘PE)JSLL E(?L,EMSEM + SL?L,EM) PLrSR +S.P LR
r 1 /5 ~ 1/~ ~
— S EM E(:PEM,LSL + SEM?EM,L) 0 > (:PEM,RSR + SEM:PEM,R) (S76)
~ ~ 1/~ ~ o~ ~ ~
PriSL+ SrPr E(:PR,EMSEM + SR?R,EM) [(:PR - fp?e)'SRL

=0,

where [A, B], = AB + BA is the anticommutator. We therefore see that the driving term does not
contribute to the expression of the total instantaneous current flowing through the EM section, as
expected.

Finally, we evaluate the contribution of the first term on the right-hand side of Eq. (S72):

B % trpm [ (8 HysP — PHs81)S + 8(8 7 HysP — PH s8] =

= — L trp |51 T s PF — SPH(s8 + FyesP — P ys). (S77)
The first term reads:
STIH  PS =

s;too 0 H, Vigy 0 P, Pem  Pir s, 0 0

=l 0 Sz O VEM,L Hpy VEM,R P EM,L Py P EM,R 0 Sgy O )=
0 0 SE1 0 VR,EM Hp P RL P REM P R 0 0 Si
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SleL SZ:LVL,EM 0 jsLSL ﬁL,EMS,EM i-,)LRSR

= a1 T3 a1 ~ ~ ~ ~ _
- SEMVEM,L SEMHEM SEMVEM,R ?EM,LSL ?EMSEM ?EM,RSR - (878)
15 -1 ~ ~ ~ ~
0 SR VR,EM SR HR TR,LSL ?R,EMSEM “PRSR
sljlﬂLi’LsL + sljle,EMi’EM,LsL SlleLst,EMSEM + SlleL,EMjsEMS‘EM silHLi)LRsR + SZIVL,EMi)EM,RsR
= SEAI/IVEM,L:PLSL + SEAI/IHEM?EM,LSL + SIEA%IVEM,R?R,LSL SEl\lrtVEM,L:PL,EMSEM + SEA%IHEM?EMSEM + SEA%IVEM,R?R,EMSEM SEI}/IVEM,L“PLRSR + SEI}/IHEM“PEM,RSR + SEI%iVEM,R“pRsR g
SEIVR,EM?EM,LSL +SEIHR?R,LSL SEIVR,EM“PEMSEM +SE1HR:PR,EMSEM slglvR,EM?EM,RSR + SEIHR?RSR

whose EM block is:
(g_lﬁKS‘ﬁg)EM = S‘El\l/IVEM,LﬁL,EMgEM + SEI%/IFIEM:TJEMSEM + S'EI%/IVEM,R"T)R,EMS'EM' (879)
The second term reads:
SPH S =
st 0 0 P, Pim P H, Vpy 0 st 0
= 0 S'EM 0 “T)EM,L “TJEM :TDEM,R i7EM,L FIEM VEM,R 0 S‘El\l/l 0 =

D D D 17 -1
0 0 Sk Prir Prem  Pr 0 Veem  Hp 0 0 Sz
B B 3 -1 o-1
S.P, StPrem  SiPrr H.S; ViemSeEm 0
— C D C D C D 174 -1 7 c—-1 17 -1 —
- SEM?EM,L SEM?EM SEM“PEM,R VEM,LSL HEMSEM VEM,RSR - (880)
D D D 17 c-1 -1
SR“])R,L SR?R,EM SR“})R O VR,EMSEM HRSR

S PLH ST+ S.PLenVien, Si* S PV enSei + S PLenHenSelh + S.P eV enSen S.PLemVienmrSet + S, PrH SR}

= SemPemiHi ST + SenPrnVemiSt' SemPremiVienSiv + SenPerHenSen + SemPrmaVrenuSev SemPruVemrSr' + SemPrurHrSr' |
SpProH. ST + SpPrenViem, STt SrPri Vi emuSem + SePremHenSwl + SrPrVp pnSin SkPremVpmrSr" + SpPrHRSR!

whose EM block is:

SHIF  T-1 e P T o e-1,.T B H o-1,T B v e-1
(8PHs8™),,, = SemPemiVienSem + SenPenHenSer + SemPrem Ve emSenr (S81)
The third term reads:

HL VL,EM O ?L “})L,EM “})LR
HysP = Vemry Hem  Vemer P EM,L Pem P EMR | = (S82)
0 VR,EM HR ?R,L ?R,EM ?R
HP, 4V, enPiu, HPew + Vo euPen H P+ Vi euPrur
=\ VemiPr+ HeuPemr + VemrPrr VemiPrem ¥ HemPem + VemrPrem VemiPrr + HemPemr + VeurPr )
Ve emPem + HrPg, VeemPem + HRPren VeemPemr + HrPgr
whose EM block is:
(ﬂ ksP ) M Vet Prem + HeyPem + Veu rPrem (S83)

The fourth term reads:
P L P LEM P LR H, VL,EM 0

PHygs =P EM,L Pemw P EM,R VEM,L Hpy VEM,R = (584)
Pri  Prem Pr 0 Ve Em Hp
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PH +P L,EMVEM,L P LVL,EM +P L,EMH em+ P LRVR,EM P L,EMVEM,R + P rHp
=| PemHy + PemVemr PemiViem + PemHem + PemrVeen PemVeumr + PemprHr |

PriHy+ PrewVimr  PriVipwm + PremHpn + PrVipen PremVieug + PrHp
whose EM block is:
(:T) iy KS) EM P EM,LVL,EM +P EMH EM T P EM,RvR,EM (S85)
Collecting all terms in Egs. (S79), (S81), (S83), (S85) we may write the right-hand side of Eq. (S77) as

follows:

i e e = —_— e e
— 5 tTem [§T1FH (s PS — SPH (S + HysP — PH | =
= _étrEM[SEI\l/IVEM,Li)L,EMgEM + gEﬂl/IHEMi)EMS'EM + S‘lT?I%/IVEM,R:T)R,EMS‘EM - (886)
_S‘EM*T)EM,LVL,EMSEI%/I - SEMi)EMHEMggﬂl/I - S‘EM*:T)EM,RVR,EMS‘IET?I%/I +
+VEM,L:T)L,EM + HEM:T)EM + VEM,R:T)R,EM - *‘T)EM,LVL,EM - i)EMHEM - *‘T)EM,RVR,EM] =
This can be reordered as follows:

i P S .

= _EtrEM(SEI\l/IHEM:PEMSEM — SemPeyHenSey + Hey Py — “PEMHEM) -

- % tTEM(S'EIbVEM,Li) L,EMS'EM — Spu® EM,LVL,EMS‘EI%/I + VEM,L:T) LEM — P EM,LVL,EM) - (S87)

i e — - -~ - o - ~ — ~
) trgm (SEﬂl/IVEM,R? rREMSEM — SEMP EM,RVR,EMSEI\l/I + Ve rPrem — Pemr VR,EM)-

In the first row of Eq. (S87), the partial EM trace obeys the cyclic property, since all the matrices
involved are square matrices of dimension EM. Therefore, the contribution of this term vanishes:
trEM(S'El\l/IFIEM“T)EMgEM — SemPemHenSey + HenPry — i)EMFIEM) =

= trEM(FIEMjSEMgEMSEI\l/I — PenHenSe0Sem + HenPrey — iJEMFIEM) = (S88)
= trEM(FIEMjSEM — PenHey + HeyPry — i’EMHEM) =

= ZtTEM(FIEMjsEM — jsEMﬁEM) = ZtrEM(:TJEMFIEM - jsEMﬁEM) = 0.

Looking next into the first term on the second row of Eq. (S87) we can write:

trem (SesVerm, 1 PremSem) = Z Z Z Z (EEAI/I)U(VEM,L)jk(i)L,EM)kl(S'EM)” =

i€EM jEEM kEL IEEM
= ZjEEM YkelL LieEM ZiEEM(VEM,L)jk (i)L,EM)kl(SEM)li(gEzlw)ij = (S89)

= tTem (Vem 1 PremSenSeir) = tTen (Vem i Pr e ),
where in the second row we switched the summation order and changed the orders of the summed
elements. Similarly, for the second term on the second row of Eq. (S87) we have:
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trEM(gEMjS EM,LVL,EMS‘L_?I%/I) = Tgm (79 EM,LvL,EM); (S90)
and for the two first terms in the third row:

trEM(Sgl\l/IVEM,RjSR,EMS'EM - S'EM*‘T’EM,RVR,EMSEI%/I) = trEM(VEM,RiJR,EM - i)EM,RVR,EM)' (891)
Collecting all terms in Egs. (S87)-(S91) we have:
NEM =—i- trEM(VEM,Li)L,EM - i’EM,LVL,EM) —i- trEM (VEM,R‘:T)R,EM - i)EM,RVR,EM)- (892)

Using the fact that the density matrix and KS Hamiltonian matrix are Hermitian we can further write:

[trEM(VEM,L:T)L,EM)]* = Z Z(VEM,L)U("TJL,EM)ﬁ = Z Z(VEM,L);-(?SL,EM); =

{€EM JeL i€EM L
e e Tumm) (Pows), = Sieow ZierPons), Tuw) , = rowPraVoeys). (599
Similarly, we can write [trgy (Vew zPrem)] = trem (PemaVrem), S0 that:

Ngw = —i - trey (VEM,Li’ viv = PemiViem) = 0 tTen(VempPremw — PempVrem) =

= —i - trpm(PemoVienm — PemiVien) = i trem(PemaViem — PemaVrem) =

= —i - trgy |20 Im(Pey Viem)| — i trem |20 Im(Pey aVirem)] = (S94)
=2 trgy[Im(PemViem)] + 2 - trem[Im(PemaViren)]| =

=2 - Im|trey (PemViem)| + 2 - Im[trey (PemaVrem)]-

We can thus identify the first term in the last line of Eq. (S94) as the current flowing from the L driven

lead into the EM section and the second term as the current flowing from the R driven lead into the EM

section:

Jooem = 2 - Im[tre (Pen Vien)), (S95)
and

Jroem = 2 - Im[trey (Pey rVrewm)]- (S96)

Accordingly, the instantaneous average total current flowing through the EM section at time t is:
J(t) = 0-5(]L—>EM(t) + JEmor (t)) = Im{trEM [i)EM,L (t)VL,EM (t)]} - Im{tTEM [i)EM,R(t)VR,EM(t)]}

= Im{trem[Pem OV, em(®) = Py r(OV g en (0]}, (S97)
which is the final expression that we use for the evaluation of the current in the block-diagonal

representation.
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6. Total number of electrons for the case of fractional occupations

In Eq. (S60) of Sl section 5 above, we used the expression N = Tr(P - §) for the particle number. Here,
we demonstrate that this expression is valid also for the case of non-idempotent density matrices,
representing fractionally occupied states, of the following form:
Puv = Zi' fi CuiCyi- (598)

Here, M is the total number of basis functions, and C,; are the expansion coefficients of the orthonormal
Kohn-Sham orbitals, y; (r), within the non-orthogonal atom-centered orbital basis {%}3

i(r) = L) Cudu(r), (S99)
and 0 < f; <1 are the occupation numbers. For brevity of the presentation, spin indices have been
omitted herein.

The density at a point r in space can be written as:

n(r) = 3 filyi)? = TV Z fiCudu () Gy (). (S100)
Spatially integrating the density n(r), we obtain the total number of electrons:
N = Z;I\fv S;w (Ziwfl Cinv*i)' (S101)

where the overlap matrix elements in the atom-centered orbital basis are given by S,,
f(,bﬂ (r) ¢;(r)d>3r. Using Eq. (S98) we finally obtain:

N=3MP.,S, =Tr(®P-S), (S102)
which has the same form as the standard expression for the total number of electrons of a closed ground

state system with integer state occupations.
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7. Effects of the basis sets and size of leads on the calculated current

In all hydrogen chain benchmark calculations presented in the main text we used 180 atom lead models
in combination with the STO-3G atomic centered basis-set to represent the Kohn-Sham orbitals and the
PBE functional approximation. To evaluate the sensitivity of our results towards these choices we
present in Figure S6a the steady-state current versus the applied bias voltage for lead models of 120,
180, and 240 hydrogen atoms calculated at the PBE/6-31G** level of theory with Al =
0.92,0.61, and 0.46 eV, respectively. Note that driving rate is varied according to the lead model
dimensions to preserve the density of states plot of the lead. The results show that our choice of 180
atom lead model is well converged with the lead model size, with the largest difference between the
current calculated using the 180 and 240 hydrogen chain lead models being ~15%. Figure S6b presents
a basis-set sensitivity analysis for the molecular section. Using 180-hydrogen atom chain lead models
with A" = 0.61 eV, we compare the steady-state current evaluated with three choices of basis-sets for
the extended molecule region. The results indicate that our choice of 6-31G** basis-set provides currents
converged up to 0.3% in the voltage range studied.
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Figure S6: Analysis of the steady-state current sensitivity to the lead model size and the choice of lead basis-set.
(a) Steady-state current vs. bias voltage calculated at the PBE/6-31G** level of theory for the EM section and
PBE/STO-3G for the leads of hydrogen chain junction models with lead sections of 120 (blue squares), 180 (red
triangles), 240 (yellow circles), and 360 (green stars) atoms (using AI' = 0.92,0.61,0.46,and 0.31¢eV,
respectively), an EM section of 20 hydrogen atoms and a weakly couple H, molecule. The interatomic distances
are set as in Fig. 3 of the main text. (b) Same as (a) calculated with the 180 hydrogen atom lead models at the

PBE/STO-3G level, and a 20 atom EM section described at the PBE/STO-3G (green diamonds), PBE/6-31G**
(purple stars), and PBE/cc-pVTZ (orange crosses) levels.
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8. Driving rate switching function

To increase numerical stability of our graphene nanoribbon junction transport calculations, the driving
rate, T', was gradually increased from zero to its full value, Ir."? To this end, we chose a hyperbolic

tangent switching function of the form:

r(t) =(tanh (=2) +1) - 1y, (S103)

w

where t is the time, t, = 0.05 fs, and w = 0.36 fs.

Figure S7 compares the time-dependent current calculated at V = 0.35 V for this junction in the cases
where I' is switched on abruptly (orange line) and gradually (blue line). When the driving rate Al is
abruptly switched on to I'; = 1.09 eV, the current shows larger oscillations with respect to the gradual
switch-on case. Since this initial transient dynamics is unphysical in our simulations starting from a

somewhat arbitrary initial density matrix, it is numerically advantageous to switch on the driving rate
gradually.

0.8
—gradual switch-on
06l ——abrupt switch-on
<
€04
o
3
3]
0.2f
0 . . . . .
0 0.2 0.4 0.6 0.8 1

time [fs]
Figure S7: Comparison of the effect of gradual (orange) versus abrupt (blue) switching-on of the driving

rate on the current dynamics through the graphene nano-ribbon junction model shown in Fig. 1b of the
main text, under a bias voltage of V = 0.35 V.

32



9. Integrated current density along the extended molecule section

As a further consistency check of our current calculations, we compare in Figure S8 the steady-state
current of the hydrogen chain model (Fig. 3 of the main text) evaluated from the partial trace of the
partitioned single-particle density matrix (Eqg. 13 of the main text) to that obtained by cross-sectional
spatial integration of the current density (Eg. 17 of the main text). In the figure we plot the latter
evaluated at several axial positions along the chain. As expected, the steady-state current is spatially
uniform, increasing/decreasing only near the edges of the EM section, where the source/sink terms are
applied. Furthermore, the integrated current matches well the one obtained via Eq. 13 of the main text

(dashed orange line), further validating our methodology.
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Figure S8: The integrated current density (blue circles) across the perpendicular plane to the main axis
of a hydrogen chain (same as that studied in Fig. 3 of the main text) calculated via Eq. 18 of the main
text, at different positions along the EM section, under a bias voltage of V = 0.3 V, and with a driving
rate of A’ = 0.61 eV. The steady-state current evaluated directly from Eq. 13 of the main text is shown

by the horizontal dashed orange line.
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10. Cartesian atomic coordinates of the GNR/Benzene/GNR junction

Al atomic coordinates are given in units of A.
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