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1. The driven Liouville von Neumann equation of motion in the realm of 

time-dependent density functional theory 
 

In this section, we provide a detailed formulation of the driven Liouville von Neumann (DLvN) equation 

of motion (EOM) within the framework of time-dependent density functional theory in an atom-centered 

non-orthogonal basis-set representation. We start from the standard time-dependent Kohn-Sham (KS) 

equation written for the individual KS orbitals |𝜙𝑛⟩ as follows (atomic units are used throughout): 

 |�̇�𝑛⟩ = −𝑖ℋ𝐾𝑆|𝜙𝑛⟩. (S1) 

Here, ℋ𝐾𝑆 is the KS Hamiltonian operator and 𝑖 = √−1. Next, we span the KS orbitals within a localized 

basis-set representation {|𝜒𝜇⟩}: 

 |𝜙𝑛⟩ = ∑ 𝑐𝜇
𝑛|𝜒𝜇⟩𝜇 , (S2) 

where 𝑐𝜇
𝑛 is the 𝜇th expansion coefficient of KS orbital |𝜙𝑛⟩. Plugging Eq. (S2) into Eq. (S1) and 

assuming that the basis orbitals are constant in time we obtain: 

 ∑ �̇�𝜇
𝑛|𝜒𝜇⟩𝜇 = −𝑖ℋKS∑ 𝑐𝜇

𝑛|𝜒𝜇⟩𝜇 . (S3) 

Multiplying Eq. (S3) by ⟨𝜒𝜈| we obtain: 

 ∑ �̇�𝜇
𝑛⟨𝜒𝜈|𝜒𝜇⟩𝜇 = −𝑖 ∑ 𝑐𝜇

𝑛⟨𝜒𝜈|ℋKS|𝜒𝜇⟩𝜇 . (S4) 

Defining the overlap and KS Hamiltonian matrix elements as  𝑆𝜈𝜇 ≡ ⟨𝜒𝜈|𝜒𝜇⟩ and ℋKS𝜈𝜇
≡

⟨𝜒𝜈|ℋKS|𝜒𝜇⟩, respectively, Eq. (S4) becomes: 

 ∑ 𝑆𝜈𝜇�̇�𝜇
𝑛

𝜇 = −𝑖 ∑ ℋ𝐾𝑆𝜈𝜇
𝑐𝜇
𝑛

𝜇 . (S5) 

Since this equation is valid for all values of the indices 𝜈 and 𝑛 it can be written in matrix form as: 

 𝓢�̇� = −𝑖𝓗KS𝓒. (S6) 

Multiplying by the inverse of the overlap matrix, 𝓢−1, on the left we obtain: 

 �̇� = −𝑖𝓢−1𝓗KS𝓒. (S7) 

Accordingly, one can write the EOM for the complex transpose coefficient matrix as follows: 

 �̇�† = [−𝑖𝓢−1𝓗KS𝓒]
† = 𝑖𝓒†𝓗KS

† (𝓢−1)† = 𝑖𝓒†𝓗KS(𝓢
†)−1 = 𝑖𝓒†𝓗KS𝓢

−1, (S8) 

where we used the relation (𝓢−1)† = (𝓢†)−1  (𝑰 = 𝑰† = (𝓢𝓢−1)† = (𝓢−1)†𝓢† ⟹ (𝓢−1)† = (𝓢†)−𝟏) 

and the fact that the overlap and Kohn-Sham matrices are Hermitian, such that 𝓢† = 𝓢 and 𝓗𝐾𝑆 = 𝓗𝐾𝑆
†

. 

The latter relation stems from the fact that the density matrix, upon which 𝓗𝐾𝑆 depends, is Hermitian 

by construction (see Eq. (S9) below) and so are all the operators within 𝓗𝐾𝑆 (kinetic energy, Hartree, 

exchange, correlation, and external potential). 
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We can now define the single-particle density matrix in the localized basis-set representation as: 

 𝓟 = 𝓒𝓷𝓒†, (S9) 

where 𝓷 is a diagonal matrix holding the occupation numbers of the different single-particle states on 

its diagonal. The time evolution of the density matrix is obtained by its time derivative: 

 �̇� = �̇�𝓷𝓒† + 𝓒𝓷�̇�† + 𝓒�̇�𝓒†. (S10) 

Here, the first two terms on the right-hand-side correspond to pure orbital dynamics, whereas the third 

term represents the dynamics of the orbital occupations. Inserting Eqs. (S7) and (S8) into Eq. (S10) we 

obtain: 

 �̇� = −𝑖𝓢−1𝓗𝐾𝑆𝓒𝓷𝓒
† + 𝑖𝓒𝓷𝓒†𝓗𝐾𝑆𝓢

−1 + 𝓒�̇�𝓒† = −𝑖𝓢−1𝓗𝐾𝑆𝓟+ 𝑖𝓟𝓗𝐾𝑆𝓢
−1 + 𝓒�̇�𝓒†. (S11) 

In microcanonical and canonical time-domain time-dependent density functional theory simulations, the 

overall number of particles in the system is conserved. In these cases, a customary ansatz is to propagate 

only the occupied subspace thus setting �̇� = 0, assuming that the occupied KS orbital populations do 

not vary with time and that the virtual orbitals remain unpopulated. The entire dynamics is thus 

overloaded on the occupied molecular orbital manifold via the corresponding expansion coefficients. 

This resembles choosing the Schrödinger representation (propagating the wave functions) instead of its 

Heisenberg counterpart (propagating the number operator). For open systems, however, one can no 

longer assume that �̇� = 0 and an explicit equation of motion should be provided to describe its 

dynamics. Within the DLvN approach the following EOM governs this dynamics: 

𝓒�̇�𝓒† = −𝑖𝓢−1𝓗𝐴𝐻𝓟+ 𝑖𝓟𝓗AH
† 𝓢−1 = −𝑖𝓢−1𝓗𝐴𝐻𝓟− 𝑖𝓟𝓗𝐴𝐻𝓢

−1 = −𝑖[𝓢−1𝓗𝐴𝐻𝓟+𝓟𝓗𝐴𝐻𝓢
−1]. (S12) 

Here, 𝓗𝐴𝐻 = −𝓗𝐴𝐻
†

 is an anti-Hermitian matrix that, in principle, can assume the most general form of 

𝓗𝐴𝐻 = 𝓗𝐴𝐻
𝑟𝑒 − 𝑖𝓗𝐴𝐻

𝑖𝑚 , where 𝓗𝐴𝐻
𝑟𝑒  is a real anti-symmetric matrix such that (𝓗𝐴𝐻

𝑟𝑒 )𝑇 = −𝓗𝐴𝐻
𝑟𝑒  and 

𝓗𝐴𝐻
𝑖𝑚  is a real symmetric matrix obeying (𝓗𝐴𝐻

𝑖𝑚)
𝑇
= 𝓗𝐴𝐻

𝑖𝑚 . To rationalize this choice, we now plug Eq. 

(S12) in Eq. (S11) to obtain: 

�̇� = −𝑖𝓢−1𝓗𝐾𝑆𝓟+ 𝑖𝓟𝓗𝐾𝑆𝓢
−1 − 𝑖𝓢−1𝓗𝐴𝐻𝓟− 𝑖𝓟𝓗𝐴𝐻𝓢

−1 = −𝑖𝓢−1(𝓗𝐾𝑆 +𝓗𝐴𝐻)𝓟 +

𝑖𝓟(𝓗𝐾𝑆 −𝓗𝐴𝐻)𝓢
−1 = −𝑖𝓢−1(𝓗𝐾𝑆 +𝓗𝐴𝐻)𝓟 + 𝑖𝓟(𝓗𝐾𝑆 +𝓗𝐴𝐻)

†𝓢−1. (S13) 

This equation assumes the form of a Liouville–von Neumann equation for a microcanonical (or 

canonical) system but with a general Hamiltonian matrix, 𝓗𝐾𝑆 +𝓗𝐴𝐻, that is neither Hermitian nor 

anti-Hermitian. The latter can be viewed as a dressed Hamiltonian, where we identify 𝓗𝐴𝐻 as a self-

energy like term representing the effects of the coupling of the system to an implicit bath. Note, however, 

that 𝓗𝐴𝐻 is energy independent and hence should be viewed as an approximation of the self-energy 

within the wide band limit. 



4 

To obtain the explicit expression of 𝓗𝐴𝐻 within the DLvN EOM we divide the system into three sections 

comprising of the left lead, the (extended-)molecule, and the right lead. 𝓗𝐴𝐻 then serves to mimic the 

effect of coupling of the lead sections to implicit Fermionic baths, characterized by equilibrium Fermi-

Dirac distributions with given chemical potentials and electronic temperatures. To this end, we first 

neglect 𝓗𝐴𝐻
𝑟𝑒 , which is equivalent to neglecting the real-part of the implicit baths' self-energies that 

induce lead level shifts due to the lead/implicit-bath couplings. This approximation becomes valid for 

sufficiently large lead models, with a relatively uniform and dense manifold of states, such that the level 

shifts become small with respect to the inter-level spacing. The remaining imaginary part, 𝓗𝐴𝐻
𝑖𝑚 , marked 

for brevity as 𝚪, introduces a finite lifetime (broadening) to the various lead levels due to their coupling 

to the implicit single-particle states of the reservoir. Hence, within the DLvN approach, the dressed KS 

Hamiltonian acquires the form: 

 𝓗𝐾𝑆 → 𝓗𝐾𝑆 − 𝑖𝚪. (S14) 

In this form, 𝚪 can be identified as an imaginary absorbing potential added to the lead sections of the 

original KS system serving to absorb outgoing electrons near the system boundaries (thus preventing 

their back-reflection into the system). Naturally, in order to avoid complete electronic depletion of the 

system, complementary emitting potentials should also be introduced in order to inject thermalized 

electrons into the system, as shown below. 

Using the dressed Hamiltonian form of Eq. (S14) in Eq. (S13) we obtain: 

�̇� = −𝑖𝓢−1(𝓗𝐾𝑆 − 𝑖𝚪)𝓟 + 𝑖𝓟(𝓗𝐾𝑆 − 𝑖𝚪)
†𝓢−1 = −𝑖𝓢−1𝓗𝐾𝑆𝓟+ 𝑖𝓟𝓗𝐾𝑆

† 𝓢−1 − 𝓢−1𝚪𝓟 −

𝓟𝚪†𝓢−1 = −𝑖𝓢−1𝓗𝐾𝑆𝓟+ 𝑖𝓟𝓗𝐾𝑆𝓢
−1 − 𝓢−1𝚪𝓟−𝓟𝚪†𝓢−1. (S15) 

We can now multiply Eq. (S15) by 𝓢 from left and from right to obtain: 

 𝓢�̇�𝓢 = −𝑖𝓗𝐾𝑆𝓟𝓢 + 𝑖𝓢𝓟𝓗𝐾𝑆 − 𝚪𝓟𝓢 − 𝓢𝓟𝚪
†. (S16) 

Next, we introduce a block diagonalization transformation, 𝑼𝑏, into Eq. (S16) to nullify the off-diagonal 

overlap matrix blocks as follows:1 

[(𝑼𝑏
†)
−1
𝑼𝑏
†] 𝓢[𝑼𝑏𝑼𝑏

−1]�̇� [(𝑼𝑏
†)
−1
𝑼𝑏
†] 𝓢[𝑼𝑏𝑼𝑏

−1] = 

= −𝑖 [(𝑼𝑏
†)
−1
𝑼𝑏
†]𝓗𝐾𝑆[𝑼𝑏𝑼𝑏

−1]𝓟 [(𝑼𝑏
†)
−1
𝑼𝑏
†] 𝓢[𝑼𝑏𝑼𝑏

−1] + 

+𝑖 [(𝑼𝑏
†)
−1
𝑼𝑏
†] 𝓢[𝑼𝑏𝑼𝑏

−1]𝓟 [(𝑼𝑏
†)
−1
𝑼𝑏
†]𝓗𝐾𝑆[𝑼𝑏𝑼𝑏

−1] − 𝚪𝓟 [(𝑼𝑏
†)
−1
𝑼𝑏
†] 𝓢[𝑼𝑏𝑼𝑏

−1] −

[(𝑼𝑏
†)
−1
𝑼𝑏
†] 𝓢[𝑼𝑏𝑼𝑏

−1]𝓟𝚪†,  (S17) 
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where 

 𝑼𝑏 ≡ (

𝑰𝐿 −𝑺𝐿
−1𝑺𝐿,𝐸𝑀 𝟎

𝟎 𝑰𝐸𝑀 𝟎

𝟎 −𝑺𝑅
−1𝑺𝑅,𝐸𝑀 𝑰𝑅

) ; 𝑼𝑏
−1 = (

𝑰𝐿 𝑺𝐿
−1𝑺𝐿,𝐸𝑀 𝟎

𝟎 𝑰𝐸𝑀 𝟎

𝟎 𝑺𝑅
−1𝑺𝑅,𝐸𝑀 𝑰𝑅

). (S18) 

Defining 

 {
�̃� ≡ 𝑼𝑏

†𝓢𝑼𝑏

�̃�𝐾𝑆 ≡ 𝑼𝑏
†𝓗𝐾𝑆𝑼𝑏

 (S19) 

Eq. (S17) can be rewritten as follows: 

(𝑼𝑏
†)
−1
�̃�𝑼𝑏

−1�̇�(𝑼𝑏
†)
−1
�̃�𝑼𝑏

−1 = −𝑖(𝑼𝑏
†)
−1
�̃�𝐾𝑆𝑼𝑏

−1𝓟(𝑼𝑏
†)
−1
�̃�𝑼𝑏

−1 +

𝑖(𝑼𝑏
†)
−1
�̃�𝑼𝑏

−1𝓟(𝑼𝑏
†)
−1
�̃�𝐾𝑆𝑼𝑏

−1 − 𝚪𝓟(𝑼𝑏
†)
−1
�̃�𝑼𝑏

−1 − (𝑼𝑏
†)
−1
�̃�𝑼𝑏

−1𝓟𝚪†. (S20) 

Next, we multiply Eq. (S20) by 𝑼𝑏
†
 on the left and by 𝑼𝑏 on the right, to obtain: 

�̃�𝑼𝑏
−1�̇�(𝑼𝑏

†)
−1
�̃� = 

= −𝑖�̃�𝐾𝑆𝑼𝑏
−1𝓟(𝑼𝑏

†)
−1
�̃� + 𝑖�̃�𝑼𝑏

−1𝓟(𝑼𝑏
†)
−1
�̃�𝐾𝑆 − 𝑼𝑏

†𝚪𝓟(𝑼𝑏
†)
−1
�̃� − �̃�𝑼𝑏

−1𝓟𝚪†𝑼𝑏 (S21) 

Introducing 𝑼𝑏𝑼𝑏
−1 and (𝑼𝑏

†)
−1
𝑼𝑏
†
 in the last two terms, respectively, yields: 

�̃�𝑼𝑏
−1�̇�(𝑼𝑏

†)
−1
�̃� = −𝑖�̃�𝐾𝑆𝑼𝑏

−1𝓟(𝑼𝑏
†)
−1
�̃� + 𝑖�̃�𝑼𝑏

−1𝓟(𝑼𝑏
†)
−1
�̃�𝐾𝑆 −𝑼𝑏

†𝚪𝑼𝑏𝑼𝑏
−1𝓟(𝑼𝑏

†)
−1
�̃� −

�̃�𝑼𝑏
−1𝓟(𝑼𝑏

†)
−1
𝑼𝑏
†𝚪†𝑼𝑏.  (S22) 

Next, we define: 

 

{
 

 �̃� ≡ 𝑼𝑏
−1𝓟(𝑼𝑏

†)
−1

�̃̇� ≡ 𝑼𝑏
−1�̇�(𝑼𝑏

†)
−1

�̃� ≡ 𝑼𝑏
†𝚪𝑼𝑏

. (S23) 

We note that since 𝑼𝑏 is a fixed transformation (time-independent within the fixed nuclei Born-

Oppenheimer approximation) the relation �̇̃� = �̃̇� holds. With these definitions we obtain: 

 �̃��̃̇��̃� = −𝑖�̃�𝐾𝑆�̃��̃� + 𝑖�̃��̃��̃�𝐾𝑆 − �̃��̃��̃� − �̃��̃��̃�
†, (S24) 

where we have used the fact that �̃�† = (𝑼𝑏
†𝚪𝑼𝑏)

†
= 𝑼𝑏

†  𝚪†𝑼𝑏. 

Next, we introduce the site-to-state transformation: 

 𝑼 ≡ (
𝑼𝐿 𝟎 𝟎
𝟎 𝑼𝐸𝑀 𝟎
𝟎 𝟎 𝑼𝑅

), (S25) 

such that �̃̃�𝐾𝑆𝑖
= 𝑼𝑖

†�̃�𝐾𝑆𝑖
𝑼𝑖 is diagonal and 𝑼𝑖

†�̃�𝑖𝑼𝑖 = 𝑰𝑖 are unit submatrices of the appropriate 

dimensions. With this, Eq. (S24) can be rewritten as: 
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(𝑼†)−1𝑼†�̃�𝑼𝑼−1�̃̇�(𝑼†)−1𝑼†�̃�𝑼𝑼−1 = 

= −𝑖(𝑼†)−1𝑼†�̃�𝐾𝑆𝑼𝑼
−1�̃�(𝑼†)−1𝑼†�̃�𝑼𝑼−1 + 𝑖(𝑼†)−1𝑼†�̃�𝑼𝑼−1�̃�(𝑼†)−1𝑼†�̃�𝐾𝑆𝑼𝑼

−1 −

�̃�𝑼𝑼−1�̃�(𝑼†)−1𝑼†�̃�𝑼𝑼−1 − (𝑼†)−1𝑼†�̃�𝑼𝑼−1�̃�(𝑼†)−1𝑼†�̃�†. (S26) 

Using the relation 𝑼†�̃�𝑼 = 𝑰 we get: 

(𝑼†)−1𝑼−1�̃̇�(𝑼†)−1𝑼−1 = 

= −𝑖(𝑼†)−1𝑼†�̃�𝐾𝑆𝑼𝑼
−1�̃�(𝑼†)−1𝑼−1 + 𝑖(𝑼†)−1𝑼−1�̃�(𝑼†)−1𝑼†�̃�𝐾𝑆𝑼𝑼

−1 −

�̃�𝑼𝑼−1�̃�(𝑼†)−1𝑼−1 − (𝑼†)−1𝑼−1�̃�(𝑼†)−1𝑼†�̃�† (S27) 

Next, we define: 

 {

�̃̃�𝐾𝑆 ≡ 𝑼†�̃�𝐾𝑆𝑼

�̃̃� ≡ 𝑼−1�̃�(𝑼†)−1

�̃̇�
̃
≡ 𝑼−1�̃̇�(𝑼†)−1

 , (S28) 

to obtain: 

 (𝑼†)−1�̃̇�
̃
𝑼−1 = −𝑖(𝑼†)−1�̃̃�𝐾𝑆�̃̃�𝑼

−1 + 𝑖(𝑼†)−1�̃̃��̃̃�𝐾𝑆𝑼
−1 − �̃�𝑼�̃̃�𝑼−1 − (𝑼†)−1�̃̃�𝑼†�̃�†.  (S29) 

Multiplying by 𝑼† on the left and 𝑼 on the right we arrive at: 

 �̃̇�
̃
= −𝑖�̃̃�𝐾𝑆�̃̃� + 𝑖�̃̃��̃̃�𝐾𝑆 − 𝑼

†�̃�𝑼�̃̃� − �̃̃�𝑼†�̃�†𝑼. (S30) 

Defining: 

 �̃̃� ≡ 𝑼†�̃�𝑼 (S31) 

We finally obtain: 

 �̃̇�
̃
= −𝑖 [�̃̃�𝐾𝑆, �̃̃�] − �̃̃��̃̃� − �̃̃��̃̃�

†. (S32) 

where �̃̃�† = (𝑼†�̃�𝑼)
†
= 𝑼†�̃�†𝑼. In its simplest form �̃̃� is written as: 

 �̃̃� = �̃̃�† = γ(
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

), (S33) 

which represents uniform broadening of all left and right lead levels. Hence, the last two terms in Eq. 

(S32) can be written as: 

−γ(
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

) �̃̃� − γ�̃̃� (
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

) = 

= −γ(
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

)(

�̃̃�𝐿 �̃̃�𝐿,𝐸𝑀 �̃̃�𝐿𝑅

�̃̃�𝐸𝑀,𝐿 �̃̃�𝐸𝑀 �̃̃�𝐸𝑀,𝑅

�̃̃�𝑅𝐿 �̃̃�𝑅,𝐸𝑀 �̃̃�𝑅

)− γ(

�̃̃�𝐿 �̃̃�𝐿,𝐸𝑀 �̃̃�𝐿𝑅

�̃̃�𝐸𝑀,𝐿 �̃̃�𝐸𝑀 �̃̃�𝐸𝑀,𝑅

�̃̃�𝑅𝐿 �̃̃�𝑅,𝐸𝑀 �̃̃�𝑅

)(
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

) = 
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= −γ(
�̃̃�𝐿 �̃̃�𝐿,𝐸𝑀 �̃̃�𝐿𝑅

𝟎 𝟎 𝟎

�̃̃�𝑅𝐿 �̃̃�𝑅,𝐸𝑀 �̃̃�𝑅

) − γ(

�̃̃�𝐿 𝟎 �̃̃�𝐿𝑅

�̃̃�𝐸𝑀,𝐿 𝟎 �̃̃�𝐸𝑀,𝑅

�̃̃�𝑅𝐿 𝟎 �̃̃�𝑅

) = −γ(

2�̃̃�𝐿 �̃̃�𝐿,𝐸𝑀 2�̃̃�𝐿𝑅

�̃̃�𝐸𝑀,𝐿 𝟎 �̃̃�𝐸𝑀,𝑅

2�̃̃�𝑅𝐿 �̃̃�𝑅,𝐸𝑀 2�̃̃�𝑅

) = 

= −2γ

(

 
 

�̃̃�𝐿
1

2
�̃̃�𝐿,𝐸𝑀 �̃̃�𝐿𝑅

1

2
�̃̃�𝐸𝑀,𝐿 𝟎

1

2
�̃̃�𝐸𝑀,𝑅

�̃̃�𝑅𝐿
1

2
�̃̃�𝑅,𝐸𝑀 �̃̃�𝑅 )

 
 

  (S34) 

The source term is then obtained by considering electrons that travel in the implicit reservoir toward the 

left and right leads with equilibrium distributions �̃̃�𝐿
0 and �̃̃�𝑅

0 . Upon reaching the reservoir/lead interface 

they are adsorbed at a rate of 2γ and are injected into the system at the same rate. This can be described 

by the following term, which drives the system at the lead sections towards the equilibrium state of leads 

that are coupled to the corresponding external implicit reservoirs and decoupled from the extended 

molecule section: 

γ(
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

)(

�̃̃�𝐿
0 𝟎 𝟎

𝟎 �̃̃�𝐸𝑀
0 𝟎

𝟎 𝟎 �̃̃�𝑅
0

)+ γ(

�̃̃�𝐿
0 𝟎 𝟎

𝟎 �̃̃�𝐸𝑀
0 𝟎

𝟎 𝟎 �̃̃�𝑅
0

)(
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

) = γ(
�̃̃�𝐿
0 𝟎 𝟎
𝟎 𝟎 𝟎

𝟎 𝟎 �̃̃�𝑅
0

) +

γ(
�̃̃�𝐿
0 𝟎 𝟎
𝟎 𝟎 𝟎

𝟎 𝟎 �̃̃�𝑅
0

) = 2γ(
�̃̃�𝐿
0 𝟎 𝟎
𝟎 𝟎 𝟎

𝟎 𝟎 �̃̃�𝑅
0

).  (S35) 

Inserting the expressions of Eqs. (S34) and (S35) into Eq. (S32) and defining Γ ≡ 2γ we obtain: 

 �̃̇�
̃
= −𝑖 [�̃̃�𝐾𝑆, �̃̃�] − Γ

(

 
 
�̃̃�𝐿 − �̃̃�𝐿

0 1

2
�̃̃�𝐿,𝐸𝑀 �̃̃�𝐿𝑅

1

2
�̃̃�𝐸𝑀,𝐿 𝟎

1

2
�̃̃�𝐸𝑀,𝑅

�̃̃�𝑅𝐿
1

2
�̃̃�𝑅,𝐸𝑀 �̃̃�𝑅 − �̃̃�𝑅

0

)

 
 
. (S36) 

Note that within the realm of TDDFT, �̃̇�
̃

, which is the state representation of �̇�, is not the time derivative 

of �̃̃�, namely �̃̇�
̃
≠ �̃̃�

̇
. This results from the fact that the KS Hamiltonian matrix has implicit time-

dependence via its dependence on the density matrix and hence the 𝑼 transformation matrix varies with 

time as well. Since �̃̃� ≡ 𝑼−1�̃�(𝑼†)−1 (see Eq. (S28)), its time derivative, �̃̃�
̇
, should include the time 

derivative of 𝑼. Lacking an explicit equation of motion for 𝑼, we are thus forced to perform the 

propagation step in the site representation. To this end, we use Eqs. (S19), (S23), and (S28) within Eq. 

(S36) as follows: 
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𝑼−1𝑼𝑏
−1�̇�(𝑼𝑏

†)
−1
(𝑼†)−1 = 

= −𝑖 [𝑼†𝑼𝑏
†𝓗𝐾𝑆𝑼𝑏𝑼,𝑼

−1𝑼𝑏
−1𝓟(𝑼𝑏

†)
−1
(𝑼†)−1] − Γ

(

 
 
 
�̃̃�𝐿 − �̃̃�𝐿

0
1

2
�̃̃�𝐿,𝐸𝑀 �̃̃�𝐿𝑅

1

2
�̃̃�𝐸𝑀,𝐿 𝟎

1

2
�̃̃�𝐸𝑀,𝑅

�̃̃�𝑅𝐿

1

2
�̃̃�𝑅,𝐸𝑀 �̃̃�𝑅 − �̃̃�𝑅

0
)

 
 
 

 

= −𝑖 [𝑼†𝑼𝑏
†𝓗𝐾𝑆𝑼𝑏𝑼𝑼

−1𝑼𝑏
−1𝓟(𝑼𝑏

†)
−1
(𝑼†)−1 − 𝑼−1𝑼𝑏

−1𝓟(𝑼𝑏
†)
−1
(𝑼†)−1𝑼†𝑼𝑏

†𝓗𝐾𝑆𝑼𝑏𝑼] 

−Γ

(

 
 
 
�̃̃�𝐿 − �̃̃�𝐿

0
1

2
�̃̃�𝐿,𝐸𝑀 �̃̃�𝐿𝑅

1

2
�̃̃�𝐸𝑀,𝐿 𝟎

1

2
�̃̃�𝐸𝑀,𝑅

�̃̃�𝑅𝐿

1

2
�̃̃�𝑅,𝐸𝑀 �̃̃�𝑅 − �̃̃�𝑅

0
)

 
 
 
= 

= −𝑖𝑼†𝑼𝑏
†𝓗𝐾𝑆𝓟(𝑼𝑏

†)
−1
(𝑼†)

−1
+ 𝑖𝑼−1𝑼𝑏

−1𝓟𝓗𝐾𝑆𝑼𝑏𝑼− Γ

(

 
 
�̃̃�𝐿 − �̃̃�𝐿

0 1

2
�̃̃�𝐿,𝐸𝑀 �̃̃�𝐿𝑅

1

2
�̃̃�𝐸𝑀,𝐿 𝟎

1

2
�̃̃�𝐸𝑀,𝑅

�̃̃�𝑅𝐿
1

2
�̃̃�𝑅,𝐸𝑀 �̃̃�𝑅 − �̃̃�𝑅

0

)

 
 
.  (S37) 

Multiplying by 𝑼𝑏𝑼 on the left and 𝑼†𝑼𝑏
†
 on the right we obtain: 

�̇� = −𝑖𝑼𝑏𝑼𝑼
†𝑼𝑏

†𝓗𝐾𝑆𝓟+ 𝑖𝓟𝓗𝐾𝑆𝑼𝑏𝑼𝑼
†𝑼𝑏

† − Γ𝑼𝑏𝑼

(

 
 
�̃̃�𝐿 − �̃̃�𝐿

0 1

2
�̃̃�𝐿,𝐸𝑀 �̃̃�𝐿𝑅

1

2
�̃̃�𝐸𝑀,𝐿 𝟎

1

2
�̃̃�𝐸𝑀,𝑅

�̃̃�𝑅𝐿
1

2
�̃̃�𝑅,𝐸𝑀 �̃̃�𝑅 − �̃̃�𝑅

0

)

 
 
𝑼†𝑼𝑏

† .  (S38) 

Since, by construction, the transformation 𝑼 obeys the relation 𝑼†�̃�𝑼 = 𝑰, we may write �̃� =

(𝑼†)−1𝑼−1 = (𝑼𝑼†)−1, such that 𝑼𝑼† = �̃�−1. Similarly, from Eq. (S19) we have �̃� ≡ 𝑼𝑏
†𝓢𝑼𝑏. We 

may therefore write �̃�−1 = (𝑼𝑏
†𝓢𝑼𝑏)

−1
= 𝑼𝑏

−1𝓢−1(𝑼𝑏
†)
−1

. Solving for 𝓢−1 we obtain 𝓢−1 = 𝑼𝑏�̃�
−1𝑼𝑏

†
. 

Hence, we obtain 𝑼𝑏𝑼𝑼
†𝑼𝑏

† = 𝑼𝑏�̃�
−1𝑼𝑏

† = 𝓢−1 such that: 

 �̇� = −𝑖𝓢−1𝓗𝐾𝑆𝓟+ 𝑖𝓟𝓗𝐾𝑆𝓢
−1 − Γ𝑼𝑏𝑼

(

 
 
�̃̃�𝐿 − �̃̃�𝐿

0 1

2
�̃̃�𝐿,𝐸𝑀 �̃̃�𝐿𝑅

1

2
�̃̃�𝐸𝑀,𝐿 𝟎

1

2
�̃̃�𝐸𝑀,𝑅

�̃̃�𝑅𝐿
1

2
�̃̃�𝑅,𝐸𝑀 �̃̃�𝑅 − �̃̃�𝑅

0

)

 
 
𝑼†𝑼𝑏

†
.  (S39) 

This is the DLvN EOM—our working equation—given in the site representation, which we use for the 

time propagation. 

To further simplify this expression and avoid the full matrix transformations appearing in the driving 

term of Eq. (S39) we may separate it into the sink and source terms and treat them separately. Using 
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Eqs. (S18), (S25), and  (S34) the sink term can be written as: 

𝓛𝑠𝑖𝑛𝑘 = 𝑼𝑏𝑼

(

 
 
 

�̃̃�𝐿

1

2
�̃̃�𝐿,𝐸𝑀 �̃̃�𝐿𝑅

1

2
�̃̃�𝐸𝑀,𝐿 𝟎

1

2
�̃̃�𝐸𝑀,𝑅

�̃̃�𝑅𝐿
1

2
�̃̃�𝑅,𝐸𝑀 �̃̃�𝑅 )

 
 
 
𝑼†𝑼𝑏

† = 

=
1

2
𝑼𝑏𝑼[(

𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

) �̃̃� + �̃̃� (
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

)]𝑼†𝑼𝑏
† (S40) 

Using Eqs. (S23) and (S28) we now obtain: 

𝓛𝑠𝑖𝑛𝑘 =
1

2
𝑼𝑏𝑼[(

𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

)𝑼−1𝑼𝑏
−1𝓟(𝑼𝑏

†)
−1
(𝑼†)−1

+ 𝑼−1𝑼𝑏
−1𝓟(𝑼𝑏

†)
−1
(𝑼†)−1 (

𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

)]𝑼†𝑼𝑏
† = 

=
1

2
𝑼𝑏𝑼(

𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

)𝑼−1𝑼𝑏
−1𝓟+

1

2
𝓟(𝑼𝑏

†)
−1
(𝑼†)−1 (

𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

)𝑼†𝑼𝑏
†
 (S41) 

We may now use the relation (
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

) = 𝑰 − (
𝟎 𝟎 𝟎
𝟎 𝑰𝐸𝑀 𝟎
𝟎 𝟎 𝟎

)  to write: 

𝓛𝑠𝑖𝑛𝑘 =
1

2
𝑼𝑏𝑼[𝑰 − (

𝟎 𝟎 𝟎
𝟎 𝑰𝐸𝑀 𝟎
𝟎 𝟎 𝟎

)]𝑼−1𝑼𝑏
−1𝓟+

1

2
𝓟(𝑼𝑏

†)
−1
(𝑼†)−1 [𝑰 − (

𝟎 𝟎 𝟎
𝟎 𝑰𝐸𝑀 𝟎
𝟎 𝟎 𝟎

)]𝑼†𝑼𝑏
† = 

= 𝓟−
1

2
𝑼𝑏𝑼(

𝟎 𝟎 𝟎
𝟎 𝑰𝐸𝑀 𝟎
𝟎 𝟎 𝟎

)𝑼−1𝑼𝑏
−1𝓟−

1

2
𝓟(𝑼𝑏

†)
−1
(𝑼†)−1 (

𝟎 𝟎 𝟎
𝟎 𝑰𝐸𝑀 𝟎
𝟎 𝟎 𝟎

)𝑼†𝑼𝑏
†
 (S42) 

Using Eq. (S25) for the transformation matrix 𝑼 we can write: 

𝑼(
𝟎 𝟎 𝟎
𝟎 𝑰𝐸𝑀 𝟎
𝟎 𝟎 𝟎

)𝑼−1 = (
𝑼𝐿 𝟎 𝟎
𝟎 𝑼𝐸𝑀 𝟎
𝟎 𝟎 𝑼𝑅

)(
𝟎 𝟎 𝟎
𝟎 𝑰𝐸𝑀 𝟎
𝟎 𝟎 𝟎

)(

𝑼𝐿
−1 𝟎 𝟎

𝟎 𝑼𝐸𝑀
−1 𝟎

𝟎 𝟎 𝑼𝑅
−1

) =

(
𝑼𝐿 𝟎 𝟎
𝟎 𝑼𝐸𝑀 𝟎
𝟎 𝟎 𝑼𝑅

)(
𝟎 𝟎 𝟎
𝟎 𝑼𝐸𝑀

−1 𝟎
𝟎 𝟎 𝟎

) = (
𝟎 𝟎 𝟎
𝟎 𝑼𝐸𝑀𝑼𝐸𝑀

−1 𝟎
𝟎 𝟎 𝟎

) = (
𝟎 𝟎 𝟎
𝟎 𝑰𝐸𝑀 𝟎
𝟎 𝟎 𝟎

) (S43) 

Therefore, we have 

𝑼𝑏𝑼(
𝟎 𝟎 𝟎
𝟎 𝑰𝐸𝑀 𝟎
𝟎 𝟎 𝟎

)𝑼−1𝑼𝑏
−1 = 𝑼𝑏 (

𝟎 𝟎 𝟎
𝟎 𝑰𝐸𝑀 𝟎
𝟎 𝟎 𝟎

)𝑼𝑏
−1 =
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(

𝑰𝐿 −𝑺𝐿
−1𝑺𝐿,𝐸𝑀 𝟎

𝟎 𝑰𝐸𝑀 𝟎

𝟎 −𝑺𝑅
−1𝑺𝑅,𝐸𝑀 𝑰𝑅

)(
𝟎 𝟎 𝟎
𝟎 𝑰𝐸𝑀 𝟎
𝟎 𝟎 𝟎

)(

𝑰𝐿 𝑺𝐿
−1𝑺𝐿,𝐸𝑀 𝟎

𝟎 𝑰𝐸𝑀 𝟎

𝟎 𝑺𝑅
−1𝑺𝑅,𝐸𝑀 𝑰𝑅

) =

(

𝑰𝐿 −𝑺𝐿
−1𝑺𝐿,𝐸𝑀 𝟎

𝟎 𝑰𝐸𝑀 𝟎

𝟎 −𝑺𝑅
−1𝑺𝑅,𝐸𝑀 𝑰𝑅

)(
𝟎 𝟎 𝟎
𝟎 𝑰𝐸𝑀 𝟎
𝟎 𝟎 𝟎

) = (

𝟎 −𝑺𝐿
−1𝑺𝐿,𝐸𝑀 𝟎

𝟎 𝑰𝐸𝑀 𝟎

𝟎 −𝑺𝑅
−1𝑺𝑅,𝐸𝑀 𝟎

), (S44) 

where we have used Eq. (S18) for the expressions of 𝑼𝑏 and 𝑼𝑏
−1. Similarly,  

(𝑼†)−1 (
𝟎 𝟎 𝟎
𝟎 𝑰𝐸𝑀 𝟎
𝟎 𝟎 𝟎

)𝑼† =

(

 
 
(𝑼𝐿

†)
−1

𝟎 𝟎

𝟎 (𝑼𝐸𝑀
† )

−1
𝟎

𝟎 𝟎 (𝑼𝑅
†)

−1

)

 
 
(
𝟎 𝟎 𝟎
𝟎 𝑰𝐸𝑀 𝟎
𝟎 𝟎 𝟎

)(

𝑼𝐿
† 𝟎 𝟎

𝟎 𝑼𝐸𝑀
† 𝟎

𝟎 𝟎 𝑼𝑅
†

) 

=

(

 
 
𝑼𝐿
†−1 𝟎 𝟎

𝟎 𝑼𝐸𝑀
† −1

𝟎

𝟎 𝟎 𝑼𝑅
†−1

)

 
 
(
𝟎 𝟎 𝟎

𝟎 𝑼𝐸𝑀
† 𝟎

𝟎 𝟎 𝟎

) = (

𝟎 𝟎 𝟎

𝟎 (𝑼𝐸𝑀
† )

−1
𝑼𝐸𝑀
† 𝟎

𝟎 𝟎 𝟎

) = (
𝟎 𝟎 𝟎
𝟎 𝑰𝐸𝑀 𝟎
𝟎 𝟎 𝟎

), (S45) 

and therefore: 

(𝑼𝑏
†)
−1
(𝑼†)−1 (

𝟎 𝟎 𝟎
𝟎 𝑰𝐸𝑀 𝟎
𝟎 𝟎 𝟎

)𝑼†𝑼𝑏
† = 

= (

𝑰𝐿 𝟎 𝟎

𝑺𝐸𝑀,𝐿𝑺𝐿
−1 𝑰𝐸𝑀 𝑺𝐸𝑀,𝑅𝑺𝑅

−1

𝟎 𝟎 𝑰𝑅

)(
𝟎 𝟎 𝟎
𝟎 𝑰𝐸𝑀 𝟎
𝟎 𝟎 𝟎

)(

𝑰𝐿 𝟎 𝟎

−𝑺𝐸𝑀,𝐿𝑺𝐿
−1 𝑰𝐸𝑀 −𝑺𝐸𝑀,𝑅𝑺𝑅

−1

𝟎 𝟎 𝑰𝑅

) = 

= (

𝑰𝐿 𝟎 𝟎

𝑺𝐸𝑀,𝐿𝑺𝐿
−1 𝑰𝐸𝑀 𝑺𝐸𝑀,𝑅𝑺𝑅

−1

𝟎 𝟎 𝑰𝑅

)(
𝟎 𝟎 𝟎

−𝑺𝐸𝑀,𝐿𝑺𝐿
−1 𝑰𝐸𝑀 −𝑺𝐸𝑀,𝑅𝑺𝑅

−1

𝟎 𝟎 𝟎

) =

(
𝟎 𝟎 𝟎

−𝑺𝐸𝑀,𝐿𝑺𝐿
−1 𝑰𝐸𝑀 −𝑺𝐸𝑀,𝑅𝑺𝑅

−1

𝟎 𝟎 𝟎

).  (S46) 

Inserting Eqs.  (S44) and  (S46) in Eq. (S42) yields: 

𝓛𝑠𝑖𝑛𝑘 = 𝓟−
1

2
(

𝟎 −𝑺𝐿
−1𝑺𝐿,𝐸𝑀 𝟎

𝟎 𝑰𝐸𝑀 𝟎

𝟎 −𝑺𝑅
−1𝑺𝑅,𝐸𝑀 𝟎

)(

𝓟𝐿 𝓟𝐿,𝐸𝑀 𝓟𝐿𝑅

𝓟𝐸𝑀,𝐿 𝓟𝐸𝑀 𝓟𝐸𝑀,𝑅

𝓟𝑅𝐿 𝓟𝑅,𝐸𝑀 𝓟𝑅

)

−
1

2
(

𝓟𝐿 𝓟𝐿,𝐸𝑀 𝓟𝐿𝑅

𝓟𝐸𝑀,𝐿 𝓟𝐸𝑀 𝓟𝐸𝑀,𝑅

𝓟𝑅𝐿 𝓟𝑅,𝐸𝑀 𝓟𝑅

)(
𝟎 𝟎 𝟎

−𝑺𝐸𝑀,𝐿𝑺𝐿
−1 𝑰𝐸𝑀 −𝑺𝐸𝑀,𝑅𝑺𝑅

−1

𝟎 𝟎 𝟎

) = 
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= 𝓟−
1

2
(

−𝑺𝐿
−1𝑺𝐿,𝐸𝑀𝓟𝐸𝑀,𝐿 −𝑺𝐿

−1𝑺𝐿,𝐸𝑀𝓟𝐸𝑀 −𝑺𝐿
−1𝑺𝐿,𝐸𝑀𝓟𝐸𝑀,𝑅

𝓟𝐸𝑀,𝐿 𝓟𝐸𝑀 𝓟𝐸𝑀,𝑅

−𝑺𝑅
−1𝑺𝑅,𝐸𝑀𝓟𝐸𝑀,𝐿 −𝑺𝑅

−1𝑺𝑅,𝐸𝑀𝓟𝐸𝑀 −𝑺𝑅
−1𝑺𝑅,𝐸𝑀𝓟𝐸𝑀,𝑅

) −

1

2
(

−𝓟𝐿,𝐸𝑀𝑺𝐸𝑀,𝐿𝑺𝐿
−1 𝓟𝐿,𝐸𝑀 −𝓟𝐿,𝐸𝑀𝑺𝐸𝑀,𝑅𝑺𝑅

−1

−𝓟𝐸𝑀𝑺𝐸𝑀,𝐿𝑺𝐿
−1 𝓟𝐸𝑀 −𝓟𝐸𝑀𝑺𝐸𝑀,𝑅𝑺𝑅

−1

−𝓟𝑅,𝐸𝑀𝑺𝐸𝑀,𝐿𝑺𝐿
−1 𝓟𝑅,𝐸𝑀 −𝓟𝑅,𝐸𝑀𝑺𝐸𝑀,𝑅𝑺𝑅

−1

) (S47) 

= 𝓟−
1

2
(

−𝑺𝐿
−1𝑺𝐿,𝐸𝑀𝓟𝐸𝑀,𝐿 −𝓟𝐿,𝐸𝑀𝑺𝐸𝑀,𝐿𝑺𝐿

−1 𝓟𝐿,𝐸𝑀 − 𝑺𝐿
−1𝑺𝐿,𝐸𝑀𝓟𝐸𝑀 −𝑺𝐿

−1𝑺𝐿,𝐸𝑀𝓟𝐸𝑀,𝑅 −𝓟𝐿,𝐸𝑀𝑺𝐸𝑀,𝑅𝑺𝑅
−1

𝓟𝐸𝑀,𝐿 −𝓟𝐸𝑀𝑺𝐸𝑀,𝐿𝑺𝐿
−1 2𝓟𝐸𝑀 𝓟𝐸𝑀,𝑅 −𝓟𝐸𝑀𝑺𝐸𝑀,𝑅𝑺𝑅

−1

−𝑺𝑅
−1𝑺𝑅,𝐸𝑀𝓟𝐸𝑀,𝐿 −𝓟𝑅,𝐸𝑀𝑺𝐸𝑀,𝐿𝑺𝐿

−1 𝓟𝑅,𝐸𝑀 − 𝑺𝑅
−1𝑺𝑅,𝐸𝑀𝓟𝐸𝑀 −𝑺𝑅

−1𝑺𝑅,𝐸𝑀𝓟𝐸𝑀,𝑅 −𝓟𝑅,𝐸𝑀𝑺𝐸𝑀,𝑅𝑺𝑅
−1

), 

or equivalently: 

𝓛𝑠𝑖𝑛𝑘 =

(

 
 
𝓟𝐿 +

𝑺𝐿
−1𝑺𝐿,𝐸𝑀𝓟𝐸𝑀,𝐿+𝓟𝐿,𝐸𝑀𝑺𝐸𝑀,𝐿𝑺𝐿

−1

2

𝓟𝐿,𝐸𝑀+𝑺𝐿
−1𝑺𝐿,𝐸𝑀𝓟𝐸𝑀

2
𝓟𝐿𝑅 +

𝑺𝐿
−1𝑺𝐿,𝐸𝑀𝓟𝐸𝑀,𝑅+𝓟𝐿,𝐸𝑀𝑺𝐸𝑀,𝑅𝑺𝑅

−1

2

𝓟𝐸𝑀,𝐿+𝓟𝐸𝑀𝑺𝐸𝑀,𝐿𝑺𝐿
−1

2
𝟎

𝓟𝐸𝑀,𝑅+𝓟𝐸𝑀𝑺𝐸𝑀,𝑅𝑺𝑅
−1

2

𝓟𝑅𝐿 +
𝑺𝑅
−1𝑺𝑅,𝐸𝑀𝓟𝐸𝑀,𝐿+𝓟𝑅,𝐸𝑀𝑺𝐸𝑀,𝐿𝑺𝐿

−1

2

𝓟𝑅,𝐸𝑀+𝑺𝑅
−1𝑺𝑅,𝐸𝑀𝓟𝐸𝑀

2
𝓟𝑅 +

𝑺𝑅
−1𝑺𝑅,𝐸𝑀𝓟𝐸𝑀,𝑅+𝓟𝑅,𝐸𝑀𝑺𝐸𝑀,𝑅𝑺𝑅

−1

2 )

 
 
. (S48) 

Considering next the source term using Eq. (S25) we have: 

𝓛𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑼𝑏𝑼(
�̃̃�𝐿
0 𝟎 𝟎
𝟎 𝟎 𝟎

𝟎 𝟎 �̃̃�𝑅
0

)𝑼†𝑼𝑏
† =  

= 𝑼𝑏 (
𝑼𝐿 𝟎 𝟎
𝟎 𝑼𝐸𝑀 𝟎
𝟎 𝟎 𝑼𝑅

)(
�̃̃�𝐿
0 𝟎 𝟎
𝟎 𝟎 𝟎

𝟎 𝟎 �̃̃�𝑅
0

)(

𝑼𝐿
† 𝟎 𝟎

𝟎 𝑼𝐸𝑀
† 𝟎

𝟎 𝟎 𝑼𝑅
†

)𝑼𝑏
† =  

= 𝑼𝑏 (
𝑼𝐿 𝟎 𝟎
𝟎 𝑼𝐸𝑀 𝟎
𝟎 𝟎 𝑼𝑅

)(
�̃̃�𝐿
0𝑼𝐿

† 𝟎 𝟎

𝟎 𝟎 𝟎

𝟎 𝟎 �̃̃�𝑅
0𝑼𝑅

†

)𝑼𝑏
† = 𝑼𝑏 (

𝑼𝐿�̃̃�𝐿
0𝑼𝐿

† 𝟎 𝟎

𝟎 𝟎 𝟎

𝟎 𝟎 𝑼𝑅�̃̃�𝑅
0𝑼𝑅

†

)𝑼𝑏
† . (S49) 

Using Eqs. (S18) and (S49) we may now write: 

𝓛𝑠𝑜𝑢𝑟𝑐𝑒 = (

𝑰𝐿 −𝑺𝐿
−1𝑺𝐿,𝐸𝑀 𝟎

𝟎 𝑰𝐸𝑀 𝟎

𝟎 −𝑺𝑅
−1𝑺𝑅,𝐸𝑀 𝑰𝑅

) (
𝑼𝐿�̃̃�𝐿

0𝑼𝐿
† 𝟎 𝟎

𝟎 𝟎 𝟎

𝟎 𝟎 𝑼𝑅�̃̃�𝑅
0𝑼𝑅

†

)(

𝑰𝐿 𝟎 𝟎

−𝑺𝐸𝑀,𝐿𝑺𝐿
−1 𝑰𝐸𝑀 −𝑺𝐸𝑀,𝑅𝑺𝑅

−1

𝟎 𝟎 𝑰𝑅

) = 

= (

𝑰𝐿 −𝑺𝐿
−1𝑺𝐿,𝐸𝑀 𝟎

𝟎 𝑰𝐸𝑀 𝟎

𝟎 −𝑺𝑅
−1𝑺𝑅,𝐸𝑀 𝑰𝑅

) (
𝑼𝐿�̃̃�𝐿

0𝑼𝐿
† 𝟎 𝟎

𝟎 𝟎 𝟎

𝟎 𝟎 𝑼𝑅�̃̃�𝑅
0𝑼𝑅

†

) = (
𝑼𝐿�̃̃�𝐿

0𝑼𝐿
† 𝟎 𝟎

𝟎 𝟎 𝟎

𝟎 𝟎 𝑼𝑅�̃̃�𝑅
0𝑼𝑅

†

). (S50) 

Since �̃̃�𝐿/𝑅
0  are diagonal matrices, we obtain the following simplified expression for their transformed 

matrix elements: 
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(𝑼𝐿/𝑅�̃̃�𝐿/𝑅
0 𝑼𝐿/𝑅

† )
𝑖𝑗
=∑∑(𝑼𝐿/𝑅)𝑖𝑘

(�̃̃�𝐿/𝑅
0 )

𝑘𝑙
(𝑼𝐿/𝑅

† )
𝑙𝑗

𝑙𝑘

=∑∑(𝑼𝐿/𝑅)𝑖𝑘
𝑓(𝜀𝐿/𝑅

𝑘 , 𝜇𝐿/𝑅)𝛿𝑘𝑙(𝑼𝐿/𝑅
† )

𝑙𝑗
𝑙𝑘

 

= ∑ (𝑼𝐿/𝑅)𝑖𝑘
(𝑼𝐿/𝑅

† )
𝑘𝑗
𝑓(𝜀𝐿/𝑅

𝑘 , 𝜇𝐿/𝑅)𝑘 = ∑ (𝑼𝐿/𝑅)𝑖𝑘
(𝑼𝐿/𝑅)𝑗𝑘

∗
𝑓(𝜀𝐿/𝑅

𝑘 , 𝜇𝐿/𝑅)𝑘 , (S51) 

where 𝑓(𝜀, 𝜇) = [𝑒(𝜀−𝜇)/𝑘𝐵𝑇 + 1]
−1

 is the Fermi Dirac distribution, 𝑘𝐵 is Boltmann's constant, 𝑇 is the 

electronic temperature, 𝜀𝐿/𝑅
𝑘  is the 𝑘𝑡ℎ eigenvalue of the 𝐿/𝑅 lead, and 𝜇𝐿/𝑅 is the corresponding 

chemical potential. We note that in the present implementation we resort to Eq. (S39) for the propagation 

without considering the above simplifications. In practice, the propagation is performed as follows: 

1. Construct a junction model with predefined lead and extended molecule sections. 

2. Perform a ground state calculation to obtain the overlap matrix, 𝓢, and the initial 𝓗𝐾𝑆 and 𝓟 

matrices in the site representation. 

3. Build the matrix transformation 𝑼𝑏 (Eq. (S18)). 

4. Transform 𝓗𝐾𝑆 → �̃�𝐾𝑆 from the site representation to the block diagonal basis (Eq. (S19)). 

5. Calculate 𝑼𝐿/𝐸𝑀/𝑅 and 𝜺𝐿/𝐸𝑀/𝑅 by solving the generalized eigenstate equations for �̃�𝐾𝑆𝐿/𝐸𝑀/𝑅
 and 

�̃�𝐿/𝐸𝑀/𝑅, and transform �̃�𝐾𝑆 → �̃̃�𝐾𝑆 from the block diagonal basis to the state representation (Eq. 

(S28)). 

6. Construct the �̃̃�𝐿
0 and �̃̃�𝑅

0  blocks using the left and right lead model eigenstates, 𝜺𝐿/𝑅, obtained in 

step 5 above. 

7. Propagate 𝓟 (Eq. (S39)). 

8. Construct the new 𝓗KS from the new 𝓟. 

9. If the time has not exceeded the maximal time, return to step 4. 
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2. Driving rate sensitivity test 
 

While the driving rate, Γ, appearing in Eq. (11) of the main text can, in principle, be determined from 

the self-energy of the semi-infinite lead models,2 in the current implementation we use it as a free 

parameter. To determine the value to be used in the dynamical simulations, we broaden the discrete 

energy levels of the finite lead models with Lorentzian functions of different widths and adopt the 

Lorentzian width parameter that provides a density of states that represents well that of a semi-infinite 

system (not too narrow to provide a discrete spectrum and not too wide to artificially wash out the 

electronic structure features of the lead) as our Γ value for the time-dependent calculations.3–5 Figure S1 

compares the density of states of the hydrogen chain studied in Fig. 3 of the main text for several 

Lorentzian broadening widths, from which we select the value of ℏΓ = 0.61 eV for the dynamical 

calculations performed for the hydrogen chain junction in the main text. To verify that our results are 

relatively insensitive to this choice, we present in Figure S2: the steady-state current as a function of Γ 

showing that above a value of ~0.3 eV the steady-state current weakly depends on Γ within the relevant 

range, set by the density of states analysis discussed above.  

 

Figure S1: The artificially broadened density of states of the hydrogen chain junction model considered in Fig. 3 

of the main text for four Lorentzian widths. The inset shows the full broadened spectra. 
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Figure S2: Steady-state current of the hydrogen chain junction model considered in Fig. 3 of the main text 

calculated at a bias voltage of 0.2 V with different values of the driving rate 𝛤. The value used in the main text is 

marked by the yellow arrow. 

 

The broadened lead density of states for the graphitic junction model depicted in Fig. 1b of the main text 

appears in Fig. S3. The adopted value of ℏΓ = 1.09 eV provides adequate broadening of the energy 

levels to results in a density of states that satisfactorily represents that of the infinite nanoribbon lead 

electronic structure (Fig. S4). 

 

Figure S3: The artificially broadened density of states of the graphitic nano-ribbon junction model shown in Fig. 

1b of the main text for three Lorentzian widths. 
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Figure S4: The artificially broadened density of states (ℏ𝛤 = 1.09 𝑒𝑉) of the graphitic nano-ribbon junction 

model shown in Fig. 1b of the main text compared to that obtained using explicit periodic boundary conditions 

calculations. 
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3. Propagators 
 

The driven Liouville von Neumann equation of motion for the single-particle density matrix (Eq. (S39) 

above) could, in principle, be propagated using one of many available propagation schemes.6–10 

However, in this particular case, care must be taken, since the propagation involves a non-unitary time 

evolution, where the number of electrons is not constant. Hence, we have implemented and tested the 

numerical stability of several propagation schemes that can handle non-unitary propagation, including 

the fourth-order Runge-Kutta, Heun, and Ralston methods using a solver based on Butcher tableaux, as 

well as the implicit Euler, trapezoid, and midpoint methods with adaptive time steps11. For the latter 

three methods, the implicit equations are solved utilizing a simple fixed-point algorithm that 

automatically adapts the time step according to the number of iterations needed to satisfy the implicit 

equations in the fixed-point loop. More details regarding the algorithm are provided in the main text. 

Figure S5 shows the time-dependent current obtained using the various propagation schemes considered 

for the hydrogen chain of Fig. 3 of the main text under a bias voltage of 0.3 V and using a driving rate 

of ℏΓ = 0.61 𝑒𝑉. Among all non-unitary propagation methods considered, the currents dynamics 

obtained using the Heun and Ralston methods (not shown in the figure) diverged within 0.2 fs with the 

chosen parameters, whereas the implicit Euler demonstrated a superior stability for propagating the 

DLvN EOM. Therefore, this method was adopted to perform the calculations presented in the main text. 
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Figure S5: Comparison of the performance of different propagation schemes including the fourth-order Runge-

Kutta (using a solver based on Butcher tableaux), implicit Euler, trapezoid, and the midpoint propagators. The 

model system used for this comparison is the hydrogen chain studied in Fig. 3 in the main text, under a bias 

voltage of 0.3 V and a driving rate of ℏ𝛤 = 0.61 eV. 
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4. Analysis of the computational cost 
 

As stated in the main text, for the test cases considered in the present study, the most time-consuming 

step is the construction of the 𝑯𝐾𝑆 matrix by the Gaussian software, which involves the evaluation of 

the Hartree term and the real-space integration the exchange-correlation potential. The former task takes 

~1 second using 64 cores on an Intel Xeon CPU E5-2680 v4 2.40 GHz processor for the hydrogen chain 

junction model, and ~14 seconds on a 64 cores AMD EPYC 7H12 2.595 GHz processor for the GNR 

junction mode. The quadrature task takes ~3 seconds for the hydrogen chain and ~7 seconds for the 

GNR on the same platforms. Data I/O operations performed by the Python driver (e.g., reading the 𝑯𝐾𝑆 

matrix) require an extra ~1 sec for the hydrogen chain and ~3 sec for the GNR junction per time-step. 

Linear algebra operations involved in the calculation of the time-derivative of the density matrix, which 

are performed by the Phyton driver using NumPy, require ~0.25 seconds for the hydrogen chain and 

~2.4 seconds for the GNR on average. Finally, we note that since we use an implicit Euler propagation 

scheme that involves convergence iterations, each propagation step may require several 𝑯𝐾𝑆 evaluations 

and linear algebra operations. 
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5. Total current calculation 

Within the DLvN scheme the construction of the Kohn-Sham Hamiltonian and the propagation are 

performed in the site (atomic basis) representation (Eq. (S39)), whereas the boundary conditions are 

applied in the state representation. For calculating the electronic current flowing through the extended 

molecule section, however, one must transform to the block-diagonal representation. The reason for this 

is that in the site representation the off-diagonal overlap blocks mix the EM and driven lead section 

bases, making it unfeasible to calculate the pure EM current contribution. While in the state 

representation this problem is remedied, one should recall that in this representation we lack an equation 

for �̃̃�
̇
, having instead an equation for �̃̇�

̃
. This, in turn, prohibits the actual current calculation. In the 

block-diagonal basis, these two problems are eliminated as, on the one hand the off-diagonal overlap 

blocks vanish and on the other hand there is an explicit equation of motion for �̇̃�, as demonstrated below. 

 

We are interested in calculating the instantaneous particle current flowing between the 𝐿 and 𝑅 driven 

lead sections through the 𝐸𝑀 region. This can be obtained from the expression for the time derivative 

of the particle number in this region, �̇�𝐸𝑀. To this end, the relation 𝑁 = 𝑡𝑟(𝓟𝑺) can be used, where 𝑁 

is the total number of electrons, 𝑺 is the overlap matrix, and 𝓟 is the single particle density matrix. Note 

that this expression holds also for the case of fractional occupations encountered in our out-of-

equilibrium calculations (see SI section 6. Total number of electrons for the case of fractional 

occupations). Care should be taken, however, when taking the partial trace of this expression to obtain 

the number of electrons in the 𝐸𝑀 section, as the density matrix is complex Hermitian. In this case we 

have, 

[𝑡𝑟𝐸𝑀(𝓟𝑺)]
∗ = [ ∑ ∑𝓟𝜈𝜆𝑺𝜆𝜈

𝜆𝜈∈𝐸𝑀

]

∗

= ∑ ∑𝓟𝜈𝜆
∗ 𝑺𝜆𝜈

∗

𝜆𝜈∈𝐸𝑀

= ∑ ∑𝓟𝜆𝜈𝑺𝜆𝜈
𝜆𝜈∈𝐸𝑀

= ∑ ∑𝓟𝜆𝜈𝑺𝜈𝜆
𝜆𝜈∈𝐸𝑀

= 

= ∑ ∑ 𝑺𝜈𝜆𝓟𝜆𝜈𝜆𝜈∈𝐸𝑀 = 𝑡𝑟𝐸𝑀(𝑺𝓟),  (S52) 

 

and 

[𝑡𝑟𝐸𝑀(𝑺𝓟)]
∗ = [ ∑ ∑𝑺𝜈𝜆𝓟𝜆𝜈

𝜆𝜈∈𝐸𝑀

]

∗

= ∑ ∑𝑺𝜈𝜆
∗ 𝓟𝜆𝜈

∗

𝜆𝜈∈𝐸𝑀

= ∑ ∑𝑺𝜈𝜆𝓟𝜈𝜆

𝜆𝜈∈𝐸𝑀

= ∑ ∑𝑺𝜆𝜈𝓟𝜈𝜆

𝜆𝜈∈𝐸𝑀

= 

= ∑ ∑ 𝓟𝜈𝜆𝑺𝜆𝜈𝜆𝜈∈𝐸𝑀 = 𝑡𝑟𝐸𝑀(𝓟𝑺),  (S53) 

where we used the fact that 𝓟 is Hermitian and 𝑺 is real and symmetric. We therefore see that 𝑡𝑟(𝓟𝑺) 

is not necessarily real and therefore cannot represent the particle number in the 𝐸𝑀 section. This can be 
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remedied by using the Löwdin symmetric version of the trace formula: 

 𝑁 = 𝑡𝑟 (𝑺
1

2𝓟𝑺
1

2), (S54) 

whose partial trace is real: 

[𝑡𝑟𝐸𝑀 (𝑺
1
2𝓟𝑺

1
2)]

∗

= [ ∑ ∑∑𝑺𝜇𝜈

1
2 𝓟𝜈𝜆𝑺𝜆𝜇

1
2

𝜆𝜈𝜇∈𝐸𝑀

]

∗

= ∑ ∑∑𝑺𝜇𝜈

1
2

∗

𝓟𝜈𝜆
∗ 𝑺

𝜆𝜇

1
2

∗

𝜆𝜈𝜇∈𝐸𝑀

= 

= ∑ ∑ ∑ 𝑺𝜇𝜈

1

2 𝓟𝜆𝜈𝑺𝜆𝜇

1

2
𝜆𝜈𝜇∈𝐸𝑀 = ∑ ∑ ∑ 𝑺

𝜆𝜇

1

2 𝓟𝜆𝜈𝑺𝜇𝜈

1

2
𝜆𝜈𝜇∈𝐸𝑀 = 𝑡𝑟𝐸𝑀 (𝑺

1

2𝓟𝑺
1

2). (S55) 

The full trace obeys the cyclic property so we can write: 

 𝑁 = 𝑡𝑟 (𝑺
1

2𝓟𝑺
1

2) = 𝑡𝑟(𝓟𝑺) = 𝑡𝑟(𝑺𝓟) =
1

2
[𝑡𝑟(𝓟𝑺) + 𝑡𝑟(𝑺𝓟)]. (S56) 

The reason for introducing the last term in Eq. (S56) is that per Eqs. (S52) and (S53) its partial trace over 

the 𝐸𝑀 section is real. This expression can be transformed to the block diagonal representation using 

the transformations of Eqs. (S18) and (S19) in SI section 1: 

𝑁(𝑡) =
1

2
[𝑡𝑟(𝓟𝑺) + 𝑡𝑟(𝑺𝓟)] = 

=
1

2
[𝑡𝑟 (𝑼𝑏�̃�(𝑡)𝑼𝑏

†(𝑼𝑏
†)
−1
�̃�𝑼𝑏

−1) + 𝑡𝑟 ((𝑼𝑏
†)
−1
�̃�𝑼𝑏

−1𝑼𝑏�̃�(𝑡)𝑼𝑏
†)] = (S57) 

=
1

2
[𝑡𝑟(𝑼𝑏�̃�(𝑡)�̃�𝑼𝑏

−1) + 𝑡𝑟 ((𝑼𝑏
†)
−1
�̃��̃�(𝑡)𝑼𝑏

†)] =
1

2
[𝑡𝑟(�̃�(𝑡)�̃�𝑼𝑏

−1𝑼𝑏) + 𝑡𝑟 (�̃��̃�(𝑡)𝑼𝑏
†(𝑼𝑏

†)
−1
)] = 

=
1

2
[𝑡𝑟(�̃�(𝑡)�̃�) + 𝑡𝑟 (�̃��̃�(𝑡))] 

Since the block diagonalization transformation only rotates the 𝐸𝑀 basis to make it diagonal to the 𝐿 

and 𝑅 bases without modifying the latter (while readjusting the 𝐿/𝐸𝑀 and 𝑅/𝐸𝑀 Kohn-Sham 

Hamiltonian coupling blocks), the partial sums over the 𝐿, 𝐸𝑀, and 𝑅 indices retain their spatial 

interpretation as belonging to the corresponding system sections. We can, therefore, write the full trace 

as the sum of partial traces over the separate system sections: 

𝑁(𝑡) =
1

2
[𝑡𝑟(�̃�(𝑡)�̃�) + 𝑡𝑟 (�̃��̃�(𝑡))] =  (S58) 

=
1

2
{[𝑡𝑟𝐿(�̃�(𝑡)�̃�) + 𝑡𝑟𝐿 (�̃��̃�(𝑡))] + [𝑡𝑟𝐸𝑀(�̃�(𝑡)�̃�) + 𝑡𝑟𝐸𝑀 (�̃��̃�(𝑡))] + [𝑡𝑟𝑅(�̃�(𝑡)�̃�) + 𝑡𝑟𝑅 (�̃��̃�(𝑡))]}, 

where we identify: 

 𝑁𝛼=𝐿,𝐸𝑀,𝑅(𝑡) =
1

2
[𝑡𝑟𝛼(�̃�(𝑡)�̃�) + 𝑡𝑟𝛼 (�̃��̃�(𝑡))] =

1

2
𝑡𝑟𝛼[�̃�(𝑡)�̃� + �̃��̃�(𝑡)] (S59) 

as the instantaneous number of electrons in the different sections. 

Since �̃� is time independent (for fixed nuclei positions) we may express the temporal change in the 
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number of particles in the 𝐸𝑀 section as: 

 �̇�𝐸𝑀 =
1

2
𝑡𝑟𝐸𝑀 (�̇̃��̃� + �̃��̇̃�). (S60) 

As explained above, to obtain an expression for the average total current flowing through the 𝐸𝑀 section 

we now need to write the DLvN EOM for �̃� in the block diagonal basis. This can be achieved by 

transforming the DLvN EOM from the state representation, where the boundary conditions are readily 

applied, to the block diagonal basis (see Eq. 11 of the main text). The DLvN EOM in the state 

representation is given by: 

 �̃̇�
̃
= −𝑖 [�̃̃�𝐾𝑆, �̃̃�] − 𝛤

(

 
 
�̃̃�𝐿 − �̃̃�𝐿

0 1

2
�̃̃�𝐿,𝐸𝑀 �̃̃�𝐿𝑅

1

2
�̃̃�𝐸𝑀,𝐿 𝟎

1

2
�̃̃�𝐸𝑀,𝑅

�̃̃�𝑅𝐿
1

2
�̃̃�𝑅,𝐸𝑀 �̃̃�𝑅 − �̃̃�𝑅

0

)

 
 
. (S61) 

Using the back transformation from the state- to the block diagonal representation (the inverse 

transformation of Eq. (S28) of SI section 1), and the fact that 𝑼𝑏 is time-independent (see Eq. (S18) of 

SI section 1) so that �̇̃� =
𝑑

𝑑𝑡
[𝑼𝑏

−1𝓟(𝑼𝑏
†)
−1
] = 𝑼𝑏

−1�̇�(𝑼𝑏
†)
−1
= �̃̇�, we may write: 

�̇̃� = �̃̇� = 𝑼�̃̇�
̃
𝑼† = −𝑖𝑼 [�̃̃�𝐾𝑆, �̃̃�] 𝑼

† − 𝛤𝑼

(

 
 
�̃̃�𝐿 − �̃̃�𝐿

0 1

2
�̃̃�𝐿,𝐸𝑀 �̃̃�𝐿𝑅

1

2
�̃̃�𝐸𝑀,𝐿 𝟎

1

2
�̃̃�𝐸𝑀,𝑅

�̃̃�𝑅𝐿
1

2
�̃̃�𝑅,𝐸𝑀 �̃̃�𝑅 − �̃̃�𝑅

0

)

 
 
𝑼†. (S62) 

We shall first transform the driving term on the right-hand side from the state- to the block diagonal 

representation. To this end, we rewrite it in the following form: 

−Γ𝑼

(

 
 
 
�̃̃�𝐿 − �̃̃�𝐿

0
1

2
�̃̃�𝐿,𝐸𝑀 �̃̃�𝐿𝑅

1

2
�̃̃�𝐸𝑀,𝐿 𝟎

1

2
�̃̃�𝐸𝑀,𝑅

�̃̃�𝑅𝐿

1

2
�̃̃�𝑅,𝐸𝑀 �̃̃�𝑅 − �̃̃�𝑅

0
)

 
 
 
𝑼† = −

Γ

2
𝑼(

𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

) �̃̃�𝑼† −
Γ

2
𝑼�̃̃� (

𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

)𝑼† + 

+
𝛤

2
𝑼(

𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

)(

�̃̃�𝐿
0 𝟎 𝟎

𝟎 �̃̃�𝐸𝑀
0 𝟎

𝟎 𝟎 �̃̃�𝑅
0

)𝑼† +
𝛤

2
𝑼(

�̃̃�𝐿
0 𝟎 𝟎

𝟎 �̃̃�𝐸𝑀
0 𝟎

𝟎 𝟎 �̃̃�𝑅
0

)(
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

)𝑼†. (S63) 

The first term on the right-hand-side in Eq. (S63) reads: 

𝑼(
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

) �̃̃�𝑼† = 𝑼(
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

)𝑼−𝟏𝑼�̃̃�𝑼† = 
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= (
𝑼𝐿 𝟎 𝟎
𝟎 𝑼𝐸𝑀 𝟎
𝟎 𝟎 𝑼𝑅

)(
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

)(

𝑼𝐿
−1 𝟎 𝟎

𝟎 𝑼𝐸𝑀
−1 𝟎

𝟎 𝟎 𝑼𝑅
−1

)�̃� = (S64) 

= (
𝑼𝐿 𝟎 𝟎
𝟎 𝑼𝐸𝑀 𝟎
𝟎 𝟎 𝑼𝑅

)(
𝑼𝐿
−1 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑼𝑅

−1
) �̃� = (

𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

) �̃� = 

= (
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

)(

�̃�𝐿 �̃�𝐿,𝐸𝑀 �̃�𝐿,𝑅

�̃�𝐸𝑀,𝐿 �̃�𝐸𝑀 �̃�𝐸𝑀,𝑅

�̃�𝑅,𝐿 �̃�𝑅,𝐸𝑀 �̃�𝑅

) = (
�̃�𝐿 �̃�𝐿,𝐸𝑀 �̃�𝐿,𝑅

𝟎 𝟎 𝟎
�̃�𝑅,𝐿 �̃�𝑅,𝐸𝑀 �̃�𝑅

). 

Similarly, the second term on the right-hand-side reads: 

𝑼�̃̃�(
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

)𝑼† = 𝑼�̃̃�𝑼†(𝑼†)−1 (
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

)𝑼† = 

= �̃�

(

 
 
(𝑼𝐿

†)
−1

𝟎 𝟎

𝟎 (𝑼𝐸𝑀
† )

−1
𝟎

𝟎 𝟎 (𝑼𝑅
†)

−1

)

 
 
(
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

)(

𝑼𝐿
† 𝟎 𝟎

𝟎 𝑼𝐸𝑀
† 𝟎

𝟎 𝟎 𝑼𝑅
†

) = (S65) 

= �̃�

(

 
 
(𝑼𝐿

†)
−1

𝟎 𝟎

𝟎 (𝑼𝐸𝑀
† )

−1
𝟎

𝟎 𝟎 (𝑼𝑅
†)

−1

)

 
 
(
𝑼𝐿
† 𝟎 𝟎

𝟎 𝟎 𝟎

𝟎 𝟎 𝑼𝑅
†
) = �̃�(

𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

) = 

= (

�̃�𝐿 �̃�𝐿,𝐸𝑀 �̃�𝐿,𝑅

�̃�𝐸𝑀,𝐿 �̃�𝐸𝑀 �̃�𝐸𝑀,𝑅

�̃�𝑅,𝐿 �̃�𝑅,𝐸𝑀 �̃�𝑅

)(
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

) = (

�̃�𝐿 𝟎 �̃�𝐿,𝑅

�̃�𝐸𝑀,𝐿 𝟎 �̃�𝐸𝑀,𝑅

�̃�𝑅,𝐿 𝟎 �̃�𝑅

). 

The third term gives: 

𝑼(
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

)(

�̃̃�𝐿
0 𝟎 𝟎

𝟎 �̃̃�𝐸𝑀
0 𝟎

𝟎 𝟎 �̃̃�𝑅
0

)𝑼† = (
𝑼𝐿 𝟎 𝟎
𝟎 𝑼𝐸𝑀 𝟎
𝟎 𝟎 𝑼𝑅

)(
�̃̃�𝐿
0 𝟎 𝟎
𝟎 𝟎 𝟎

𝟎 𝟎 �̃̃�𝑅
0

)(

𝑼𝐿
† 𝟎 𝟎

𝟎 𝑼𝐸𝑀
† 𝟎

𝟎 𝟎 𝑼𝑅
†

) = 

= (
𝑼𝐿 𝟎 𝟎
𝟎 𝑼𝐸𝑀 𝟎
𝟎 𝟎 𝑼𝑅

)(
�̃̃�𝐿
0𝑼𝐿

† 𝟎 𝟎

𝟎 𝟎 𝟎

𝟎 𝟎 �̃̃�𝑅
0𝑼𝑅

†

) = (
𝑼𝐿�̃̃�𝐿

0𝑼𝐿
† 𝟎 𝟎

𝟎 𝟎 𝟎

𝟎 𝟎 𝑼𝑅�̃̃�𝑅
0𝑼𝑅

†

) ≡ (
�̃�𝐿
0 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 �̃�𝑅

0
), (S66) 

and the fourth term gives: 

𝑼(

�̃̃�𝐿
0 𝟎 𝟎

𝟎 �̃̃�𝐸𝑀
0 𝟎

𝟎 𝟎 �̃̃�𝑅
0

)(
𝑰𝐿 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑅

)𝑼† = (
𝑼𝐿 𝟎 𝟎
𝟎 𝑼𝐸𝑀 𝟎
𝟎 𝟎 𝑼𝑅

)(
�̃̃�𝐿
0 𝟎 𝟎
𝟎 𝟎 𝟎

𝟎 𝟎 �̃̃�𝑅
0

)(

𝑼𝐿
† 𝟎 𝟎

𝟎 𝑼𝐸𝑀
† 𝟎

𝟎 𝟎 𝑼𝑅
†

) = 
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= (
𝑼𝐿 𝟎 𝟎
𝟎 𝑼𝐸𝑀 𝟎
𝟎 𝟎 𝑼𝑅

)(
�̃̃�𝐿
0𝑼𝐿

† 𝟎 𝟎

𝟎 𝟎 𝟎

𝟎 𝟎 �̃̃�𝑅
0𝑼𝑅

†

) = (
𝑼𝐿�̃̃�𝐿

0𝑼𝐿
† 𝟎 𝟎

𝟎 𝟎 𝟎

𝟎 𝟎 𝑼𝑅�̃̃�𝑅
0𝑼𝑅

†

) ≡ (
�̃�𝐿
0 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 �̃�𝑅

0
). (S67) 

Summing all four contributions to the driving term we thus obtain: 

−Γ𝑼

(

 
 
 
�̃̃�𝐿 − �̃̃�𝐿

0
1

2
�̃̃�𝐿,𝐸𝑀 �̃̃�𝐿𝑅

1

2
�̃̃�𝐸𝑀,𝐿 𝟎

1

2
�̃̃�𝐸𝑀,𝑅

�̃̃�𝑅𝐿

1

2
�̃̃�𝑅,𝐸𝑀 �̃̃�𝑅 − �̃̃�𝑅

0
)

 
 
 
𝑼† = 

= −
Γ

2
(
�̃�𝐿 �̃�𝐿,𝐸𝑀 �̃�𝐿,𝑅

𝟎 𝟎 𝟎
�̃�𝑅,𝐿 �̃�𝑅,𝐸𝑀 �̃�𝑅

) −
Γ

2
(

�̃�𝐿 𝟎 �̃�𝐿,𝑅

�̃�𝐸𝑀,𝐿 𝟎 �̃�𝐸𝑀,𝑅

�̃�𝑅,𝐿 𝟎 �̃�𝑅

)+
Γ

2
(
�̃�𝐿
0 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 �̃�𝑅

0
) +

Γ

2
(
�̃�𝐿
0 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 �̃�𝑅

0
) = 

= −Γ

(

 
 
�̃�𝐿 − �̃�𝐿

0 1

2
�̃�𝐿,𝐸𝑀 �̃�𝐿,𝑅

1

2
�̃�𝐸𝑀,𝐿 𝟎

1

2
�̃�𝐸𝑀,𝑅

�̃�𝑅,𝐿
1

2
�̃�𝑅,𝐸𝑀 �̃�𝑅 − �̃�𝑅

0

)

 
 
.  (S68) 

We now turn to treat the commutator term in Eq. (S62): 

𝑼 [�̃̃�𝐾𝑆, �̃̃�] 𝑼
† = 𝑼�̃̃�𝐾𝑆�̃̃�𝑼

† − 𝑼�̃̃��̃̃�𝐾𝑆𝑼
† = 

= 𝑼𝑼†�̃�𝐾𝑆𝑼𝑼
−1�̃�(𝑼†)−1𝑼† −𝑼𝑼−1�̃�(𝑼†)−1𝑼†�̃�𝐾𝑆𝑼𝑼

† = 𝑼𝑼†�̃�𝐾𝑆�̃� − �̃��̃�𝐾𝑆𝑼𝑼
†. (S69) 

Since 𝑼 obeys the relation 𝑼†�̃�𝑼 = 𝑰, we may write �̃� = (𝑼†)−1𝑼−1 = (𝑼𝑼†)−1, such that 𝑼𝑼† =

�̃�−1. Therefore, we have: 

 𝑼[�̃̃�𝐾𝑆, �̃̃�] 𝑼
† = �̃�−1�̃�𝐾𝑆�̃� − �̃��̃�𝐾𝑆�̃�

−1. (S70) 

Collecting the terms of �̇̃� (Eqs. (S62), (S68), and (S70)) we therefore obtain: 

 �̇̃� = −𝑖(�̃�−𝟏�̃�𝐾𝑆�̃� − �̃��̃�𝐾𝑆�̃�
−𝟏) − Γ

(

 
 
�̃�𝐿 − �̃�𝐿

0 1

2
�̃�𝐿,𝐸𝑀 �̃�𝐿,𝑅

1

2
�̃�𝐸𝑀,𝐿 𝟎

1

2
�̃�𝐸𝑀,𝑅

�̃�𝑅,𝐿
1

2
�̃�𝑅,𝐸𝑀 �̃�𝑅 − �̃�𝑅

0

)

 
 
. (S71) 

Substituting this in Eq. (S60) for the time derivative of the particle number in the 𝐸𝑀 section yields: 

�̇�𝐸𝑀 =
1

2
𝑡𝑟𝐸𝑀 (�̇̃��̃� + �̃��̇̃�) =  

= −
𝑖

2
𝑡𝑟𝐸𝑀[(�̃�

−1�̃�𝐾𝑆�̃� − �̃��̃�𝐾𝑆�̃�
−1)�̃� + �̃�(�̃�−1�̃�𝐾𝑆�̃� − �̃��̃�𝐾𝑆�̃�

−1)] − (S72) 
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−
Γ

2
𝑡𝑟𝐸𝑀

[
 
 
 
 
 

(

 
 
 
�̃�𝐿 − �̃�𝐿

0
1

2
�̃�𝐿,𝐸𝑀 �̃�𝐿,𝑅

1

2
�̃�𝐸𝑀,𝐿 𝟎

1

2
�̃�𝐸𝑀,𝑅

�̃�𝑅,𝐿

1

2
�̃�𝑅,𝐸𝑀 �̃�𝑅 − �̃�𝑅

0
)

 
 
 
�̃� + �̃�

(

 
 
 
�̃�𝐿 − �̃�𝐿

0
1

2
�̃�𝐿,𝐸𝑀 �̃�𝐿,𝑅

1

2
�̃�𝐸𝑀,𝐿 𝟎

1

2
�̃�𝐸𝑀,𝑅

�̃�𝑅,𝐿

1

2
�̃�𝑅,𝐸𝑀 �̃�𝑅 − �̃�𝑅

0
)

 
 
 

]
 
 
 
 
 

. 

The overlap matrix in the block diagonal basis assumes the following form: 

�̃� ≡ 𝑼𝑏
†𝓢𝑼𝑏 = 

= (

𝑰𝐿 𝟎 𝟎

−𝑺𝐸𝑀,𝐿𝑺𝐿
−1 𝑰𝐸𝑀 −𝑺𝐸𝑀,𝑅𝑺𝑅

−1

𝟎 𝟎 𝑰𝑅

)(

𝑺𝐿 𝑺𝐿,𝐸𝑀 𝟎

𝑺𝐸𝑀,𝐿 𝑺𝐸𝑀 𝑺𝐸𝑀,𝑅
𝟎 𝑺𝑅,𝐸𝑀 𝑺𝑅

)(

𝑰𝐿 −𝑺𝐿
−1𝑺𝐿,𝐸𝑀 𝟎

𝟎 𝑰𝐸𝑀 𝟎

𝟎 −𝑺𝑅
−1𝑺𝑅,𝐸𝑀 𝑰𝑅

) = 

= (

𝑰𝐿 𝟎 𝟎

−𝑺𝐸𝑀,𝐿𝑺𝐿
−1 𝑰𝐸𝑀 −𝑺𝐸𝑀,𝑅𝑺𝑅

−1

𝟎 𝟎 𝑰𝑅

)(

𝑺𝐿 𝟎 𝟎

𝑺𝐸𝑀,𝐿 −𝑺𝐸𝑀,𝐿𝑺𝐿
−1𝑺𝐿,𝐸𝑀 + 𝑺𝐸𝑀 − 𝑺𝐸𝑀,𝑅𝑺𝑅

−1𝑺𝑅,𝐸𝑀 𝑺𝐸𝑀,𝑅
𝟎 𝟎 𝑺𝑅

) = 

= (

𝑺𝐿 𝟎 𝟎

𝟎 −𝑺𝐸𝑀,𝐿𝑺𝐿
−1𝑺𝐿,𝐸𝑀 + 𝑺𝐸𝑀 − 𝑺𝐸𝑀,𝑅𝑺𝑅

−1𝑺𝑅,𝐸𝑀 𝟎

𝟎 𝟎 𝑺𝑅

) = (S73) 

= (

𝑺𝐿 𝟎 𝟎

𝟎 �̃�𝐸𝑀 𝟎
𝟎 𝟎 𝑺𝑅

), 

where we have defined �̃�𝐸𝑀 ≡ 𝑺𝐸𝑀 − 𝑺𝐸𝑀,𝐿𝑺𝐿
−1𝑺𝐿,𝐸𝑀 − 𝑺𝐸𝑀,𝑅𝑺𝑅

−1𝑺𝑅,𝐸𝑀. We can now use this to 

evaluate the different terms appearing in Eq. (S72). Starting from the driving term contributions we have: 

(

 
 
 
�̃�𝐿 − �̃�𝐿

0
1

2
�̃�𝐿,𝐸𝑀 �̃�𝐿,𝑅

1

2
�̃�𝐸𝑀,𝐿 𝟎

1

2
�̃�𝐸𝑀,𝑅

�̃�𝑅,𝐿

1

2
�̃�𝑅,𝐸𝑀 �̃�𝑅 − �̃�𝑅

0
)

 
 
 
�̃� =

(

 
 
 
�̃�𝐿 − �̃�𝐿

0
1

2
�̃�𝐿,𝐸𝑀 �̃�𝐿,𝑅

1

2
�̃�𝐸𝑀,𝐿 𝟎

1

2
�̃�𝐸𝑀,𝑅

�̃�𝑅,𝐿

1

2
�̃�𝑅,𝐸𝑀 �̃�𝑅 − �̃�𝑅

0
)

 
 
 
(

𝑺𝐿 𝟎 𝟎

𝟎 �̃�𝐸𝑀 𝟎
𝟎 𝟎 𝑺𝑅

) = 

=

(

 
 
(�̃�𝐿 − �̃�𝐿

0)𝑺𝐿
1

2
�̃�𝐿,𝐸𝑀�̃�𝐸𝑀 �̃�𝐿,𝑅𝑺𝑅

1

2
�̃�𝐸𝑀,𝐿𝑺𝐿 𝟎

1

2
�̃�𝐸𝑀,𝑅𝑺𝑅

�̃�𝑅,𝐿𝑺𝐿
1

2
�̃�𝑅,𝐸𝑀�̃�𝐸𝑀 (�̃�𝑅 − �̃�𝑅

0)𝑺𝑅)

 
 
, (S74) 

 

and 
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�̃�

(

 
 
 
�̃�𝐿 − �̃�𝐿

0
1

2
�̃�𝐿,𝐸𝑀 �̃�𝐿,𝑅

1

2
�̃�𝐸𝑀,𝐿 𝟎

1

2
�̃�𝐸𝑀,𝑅

�̃�𝑅,𝐿

1

2
�̃�𝑅,𝐸𝑀 �̃�𝑅 − �̃�𝑅

0
)

 
 
 
= (

𝑺𝐿 𝟎 𝟎

𝟎 �̃�𝐸𝑀 𝟎
𝟎 𝟎 𝑺𝑅

)

(

 
 
 
�̃�𝐿 − �̃�𝐿

0
1

2
�̃�𝐿,𝐸𝑀 �̃�𝐿,𝑅

1

2
�̃�𝐸𝑀,𝐿 𝟎

1

2
�̃�𝐸𝑀,𝑅

�̃�𝑅,𝐿

1

2
�̃�𝑅,𝐸𝑀 �̃�𝑅 − �̃�𝑅

0
)

 
 
 
= 

=

(

 
 
𝑺𝐿(�̃�𝐿 − �̃�𝐿

0)
1

2
�̃�𝐿�̃�𝐿,𝐸𝑀 𝑺𝐿�̃�𝐿,𝑅

1

2
𝑺𝐸𝑀�̃�𝐸𝑀,𝐿 𝟎

1

2
𝑺𝐸𝑀�̃�𝐸𝑀,𝑅

𝑺𝑅�̃�𝑅,𝐿
1

2
�̃�𝑅�̃�𝑅,𝐸𝑀 𝑺𝑅(�̃�𝑅 − �̃�𝑅

0)
)

 
 
. (S75) 

Altogether, the driving term contribution to �̇�𝐸𝑀 in Eq. (S72) is given by (Eqs. (S74) and (S75)): 

−
Γ

2
𝑡𝑟𝐸𝑀

[
 
 
 
 

(

 
 
�̃�𝐿 − �̃�𝐿

0 1

2
�̃�𝐿,𝐸𝑀 �̃�𝐿,𝑅

1

2
�̃�𝐸𝑀,𝐿 𝟎

1

2
�̃�𝐸𝑀,𝑅

�̃�𝑅,𝐿
1

2
�̃�𝑅,𝐸𝑀 �̃�𝑅 − �̃�𝑅

0

)

 
 
�̃� + �̃�

(

 
 
�̃�𝐿 − �̃�𝐿

0 1

2
�̃�𝐿,𝐸𝑀 �̃�𝐿,𝑅

1

2
�̃�𝐸𝑀,𝐿 𝟎

1

2
�̃�𝐸𝑀,𝑅

�̃�𝑅,𝐿
1

2
�̃�𝑅,𝐸𝑀 �̃�𝑅 − �̃�𝑅

0

)

 
 

]
 
 
 
 

=  

= −
Γ

2
𝑡𝑟𝐸𝑀

[
 
 
 
 

(

 
 
(�̃�𝐿 − �̃�𝐿

0)𝑺𝐿 + 𝑺𝐿(�̃�𝐿 − �̃�𝐿
0)

1

2
(�̃�𝐿,𝐸𝑀�̃�𝐸𝑀 + �̃�𝐿�̃�𝐿,𝐸𝑀) �̃�𝐿,𝑅𝑺𝑅 + 𝑺𝐿�̃�𝐿,𝑅

1

2
(�̃�𝐸𝑀,𝐿𝑺𝐿 + 𝑺𝐸𝑀�̃�𝐸𝑀,𝐿) 𝟎

1

2
(�̃�𝐸𝑀,𝑅𝑺𝑅 + 𝑺𝐸𝑀�̃�𝐸𝑀,𝑅)

�̃�𝑅,𝐿𝑺𝐿 + 𝑺𝑅�̃�𝑅,𝐿
1

2
(�̃�𝑅,𝐸𝑀�̃�𝐸𝑀 + �̃�𝑅�̃�𝑅,𝐸𝑀) (�̃�𝑅 − �̃�𝑅

0)𝑺𝑅 + 𝑺𝑅(�̃�𝑅 − �̃�𝑅
0)
)

 
 

]
 
 
 
 

  

= −
Γ

2
𝑡𝑟𝐸𝑀

(

 
 

[(�̃�𝐿 − �̃�𝐿
0), 𝑺𝐿]+

1

2
(�̃�𝐿,𝐸𝑀�̃�𝐸𝑀 + �̃�𝐿�̃�𝐿,𝐸𝑀) �̃�𝐿,𝑅𝑺𝑅 + 𝑺𝐿�̃�𝐿,𝑅

1

2
(�̃�𝐸𝑀,𝐿𝑺𝐿 + 𝑺𝐸𝑀�̃�𝐸𝑀,𝐿) 𝟎

1

2
(�̃�𝐸𝑀,𝑅𝑺𝑅 + 𝑺𝐸𝑀�̃�𝐸𝑀,𝑅)

�̃�𝑅,𝐿𝑺𝐿 + 𝑺𝑅�̃�𝑅,𝐿
1

2
(�̃�𝑅,𝐸𝑀�̃�𝐸𝑀 + �̃�𝑅�̃�𝑅,𝐸𝑀) [(�̃�𝑅 − �̃�𝑅

0), 𝑺𝑅]+ )

 
 

 (S76) 

= 0, 

where [𝑨, 𝑩]+ = 𝑨𝑩 + 𝑩𝑨 is the anticommutator. We therefore see that the driving term does not 

contribute to the expression of the total instantaneous current flowing through the 𝐸𝑀 section, as 

expected. 

Finally, we evaluate the contribution of the first term on the right-hand side of Eq. (S72): 

−
𝑖

2
𝑡𝑟𝐸𝑀[(�̃�

−1�̃�𝐾𝑆�̃� − �̃��̃�𝐾𝑆�̃�
−1)�̃� + �̃�(�̃�−1�̃�𝐾𝑆�̃� − �̃��̃�𝐾𝑆�̃�

−1)] = 

= −
𝑖

2
𝑡𝑟𝐸𝑀[�̃�

−1�̃�𝐾𝑆�̃��̃� − �̃��̃��̃�𝐾𝑆�̃�
−1 + �̃�𝐾𝑆�̃� − �̃��̃�𝐾𝑆]. (S77) 

The first term reads: 

�̃�−1�̃�𝐾𝑆�̃��̃� = 

= (

𝑺𝐿
−1 𝟎 𝟎

𝟎 �̃�𝐸𝑀
−1 𝟎

𝟎 𝟎 𝑺𝑅
−1

)(

𝑯𝐿 �̃�𝐿,𝐸𝑀 𝟎

�̃�𝐸𝑀,𝐿 �̃�𝐸𝑀 �̃�𝐸𝑀,𝑅

𝟎 �̃�𝑅,𝐸𝑀 𝑯𝑅

)(

�̃�𝐿 �̃�𝐿,𝐸𝑀 �̃�𝐿𝑅

�̃�𝐸𝑀,𝐿 �̃�𝐸𝑀 �̃�𝐸𝑀,𝑅

�̃�𝑅,𝐿 �̃�𝑅,𝐸𝑀 �̃�𝑅

)(

𝑺𝐿 𝟎 𝟎

𝟎 �̃�𝐸𝑀 𝟎
𝟎 𝟎 𝑺𝑅

) = 
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= (

𝑺𝐿
−1𝑯𝐿 𝑺𝐿

−1�̃�𝐿,𝐸𝑀 𝟎

�̃�𝐸𝑀
−1 �̃�𝐸𝑀,𝐿 �̃�𝐸𝑀

−1 �̃�𝐸𝑀 �̃�𝐸𝑀
−1 �̃�𝐸𝑀,𝑅

𝟎 𝑺𝑅
−1�̃�𝑅,𝐸𝑀 𝑺𝑅

−1𝑯𝑅

)(

�̃�𝐿𝑺𝐿 �̃�𝐿,𝐸𝑀�̃�𝐸𝑀 �̃�𝐿𝑅𝑺𝑅

�̃�𝐸𝑀,𝐿𝑺𝐿 �̃�𝐸𝑀�̃�𝐸𝑀 �̃�𝐸𝑀,𝑅𝑺𝑅

�̃�𝑅,𝐿𝑺𝐿 �̃�𝑅,𝐸𝑀�̃�𝐸𝑀 �̃�𝑅𝑺𝑅

) = (S78) 

= (

𝑺𝐿
−1𝑯𝐿�̃�𝐿𝑺𝐿 + 𝑺𝐿

−1�̃�𝐿,𝐸𝑀�̃�𝐸𝑀,𝐿𝑺𝐿 𝑺𝐿
−1𝑯𝐿�̃�𝐿,𝐸𝑀�̃�𝐸𝑀 + 𝑺𝐿

−1�̃�𝐿,𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀 𝑺𝐿
−1𝑯𝐿�̃�𝐿𝑅𝑺𝑅 + 𝑺𝐿

−1�̃�𝐿,𝐸𝑀�̃�𝐸𝑀,𝑅𝑺𝑅

�̃�𝐸𝑀
−1 �̃�𝐸𝑀,𝐿�̃�𝐿𝑺𝐿 + �̃�𝐸𝑀

−1 �̃�𝐸𝑀�̃�𝐸𝑀,𝐿𝑺𝐿 + �̃�𝐸𝑀
−1 �̃�𝐸𝑀,𝑅�̃�𝑅,𝐿𝑺𝐿 �̃�𝐸𝑀

−1 �̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀�̃�𝐸𝑀 + �̃�𝐸𝑀
−1 �̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀 + �̃�𝐸𝑀

−1 �̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀�̃�𝐸𝑀 �̃�𝐸𝑀
−1 �̃�𝐸𝑀,𝐿�̃�𝐿𝑅𝑺𝑅 + �̃�𝐸𝑀

−1 �̃�𝐸𝑀�̃�𝐸𝑀,𝑅𝑺𝑅 + �̃�𝐸𝑀
−1 �̃�𝐸𝑀,𝑅�̃�𝑅𝑺𝑅

𝑺𝑅
−1�̃�𝑅,𝐸𝑀�̃�𝐸𝑀,𝐿𝑺𝐿 + 𝑺𝑅

−1𝑯𝑅�̃�𝑅,𝐿𝑺𝐿 𝑺𝑅
−1�̃�𝑅,𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀 + 𝑺𝑅

−1𝑯𝑅�̃�𝑅,𝐸𝑀�̃�𝐸𝑀 𝑺𝑅
−1�̃�𝑅,𝐸𝑀�̃�𝐸𝑀,𝑅𝑺𝑅 + 𝑺𝑅

−1𝑯𝑅�̃�𝑅𝑺𝑅

), 

whose 𝐸𝑀 block is: 

(�̃�−1�̃�𝐾𝑆�̃��̃�)𝐸𝑀 = �̃�𝐸𝑀
−1 �̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀�̃�𝐸𝑀 + �̃�𝐸𝑀

−1 �̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀 + �̃�𝐸𝑀
−1 �̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀�̃�𝐸𝑀 . (S79) 

The second term reads: 

�̃��̃��̃�𝐾𝑆�̃�
−1 = 

= (

𝑺𝐿 𝟎 𝟎

𝟎 �̃�𝐸𝑀 𝟎
𝟎 𝟎 𝑺𝑅

)(

�̃�𝐿 �̃�𝐿,𝐸𝑀 �̃�𝐿𝑅

�̃�𝐸𝑀,𝐿 �̃�𝐸𝑀 �̃�𝐸𝑀,𝑅

�̃�𝑅,𝐿 �̃�𝑅,𝐸𝑀 �̃�𝑅

)(

𝑯𝐿 �̃�𝐿,𝐸𝑀 𝟎

�̃�𝐸𝑀,𝐿 �̃�𝐸𝑀 �̃�𝐸𝑀,𝑅

𝟎 �̃�𝑅,𝐸𝑀 𝑯𝑅

)(

𝑺𝐿
−1 𝟎 𝟎

𝟎 �̃�𝐸𝑀
−1 𝟎

𝟎 𝟎 𝑺𝑅
−1

) = 

= (

𝑺𝐿�̃�𝐿 𝑺𝐿�̃�𝐿,𝐸𝑀 𝑺𝐿�̃�𝐿𝑅

�̃�𝐸𝑀�̃�𝐸𝑀,𝐿 �̃�𝐸𝑀�̃�𝐸𝑀 �̃�𝐸𝑀�̃�𝐸𝑀,𝑅

𝑺𝑅�̃�𝑅,𝐿 𝑺𝑅�̃�𝑅,𝐸𝑀 𝑺𝑅�̃�𝑅

)(

𝑯𝐿𝑺𝐿
−1 �̃�𝐿,𝐸𝑀�̃�𝐸𝑀

−1 𝟎

�̃�𝐸𝑀,𝐿𝑺𝐿
−1 �̃�𝐸𝑀�̃�𝐸𝑀

−1 �̃�𝐸𝑀,𝑅𝑺𝑅
−1

𝟎 �̃�𝑅,𝐸𝑀�̃�𝐸𝑀
−1 𝑯𝑅𝑺𝑅

−1

) = (S80) 

= (

𝑺𝐿�̃�𝐿𝑯𝐿𝑺𝐿
−1 + 𝑺𝐿�̃�𝐿,𝐸𝑀�̃�𝐸𝑀,𝐿𝑺𝐿

−1 𝑺𝐿�̃�𝐿�̃�𝐿,𝐸𝑀�̃�𝐸𝑀
−1 + 𝑺𝐿�̃�𝐿,𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀

−1 + 𝑺𝐿�̃�𝐿𝑅�̃�𝑅,𝐸𝑀�̃�𝐸𝑀
−1 𝑺𝐿�̃�𝐿,𝐸𝑀�̃�𝐸𝑀,𝑅𝑺𝑅

−1 + 𝑺𝐿�̃�𝐿𝑅𝑯𝑅𝑺𝑅
−1

�̃�𝐸𝑀�̃�𝐸𝑀,𝐿𝑯𝐿𝑺𝐿
−1 + �̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀,𝐿𝑺𝐿

−1 �̃�𝐸𝑀�̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀�̃�𝐸𝑀
−1 + �̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀

−1 + �̃�𝐸𝑀�̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀�̃�𝐸𝑀
−1 �̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀,𝑅𝑺𝑅

−1 + �̃�𝐸𝑀�̃�𝐸𝑀,𝑅𝑯𝑅𝑺𝑅
−1

𝑺𝑅�̃�𝑅,𝐿𝑯𝐿𝑺𝐿
−1 + 𝑺𝑅�̃�𝑅,𝐸𝑀�̃�𝐸𝑀,𝐿𝑺𝐿

−1 𝑺𝑅�̃�𝑅,𝐿�̃�𝐿,𝐸𝑀�̃�𝐸𝑀
−1 + 𝑺𝑅�̃�𝑅,𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀

−1 + 𝑺𝑅�̃�𝑅�̃�𝑅,𝐸𝑀�̃�𝐸𝑀
−1 𝑺𝑅�̃�𝑅,𝐸𝑀�̃�𝐸𝑀,𝑅𝑺𝑅

−1 + 𝑺𝑅�̃�𝑅𝑯𝑅𝑺𝑅
−1

), 

whose 𝐸𝑀 block is: 

(�̃��̃��̃�𝐾𝑆�̃�
−1)

𝐸𝑀
= �̃�𝐸𝑀�̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀�̃�𝐸𝑀

−1 + �̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀
−1 + �̃�𝐸𝑀�̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀�̃�𝐸𝑀

−1 . (S81) 

The third term reads: 

�̃�𝐾𝑆�̃� = (

𝑯𝐿 �̃�𝐿,𝐸𝑀 𝟎

�̃�𝐸𝑀,𝐿 �̃�𝐸𝑀 �̃�𝐸𝑀,𝑅

𝟎 �̃�𝑅,𝐸𝑀 𝑯𝑅

)(

�̃�𝐿 �̃�𝐿,𝐸𝑀 �̃�𝐿𝑅

�̃�𝐸𝑀,𝐿 �̃�𝐸𝑀 �̃�𝐸𝑀,𝑅

�̃�𝑅,𝐿 �̃�𝑅,𝐸𝑀 �̃�𝑅

) = (S82) 

= (

𝑯𝐿�̃�𝐿 + �̃�𝐿,𝐸𝑀�̃�𝐸𝑀,𝐿 𝑯𝐿�̃�𝐿,𝐸𝑀 + �̃�𝐿,𝐸𝑀�̃�𝐸𝑀 𝑯𝐿�̃�𝐿𝑅 + �̃�𝐿,𝐸𝑀�̃�𝐸𝑀,𝑅

�̃�𝐸𝑀,𝐿�̃�𝐿 + �̃�𝐸𝑀�̃�𝐸𝑀,𝐿 + �̃�𝐸𝑀,𝑅�̃�𝑅,𝐿 �̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀 + �̃�𝐸𝑀�̃�𝐸𝑀 + �̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀 �̃�𝐸𝑀,𝐿�̃�𝐿𝑅 + �̃�𝐸𝑀�̃�𝐸𝑀,𝑅 + �̃�𝐸𝑀,𝑅�̃�𝑅

�̃�𝑅,𝐸𝑀�̃�𝐸𝑀,𝐿 +𝑯𝑅�̃�𝑅,𝐿 �̃�𝑅,𝐸𝑀�̃�𝐸𝑀 +𝑯𝑅�̃�𝑅,𝐸𝑀 �̃�𝑅,𝐸𝑀�̃�𝐸𝑀,𝑅 +𝑯𝑅�̃�𝑅

), 

whose 𝐸𝑀 block is: 

(�̃�𝑲𝑺�̃�)𝐸𝑀 = �̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀 + �̃�𝐸𝑀�̃�𝐸𝑀 + �̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀 (S83) 

The fourth term reads: 

�̃��̃�𝐾𝑆 = (

�̃�𝐿 �̃�𝐿,𝐸𝑀 �̃�𝐿𝑅

�̃�𝐸𝑀,𝐿 �̃�𝐸𝑀 �̃�𝐸𝑀,𝑅

�̃�𝑅,𝐿 �̃�𝑅,𝐸𝑀 �̃�𝑅

)(

𝑯𝐿 �̃�𝐿,𝐸𝑀 𝟎

�̃�𝐸𝑀,𝐿 �̃�𝐸𝑀 �̃�𝐸𝑀,𝑅

𝟎 �̃�𝑅,𝐸𝑀 𝑯𝑅

) = (S84) 
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= (

�̃�𝐿𝑯𝐿 + �̃�𝐿,𝐸𝑀�̃�𝐸𝑀,𝐿 �̃�𝐿�̃�𝐿,𝐸𝑀 + �̃�𝐿,𝐸𝑀�̃�𝐸𝑀 + �̃�𝐿𝑅�̃�𝑅,𝐸𝑀 �̃�𝐿,𝐸𝑀�̃�𝐸𝑀,𝑅 + �̃�𝐿𝑅𝑯𝑅

�̃�𝐸𝑀,𝐿𝑯𝐿 + �̃�𝐸𝑀�̃�𝐸𝑀,𝐿 �̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀 + �̃�𝐸𝑀�̃�𝐸𝑀 + �̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀 �̃�𝐸𝑀�̃�𝐸𝑀,𝑅 + �̃�𝐸𝑀,𝑅𝑯𝑅

�̃�𝑅,𝐿𝑯𝐿 + �̃�𝑅,𝐸𝑀�̃�𝐸𝑀,𝐿 �̃�𝑅,𝐿�̃�𝐿,𝐸𝑀 + �̃�𝑅,𝐸𝑀�̃�𝐸𝑀 + �̃�𝑅�̃�𝑅,𝐸𝑀 �̃�𝑅,𝐸𝑀�̃�𝐸𝑀,𝑅 + �̃�𝑅𝑯𝑅

), 

whose 𝐸𝑀 block is: 

(�̃��̃�𝐾𝑆)𝐸𝑀 = �̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀 + �̃�𝐸𝑀�̃�𝐸𝑀 + �̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀 (S85) 

Collecting all terms in Eqs. (S79), (S81), (S83), (S85) we may write the right-hand side of Eq. (S77) as 

follows: 

−
𝑖

2
𝑡𝑟𝐸𝑀[�̃�

−1�̃�𝐾𝑆�̃��̃� − �̃��̃��̃�𝐾𝑆�̃�
−1 + �̃�𝐾𝑆�̃� − �̃��̃�𝐾𝑆] = 

= −
𝑖

2
𝑡𝑟𝐸𝑀[�̃�𝐸𝑀

−1 �̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀�̃�𝐸𝑀 + �̃�𝐸𝑀
−1 �̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀 + �̃�𝐸𝑀

−1 �̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀�̃�𝐸𝑀 − (S86) 

−�̃�𝐸𝑀�̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀�̃�𝐸𝑀
−1 − �̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀

−1 − �̃�𝐸𝑀�̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀�̃�𝐸𝑀
−1 + 

+�̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀 + �̃�𝐸𝑀�̃�𝐸𝑀 + �̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀 − �̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀 − �̃�𝐸𝑀�̃�𝐸𝑀 − �̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀] = 

This can be reordered as follows: 

= −
𝑖

2
𝑡𝑟𝐸𝑀(�̃�𝐸𝑀

−1 �̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀 − �̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀
−1 + �̃�𝐸𝑀�̃�𝐸𝑀 − �̃�𝐸𝑀�̃�𝐸𝑀) − 

−
𝑖

2
𝑡𝑟𝐸𝑀(�̃�𝐸𝑀

−1 �̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀�̃�𝐸𝑀 − �̃�𝐸𝑀�̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀�̃�𝐸𝑀
−1 + �̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀 − �̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀) − (S87) 

−
𝑖

2
𝑡𝑟𝐸𝑀(�̃�𝐸𝑀

−1 �̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀�̃�𝐸𝑀 − �̃�𝐸𝑀�̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀�̃�𝐸𝑀
−1 + �̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀 − �̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀). 

In the first row of Eq. (S87), the partial 𝐸𝑀 trace obeys the cyclic property, since all the matrices 

involved are square matrices of dimension 𝐸𝑀. Therefore, the contribution of this term vanishes: 

𝑡𝑟𝐸𝑀(�̃�𝐸𝑀
−1 �̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀 − �̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀

−1 + �̃�𝐸𝑀�̃�𝐸𝑀 − �̃�𝐸𝑀�̃�𝐸𝑀) = 

= 𝑡𝑟𝐸𝑀(�̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀
−1 − �̃�𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀

−1 �̃�𝐸𝑀 + �̃�𝐸𝑀�̃�𝐸𝑀 − �̃�𝐸𝑀�̃�𝐸𝑀) = (S88) 

=  𝑡𝑟𝐸𝑀(�̃�𝐸𝑀�̃�𝐸𝑀 − �̃�𝐸𝑀�̃�𝐸𝑀 + �̃�𝐸𝑀�̃�𝐸𝑀 − �̃�𝐸𝑀�̃�𝐸𝑀) = 

=  2𝑡𝑟𝐸𝑀(�̃�𝐸𝑀�̃�𝐸𝑀 − �̃�𝐸𝑀�̃�𝐸𝑀) =  2𝑡𝑟𝐸𝑀(�̃�𝐸𝑀�̃�𝐸𝑀 − �̃�𝐸𝑀�̃�𝐸𝑀) = 0. 

Looking next into the first term on the second row of Eq. (S87) we can write: 

𝑡𝑟𝐸𝑀(�̃�𝐸𝑀
−1 �̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀�̃�𝐸𝑀) = ∑ ∑ ∑ ∑(�̃�𝐸𝑀

−1 )
𝑖𝑗
(�̃�𝐸𝑀,𝐿)𝑗𝑘(�̃�𝐿,𝐸𝑀)𝑘𝑙(�̃�𝐸𝑀)𝑙𝑖

𝑙∈𝐸𝑀𝑘∈𝐿𝑗∈𝐸𝑀𝑖∈𝐸𝑀

= 

= ∑ ∑ ∑ ∑ (�̃�𝐸𝑀,𝐿)𝑗𝑘(�̃�𝐿,𝐸𝑀)𝑘𝑙(�̃�𝐸𝑀)𝑙𝑖(�̃�𝐸𝑀
−1 )

𝑖𝑗𝑖∈𝐸𝑀𝑙∈𝐸𝑀𝑘∈𝐿𝑗∈𝐸𝑀 = (S89) 

= 𝑡𝑟𝐸𝑀(�̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀�̃�𝐸𝑀�̃�𝐸𝑀
−1 ) = 𝑡𝑟𝐸𝑀(�̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀), 

where in the second row we switched the summation order and changed the orders of the summed 

elements. Similarly, for the second term on the second row of Eq. (S87) we have: 
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𝑡𝑟𝐸𝑀(�̃�𝐸𝑀�̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀�̃�𝐸𝑀
−1 ) = 𝑡𝑟𝐸𝑀(�̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀), (S90) 

and for the two first terms in the third row: 

𝑡𝑟𝐸𝑀(�̃�𝐸𝑀
−1 �̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀�̃�𝐸𝑀 − �̃�𝐸𝑀�̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀�̃�𝐸𝑀

−1 ) = 𝑡𝑟𝐸𝑀(�̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀 − �̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀). (S91) 

Collecting all terms in Eqs. (S87)-(S91) we have: 

�̇�𝐸𝑀 = −𝑖 ⋅ 𝑡𝑟𝐸𝑀(�̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀 − �̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀) − 𝑖 ⋅ 𝑡𝑟𝐸𝑀(�̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀 − �̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀). (S92) 

Using the fact that the density matrix and KS Hamiltonian matrix are Hermitian we can further write: 

[𝑡𝑟𝐸𝑀(�̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀)]
∗
= [∑ ∑(�̃�𝐸𝑀,𝐿)𝑖𝑗(�̃�𝐿,𝐸𝑀)𝑗𝑖

𝑗∈𝐿𝑖∈𝐸𝑀

]

∗

= ∑ ∑(�̃�𝐸𝑀,𝐿)𝑖𝑗
∗
(�̃�𝐿,𝐸𝑀)𝑗𝑖

∗

𝑗∈𝐿𝑖∈𝐸𝑀

= 

= ∑ ∑ (�̃�𝐿,𝐸𝑀)𝑗𝑖(�̃�𝐸𝑀,𝐿)𝑖𝑗𝑗∈𝐿𝑖∈𝐸𝑀 = ∑ ∑ (�̃�𝐸𝑀,𝐿)𝑖𝑗(�̃�𝐿,𝐸𝑀)𝑗𝑖𝑗∈𝐿𝑖∈𝐸𝑀 = 𝑡𝑟𝐸𝑀(�̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀). (S93) 

Similarly, we can write [𝑡𝑟𝐸𝑀(�̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀)]
∗
= 𝑡𝑟𝐸𝑀(�̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀), so that: 

�̇�𝐸𝑀 = −𝑖 ⋅ 𝑡𝑟𝐸𝑀(�̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀 − �̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀) − 𝑖 ⋅ 𝑡𝑟𝐸𝑀(�̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀 − �̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀) = 

= −𝑖 ⋅ 𝑡𝑟𝐸𝑀(�̃�𝐸𝑀,𝐿
∗ �̃�𝐿,𝐸𝑀

∗ − �̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀) − 𝑖 ⋅ 𝑡𝑟𝐸𝑀(�̃�𝐸𝑀,𝑅
∗ �̃�𝑅,𝐸𝑀

∗ − �̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀) = 

= −𝑖 ⋅ 𝑡𝑟𝐸𝑀[2𝑖 ⋅ 𝐼𝑚(�̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀)] − 𝑖 ⋅ 𝑡𝑟𝐸𝑀[2𝑖 ⋅ 𝐼𝑚(�̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀)] = (S94) 

= 2 ⋅ 𝑡𝑟𝐸𝑀[𝐼𝑚(�̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀)] + 2 ⋅ 𝑡𝑟𝐸𝑀[𝐼𝑚(�̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀)] = 

= 2 ⋅ 𝐼𝑚[𝑡𝑟𝐸𝑀(�̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀)] + 2 ⋅ 𝐼𝑚[𝑡𝑟𝐸𝑀(�̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀)]. 

We can thus identify the first term in the last line of Eq. (S94) as the current flowing from the 𝐿 driven 

lead into the 𝐸𝑀 section and the second term as the current flowing from the 𝑅 driven lead into the 𝐸𝑀 

section: 

𝐽𝐿→𝐸𝑀 = 2 ⋅ 𝐼𝑚[𝑡𝑟𝐸𝑀(�̃�𝐸𝑀,𝐿�̃�𝐿,𝐸𝑀)],  (S95) 

and 

𝐽𝑅→𝐸𝑀 = 2 ⋅ 𝐼𝑚[𝑡𝑟𝐸𝑀(�̃�𝐸𝑀,𝑅�̃�𝑅,𝐸𝑀)].  (S96) 

Accordingly, the instantaneous average total current flowing through the 𝐸𝑀 section at time 𝑡 is: 

𝐽(𝑡) = 0.5(𝐽𝐿→𝐸𝑀(𝑡) + 𝐽𝐸𝑀→𝑅(𝑡)) = 𝐼𝑚{𝑡𝑟𝐸𝑀[�̃�𝐸𝑀,𝐿(𝑡)�̃�𝐿,𝐸𝑀(𝑡)]} − 𝐼𝑚{𝑡𝑟𝐸𝑀[�̃�𝐸𝑀,𝑅(𝑡)�̃�𝑅,𝐸𝑀(𝑡)]} 

= 𝐼𝑚{𝑡𝑟𝐸𝑀[�̃�𝐸𝑀,𝐿(𝑡)�̃�𝐿,𝐸𝑀(𝑡) − �̃�𝐸𝑀,𝑅(𝑡)�̃�𝑅,𝐸𝑀(𝑡)]}, (S97) 

which is the final expression that we use for the evaluation of the current in the block-diagonal 

representation. 
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6. Total number of electrons for the case of fractional occupations 
 

In Eq. (S60) of SI section 5 above, we used the expression 𝑁 = 𝑇𝑟(𝓟 ⋅ 𝓢) for the particle number. Here, 

we demonstrate that this expression is valid also for the case of non-idempotent density matrices, 

representing fractionally occupied states, of the following form: 

 𝒫𝜇𝜈 = ∑ 𝑓𝑖  𝐶𝜇𝑖𝐶𝜈𝑖
∗𝑀

𝑖 . (S98) 

Here, 𝑀 is the total number of basis functions, and 𝐶𝜇𝑖 are the expansion coefficients of the orthonormal 

Kohn-Sham orbitals, 𝜓𝑖(𝐫), within the non-orthogonal atom-centered orbital basis {𝜙𝜇}: 

 𝜓𝑖(𝒓) = ∑ 𝐶𝜇𝑖𝜙𝜇(𝒓)
𝑀
𝜇 , (S99) 

and 0 ≤ 𝑓𝑖 ≤ 1 are the occupation numbers. For brevity of the presentation, spin indices have been 

omitted herein. 

The density at a point 𝒓 in space can be written as: 

  𝑛(𝒓) = ∑ 𝑓𝑖|𝜓𝑖(𝒓)|
2𝑀

𝑖 = ∑ ∑ 𝑓𝑖𝐶𝜇𝑖𝜙𝜇(𝒓)𝐶𝜈𝑖
∗ 𝜙𝜈

∗(𝒓)𝑀
𝜇𝜈

𝑀
𝑖 . (S100) 

Spatially integrating the density 𝑛(𝐫), we obtain the total number of electrons: 

 𝑁 = ∑ 𝒮𝜇𝜈(∑ 𝑓𝑖
𝑀
𝑖 𝐶𝜇𝑖𝐶𝜈𝑖

∗ )𝑀
𝜇𝜈 ,  (S101) 

where the overlap matrix elements in the atom-centered orbital basis are given by 𝑆𝜇𝜈 =

∫𝜙𝜇(𝒓)𝜙𝜈
∗(𝒓)𝑑3𝑟. Using Eq. (S98) we finally obtain: 

  𝑁 = ∑ 𝒫𝜇𝜈𝒮𝜇𝜈
𝑀
𝜇𝜈 = 𝑇𝑟(𝓟 ⋅ 𝓢), (S102) 

which has the same form as the standard expression for the total number of electrons of a closed ground 

state system with integer state occupations. 
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7. Effects of the basis sets and size of leads on the calculated current 

In all hydrogen chain benchmark calculations presented in the main text we used 180 atom lead models 

in combination with the STO-3G atomic centered basis-set to represent the Kohn-Sham orbitals and the 

PBE functional approximation. To evaluate the sensitivity of our results towards these choices we 

present in Figure S6a the steady-state current versus the applied bias voltage for lead models of 120, 

180, and 240 hydrogen atoms calculated at the PBE/6-31G** level of theory with ℏΓ =

0.92, 0.61, and 0.46 eV, respectively. Note that driving rate is varied according to the lead model 

dimensions to preserve the density of states plot of the lead. The results show that our choice of 180 

atom lead model is well converged with the lead model size, with the largest difference between the 

current calculated using the 180 and 240 hydrogen chain lead models being ~15%. Figure S6b presents 

a basis-set sensitivity analysis for the molecular section. Using 180-hydrogen atom chain lead models 

with ℏΓ = 0.61 𝑒𝑉, we compare the steady-state current evaluated with three choices of basis-sets for 

the extended molecule region. The results indicate that our choice of 6-31G** basis-set provides currents 

converged up to 0.3% in the voltage range studied. 
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Figure S6: Analysis of the steady-state current sensitivity to the lead model size and the choice of lead basis-set. 

(a) Steady-state current vs. bias voltage calculated at the PBE/6-31G** level of theory for the 𝐸𝑀 section and 

PBE/STO-3G for the leads of hydrogen chain junction models with lead sections of 120 (blue squares), 180 (red 

triangles), 240 (yellow circles), and 360 (green stars) atoms (using ℏ𝛤 = 0.92, 0.61, 0.46, and 0.31 eV, 

respectively), an EM section of 20 hydrogen atoms and a weakly couple H2 molecule. The interatomic distances 

are set as in Fig. 3 of the main text. (b) Same as (a) calculated with the 180 hydrogen atom lead models at the 

PBE/STO-3G level, and a 20 atom 𝐸𝑀 section described at the PBE/STO-3G (green diamonds), PBE/6-31G** 

(purple stars), and PBE/cc-pVTZ (orange crosses) levels. 
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8. Driving rate switching function 
 

To increase numerical stability of our graphene nanoribbon junction transport calculations, the driving 

rate, Γ, was gradually increased from zero to its full value, Γ𝑓.12 To this end, we chose a hyperbolic 

tangent switching function of the form:  

 Γ(𝑡) =
1

2
(tanh (

𝑡−𝑡0

𝑤
) + 1) ⋅ Γ𝑓 , (S103) 

where 𝑡 is the time, 𝑡0 = 0.05 fs, and 𝑤 = 0.36 fs. 

Figure S7 compares the time-dependent current calculated at 𝑉 = 0.35 V for this junction in the cases 

where Γ is switched on abruptly (orange line) and gradually (blue line). When the driving rate ℏΓ is 

abruptly switched on to Γ𝑓 = 1.09 eV, the current shows larger oscillations with respect to the gradual 

switch-on case. Since this initial transient dynamics is unphysical in our simulations starting from a 

somewhat arbitrary initial density matrix, it is numerically advantageous to switch on the driving rate 

gradually. 

 

 

Figure S7: Comparison of the effect of gradual (orange) versus abrupt (blue) switching-on of the driving 

rate on the current dynamics through the graphene nano-ribbon junction model shown in Fig. 1b of the 

main text, under a bias voltage of 𝑉 = 0.35 V. 
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9. Integrated current density along the extended molecule section 
 

As a further consistency check of our current calculations, we compare in Figure S8 the steady-state 

current of the hydrogen chain model (Fig. 3 of the main text) evaluated from the partial trace of the 

partitioned single-particle density matrix (Eq. 13 of the main text) to that obtained by cross-sectional 

spatial integration of the current density (Eq. 17 of the main text). In the figure we plot the latter 

evaluated at several axial positions along the chain. As expected, the steady-state current is spatially 

uniform, increasing/decreasing only near the edges of the EM section, where the source/sink terms are 

applied. Furthermore, the integrated current matches well the one obtained via Eq. 13 of the main text 

(dashed orange line), further validating our methodology. 

 

 

Figure S8: The integrated current density (blue circles) across the perpendicular plane to the main axis 

of a hydrogen chain (same as that studied in Fig. 3 of the main text) calculated via Eq. 18 of the main 

text, at different positions along the EM section, under a bias voltage of 𝑉 = 0.3 V, and with a driving 

rate of ℏ𝛤 = 0.61 eV. The steady-state current evaluated directly from Eq. 13 of the main text is shown 

by the horizontal dashed orange line. 

  



34 

10. Cartesian atomic coordinates of the GNR/Benzene/GNR junction 
 

All atomic coordinates are given in units of Å. 

 
 

C -6.57401 14.9863 0.01103 

C -6.14147 19.2275 -0.00037 

C -5.70864 23.4702 -0.01177 

C -5.60033 12.7631 0.01674 

C -5.16742 17.0046 0.00534 

C -4.73516 21.2455 -0.00605 

C -4.15623 14.7624 0.01106 

C -3.72362 19.003 -0.00034 

C -3.29063 23.2418 -0.01173 

C -1.70817 14.5122 0.01109 

C -1.2756 18.7514 -0.00031 

C -0.842592 22.9913 -0.0117 

C 0.739796 14.2625 0.01112 

C 1.1721 18.5017 -0.00028 

C 1.60409 22.7417 -0.01167 

C 3.18798 14.0133 0.01115 

C 3.62049 18.2538 -0.00024 

C 4.05229 22.4927 -0.01164 

C -4.30118 13.346 0.01486 

C -3.86808 17.5865 0.00346 

C -3.43523 21.8259 -0.00794 

C -1.85247 13.0991 0.01489 

C -1.41986 17.3382 0.00349 

C -0.987224 21.5782 -0.0079 

C -0.556851 25.8226 -0.0193 

C 0.595791 12.8494 0.01492 

C 1.02805 17.0885 0.00352 

C 1.46043 21.3285 -0.00787 

C 1.89592 25.5724 -0.01927 

C 3.04395 12.5968 0.01495 

C 3.47598 16.8374 0.00356 

C 3.90802 21.0768 -0.00784 

C 5.46128 12.3714 0.01498 

C 5.89377 16.6127 0.00359 

C 6.32622 20.8551 -0.00781 

C -5.31148 15.5944 0.00914 

C -4.87881 19.8352 -0.00225 

C -4.44695 24.0767 -0.01365 

C -2.86004 15.3433 0.00917 

C -2.42714 19.583 -0.00222 

C -1.99228 23.8248 -0.01362 

C -0.412129 15.0937 0.00921 

C 0.0203384 19.3333 -0.00219 

C 0.452809 23.5729 -0.01359 

C 2.03577 14.8439 0.00924 

C 2.46783 19.0837 -0.00216 

C 2.89841 23.3259 -0.01355 

C 4.48742 14.5948 0.00927 

C 4.91994 18.8357 -0.00213 

C 5.35338 23.077 -0.01352 

C -3.14813 12.517 0.01677 

C -2.71568 16.7563 0.00538 

C -2.28284 20.9959 -0.00602 

C -1.85023 25.2414 -0.01742 

C -0.700356 12.2682 0.0168 

C -0.26797 16.5069 0.00541 

C 0.164502 20.7465 -0.00599 

C 0.596896 24.9854 -0.01738 

C 1.74724 12.0177 0.01683 

C 2.17968 16.2569 0.00544 

C 2.61178 20.4966 -0.00596 

C 3.04531 24.742 -0.01735 

C 4.19861 11.7635 0.01687 

C 4.63106 16.0051 0.00547 

C 5.06401 20.246 -0.00593 
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H -7.46139 15.6201 0.00950414 

H -7.02877 19.8614 -0.00190323 

H -6.59624 24.1036 -0.0133055 

H 7.21389 20.2217 -0.00627613 

H 6.78102 15.9787 0.00512481 

H 6.34865 11.7376 0.0165072 

C 6.46661 22.2282 -0.01161 

H 7.46383 22.6694 -0.0131194 

C 6.03388 17.9856 -0.00021 

H 7.0309 18.4272 -0.00171507 

C 5.60115 13.7443 0.01118 

H 6.59823 14.1859 0.00966866 

C -6.71425 13.6134 0.01482 

H -7.71132 13.1718 0.0163203 

C -6.28143 17.8547 0.00343 

H -7.27842 17.4129 0.00493961 

C -5.84839 22.097 -0.00797 

H -6.84567 21.6558 -0.00646443 

C -4.26825 25.4651 -0.01745 

H -5.14886 26.1083 -0.0189645 

C -3.00883 26.03 -0.01933 

H -2.90404 27.1155 -0.0223383 

C -0.380245 27.2142 -0.0231 

H -1.26132 27.8567 -0.0245901 

C 0.881558 27.776 -0.02498 

H 0.992192 28.8606 -0.0279657 

C 2.00395 26.971 -0.02307 

H 2.99659 27.4223 -0.0245354 

C 4.33929 25.2805 -0.01924 

H 4.45582 26.3647 -0.0222592 

C 5.4587 24.4729 -0.01732 

H 6.45103 24.925 -0.0188068 

C -7.0056 10.7417 0.02242 

C -6.03095 8.51998 0.02813 

C -4.58765 10.5222 0.02245 

C -2.56748 6.02954 0.03388 

C -2.14046 10.2737 0.02248 

C -0.131647 5.77861 0.03391 

C 0.30741 10.0241 0.02252 

C 2.75429 9.77322 0.02255 

C -4.73071 9.10588 0.02625 

C -2.28412 8.86111 0.02628 

C 0.162977 8.61167 0.02631 

C 2.60836 8.3572 0.02635 

C 5.02563 8.12672 0.02638 

C -5.74413 11.3525 0.02054 

C -3.72005 6.85606 0.03196 

C -3.2923 11.1043 0.02057 

C -1.27592 6.62218 0.032 

C -0.844501 10.8552 0.0206 

C 1.16416 6.35785 0.03203 

C 1.60322 10.605 0.02063 

C 4.05461 10.353 0.02066 

C -3.57648 8.27312 0.02817 

C -1.13226 8.03245 0.0282 

C 1.30973 7.77464 0.02823 

C 3.76354 7.52085 0.02826 

H -7.89405 11.374 0.0208867 

H 5.9128 7.49266 0.0279143 

C 5.16675 9.49997 0.02258 

H 6.16459 9.93986 0.0210758 

C -7.1447 9.36822 0.02622 

H -8.14164 8.92637 0.0277289 

C -5.01368 6.31669 0.03385 

H -5.12959 5.23239 0.0368687 

C 2.32235 5.56838 0.03394 

H 2.21691 4.48301 0.036948 

C -0.30562 4.38327 0.03771 

H 0.596048 3.79425 -0.0186168 

C -2.65672 4.63222 0.03768 

H -3.65047 4.18197 0.0342575 

C -1.54922 3.78574 0.03959 

C -6.13382 7.1237 0.03193 
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H -7.12555 6.67027 0.0334184 

C 3.58237 6.13257 0.03206 

H 4.46212 5.48823 0.0335753 

C 1.82579 -2.28092 0.03103 

H 2.46633 -2.07473 -0.832772 

H 2.45568 -2.13974 0.91549 

C 0.769673 -1.16669 0.06603 

C 1.29883 0.123429 0.11955 

C -0.606622 -1.25715 0.09045 

C 0.517671 1.26655 0.19779 

H 2.38391 0.235449 0.107119 

C -1.38988 -0.114994 0.16918 

H -1.12839 -2.19988 0.0526206 

C -0.860722 1.17593 0.22319 

H 1.03802 2.20865 0.26908 

H -2.475 -0.227062 0.164841 

C -1.89189 2.29088 -0.01959 

H -2.32171 2.10685 -1.00957 

H -2.70242 2.12653 0.697825 

C -5.06377 -8.15663 -0.01349 

C -4.0803 -10.3774 -0.00778 

C -2.64526 -8.37354 -0.01346 

C -0.198544 -8.61433 -0.01343 

C 2.24993 -8.84999 -0.01339 

C 4.69782 -9.08088 -0.01336 

C -2.78325 -9.79037 -0.00966 

C -0.335018 -10.0276 -0.00963 

C 0.0803285 -5.7796 -0.02102 

C 2.11422 -10.2634 -0.0096 

C 2.51714 -6.01686 -0.02099 

C 4.56277 -10.498 -0.00956 

C 6.98191 -10.7038 -0.00953 

C -3.80511 -7.54368 -0.01537 

C -1.34992 -7.78369 -0.01534 

C 1.0934 -8.02788 -0.01531 

C 3.53891 -8.25464 -0.01528 

C 5.99472 -8.48763 -0.01525 

C -1.62754 -10.6157 -0.00774 

C -1.21225 -6.3661 -0.01914 

C 0.821559 -10.8522 -0.00771 

C 1.22911 -6.61687 -0.01911 

C 3.27073 -11.0874 -0.00768 

C 3.67442 -6.83677 -0.01908 

C 5.72391 -11.3218 -0.00765 

H -5.95449 -7.52756 -0.0150227 

H 7.87392 -11.3311 -0.0079951 

C 7.11324 -9.32957 -0.01333 

H 8.10767 -8.8821 -0.0148335 

C -5.19719 -9.53066 -0.00969 

H -6.19255 -9.97612 -0.00818048 

C -2.37486 -5.58315 -0.02106 

H -2.27551 -4.4972 -0.024078 

C 4.96498 -6.29011 -0.02096 

H 5.07477 -5.20517 -0.0239718 

C 0.246236 -4.38327 -0.02482 

H -0.660376 -3.80045 -0.0362669 

C 2.59803 -4.61909 -0.02479 

H 3.58923 -4.16323 -0.0214967 

C 1.48593 -3.77793 -0.02671 

C 6.08966 -7.09079 -0.01904 

H 7.07882 -6.63175 -0.0205214 

C -3.63169 -6.1544 -0.01917 

H -4.51504 -5.515 -0.0206822 

C -1.83595 -25.5845 0.03216 

C 0.618191 -25.8209 0.03219 

C -2.99 -24.7606 0.03024 

C -0.540251 -24.9902 0.03027 

C 1.90828 -25.2324 0.0303 

C -6.29274 -20.8922 0.0207 

C -5.88419 -16.6474 0.0093 

C -5.47559 -12.4037 -0.00209 

C -5.30741 -23.1086 0.02641 

C -4.89786 -18.8649 0.01501 
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C -4.48923 -14.6217 0.00362 

C -3.87334 -21.1003 0.02073 

C -3.46518 -16.8585 0.00933 

C -3.05704 -12.6155 -0.00206 

C -1.42436 -21.3382 0.02076 

C -1.01587 -17.0959 0.00936 

C -0.607488 -12.8544 -0.00203 

C 1.02466 -21.5741 0.02079 

C 1.43342 -17.3318 0.0094 

C 1.84215 -13.0903 -0.002 

C 3.47402 -21.808 0.02082 

C 3.883 -17.5663 0.00943 

C 4.29223 -13.3234 -0.00197 

C -4.00963 -22.517 0.02453 

C -3.6017 -18.2757 0.01313 

C -3.19308 -14.0328 0.00174 

C -1.56007 -22.7522 0.02456 

C -1.15196 -18.5098 0.01316 

C -0.743531 -14.2682 0.00177 

C 0.887987 -22.988 0.02459 

C 1.29712 -18.7457 0.01319 

C 1.70581 -14.5042 0.0018 

C 3.3374 -23.2247 0.02462 

C 3.74652 -18.9835 0.01323 

C 4.15525 -14.7406 0.00183 

C 5.75665 -23.4395 0.02465 

C 6.16559 -19.1944 0.01326 

C 6.57425 -14.9508 0.00186 

C -5.03398 -20.276 0.01881 

C -4.62493 -16.0327 0.00742 

C -4.21636 -11.7887 -0.00398 

C -2.58038 -20.5128 0.01884 

C -2.17216 -16.2708 0.00745 

C -1.7636 -12.0291 -0.00395 

C -0.13173 -20.7489 0.01888 

C 0.276862 -16.507 0.00748 

C 0.685373 -12.266 -0.00391 

C 2.31698 -20.9845 0.01891 

C 2.72595 -16.7426 0.00751 

C 3.13451 -12.5009 -0.00388 

C 4.77067 -21.2204 0.01894 

C 5.17905 -16.977 0.00754 

C 5.58807 -12.7331 -0.00385 

C -2.85107 -23.3437 0.02644 

C -2.44439 -19.0991 0.01505 

C -2.03621 -14.857 0.00365 

C -0.404119 -23.5769 0.02647 

C 0.00447323 -19.3349 0.01508 

C 0.413063 -15.093 0.00368 

C 2.04235 -23.815 0.0265 

C 2.45332 -19.5709 0.01511 

C 2.86236 -15.3288 0.00371 

C 4.4984 -24.0531 0.02654 

C 4.90637 -19.8093 0.01514 

C 5.31517 -15.566 0.00375 

H -7.18397 -20.2638 0.0191737 

H -6.775 -16.0185 0.0077667 

H -6.36651 -11.7749 -0.00361496 

H 7.46519 -15.5796 0.00338807 

H 7.05645 -19.8233 0.0147948 

H 6.6478 -24.0679 0.0261787 

C 6.70676 -13.5771 -0.00194 

H 7.70132 -13.13 -0.00345047 

C 6.29783 -17.8208 0.00946 

H 7.29231 -17.3735 0.00795574 

C 5.88867 -22.0655 0.02085 

H 6.88345 -21.6188 0.0193383 

C -6.4254 -22.2661 0.02449 

H -7.42012 -22.7129 0.0259908 

C -6.01657 -18.021 0.0131 

H -7.01109 -18.4683 0.0146095 

C -5.60773 -13.7774 0.0017 

H -6.60231 -14.2246 0.0032012 



38 

C -5.40487 -24.5051 0.03021 

H -6.39464 -24.9627 0.0316989 

C -4.28092 -25.3063 0.03212 

H -4.39134 -26.3912 0.0351291 

C -1.9361 -26.9837 0.03595 

H -2.92618 -27.4406 0.0374054 

C -0.809196 -27.7823 0.03787 

H -0.913722 -28.8675 0.0408587 

C 0.449424 -27.2135 0.03599 

H 1.3341 -27.8509 0.0374806 

C 3.0713 -26.0145 0.03222 

H 2.97262 -27.1005 0.0352344 

C 4.32752 -25.4425 0.03034 

H 5.21174 -26.0807 0.0318553 
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