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A B S T R A C T   

Static friction induced by moiré superstructures in twisted incommensurate finite layered mate
rial interfaces reveals unique double periodicity and lack of scaling with contact size. The un
derlying mechanism involves compensation of incomplete moiré tiles at the rim of rigid polygonal 
graphene flakes sliding atop fixed graphene or h-BN substrates. The scaling of friction (or lack 
thereof) with contact size is found to strongly depend on the shape of the slider and the relative 
orientation between its edges and the emerging superstructure, partially rationalizing scattered 
experimental data. A phenomenological analytical model is developed, which agrees well with 
detailed atomistic calculations. By carefully considering the edge orientation, twist angle, and 
sliding direction of the flake relative to the substrate, one should therefore be able to achieve 
large-scale superlubricity via shape tailoring.   

1. Introduction 

The scaling up of structural superlubricity, a phenomenon of ultra-low friction and wear emerging in incommensurate layered 
material junctions, requires the study of the contact size dependence of static and kinetic friction in van der Waals (vdW) interfaces 
(Berman et al., 2015; Dienwiebel et al., 2004; Hartmuth et al., 2019; Hod et al., 2018; Koren et al., 2016a; Koren et al., 2015; Liu et al., 
2012; Mandelli et al., 2018; Qu et al., 2020; Vanossi et al., 2020; Wang et al., 2019a). Previous experimental studies of 
two-dimensional (2D) contacts suggested various scaling laws of friction with respect to the contact area (F∝Aγ) with broad scattering 
of the measured scaling exponent, ranging from 0 (no scaling) to 0.5 (Cihan et al., 2016; Dietzel et al., 2013; Dietzel et al., 2008; Dietzel 
et al., 2018; Hartmuth et al., 2019; Koren et al., 2015; Özoğul et al., 2017; Wang et al., 2019a). Complementary theoretical and 
computational studies attributed the observed scattered scaling behavior to the dependence of friction on the shape and relative 
orientation of the sliding contact (de Wijn, 2012; Müser et al., 2001; Varini et al., 2015), which dictate the specific arrangement of 
incomplete moiré tiles along the rim of the slider (Koren et al., 2016a; Varini et al., 2015; Wang et al., 2019a; Wang et al., 2019b). 
Notably, a friction scaling exponent of 0.5 was also found for amorphous 2D contacts (Dietzel et al., 2013; Gnecco et al., 2007; Müser, 
2004; Müser et al., 2001), and no scaling was found for triangular gold clusters in contact with hexagonal lattice surfaces (de Wijn, 
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2012). Furthermore, different scaling exponents for the sliding energy barrier with contact length have also been predicted for 
quasi-one-dimensional double-walled nanotubes (DWNTs) depending on the inter-wall lattice commensurability (Damnjanović et al., 
2002; Kolmogorov et al., 2000; Lozovik et al., 2003). 

In this article, we investigate the size dependence of the friction in twisted incommensurate interfaces formed between rigid 
nanoscale graphene flakes of various shapes and either graphene or h-BN rigid substrates. We discover unique double periodicity of the 
static friction with contact size, induced by moiré superstructures, and lack of size scaling for twisted incommensurate polygonal 
flakes. Notably, we demonstrate that the frictional scaling strongly depends on the relative orientation between the slider edges and 
the emerging superstructures. 

2. Shape-dependent frictional scaling laws 

2.1. Atomistic calculations of static friction in twisted bilayer graphene 

Our model systems consist of rigid nanoscale graphene flakes of various shapes (circular, square, triangular, and hexagonal, see 
Fig. 1a) deposited on a fixed graphene or h-BN substrate. The polygonal flakes are cut out of an infinite hexagonal lattice with either 
armchair or zigzag edges (See Supplemental Material (SM) coordinates file). Interlayer interactions are described by the dedicated 
anisotropic interlayer potential (ILP) (Leven et al., 2014; Leven et al., 2016b; Maaravi et al., 2017) with refined parameters (Ouyang 
et al., 2018). To avoid substrate edge effects and spurious interactions between image flakes, periodic boundary conditions are applied 
in the lateral directions with a sufficiently large supercell, providing a distance larger than 40 Å (more than twice the force-field cutoff 
of 16 Å) between the flake and its periodic images. The top graphene flakes are initially positioned with their geometric center 

Fig. 1. (a) Model systems of circular, square, triangular, and hexagonal graphene flakes deposited on a fixed graphene substrate with a 5∘ twist 
angle. The flakes are rigidly shifted along the armchair direction of the substrate. The color scheme for the flakes (see color bar in panel d), 
designating the local registry index (LRI) (Cao et al., 2022a; Hod, 2010; Hod, 2012), highlights the moiré superlattices emerging in the twisted 
interfaces. The cyan colored spheres represent carbon atoms. (b) Illustration of moiré tile compensation at the opposite sides of a rectangular flake 
(blue circular arcs), occurring when the edge length incorporates approximately an integer number of short moiré periods, as. (c) Illustration of 
moiré tile compensation at the same side of a misaligned rectangular flake (blue circular arcs), occurring when the edge length incorporates 
approximately an integer number of long moiré periods, aL. (d) Same as (c) but for the aligned configuration. The black dashed lines in (b)-(d) show 
one of the moiré superlattice axes. 
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(appearing at the middle of their central hexagonal ring) above one of the atoms of the underlying graphene or h-BN substrate. The 
flakes are then twisted by an angle θ with respect to the underlying substrate lattice and are rigidly shifted along the armchair direction 
of the substrate. The interlayer potential energy profile, and the corresponding total resistive force experienced by the flake are 
recorded along the sliding path. The static friction force for the rigid sliding process is defined as the maximal resistive force expe
rienced by the flake along the sliding path. More calculation details can be found in SM Section 1. We note that for twisted flakes, the 
sliding direction has no observable effect on the scaling exponent of the static friction with contact size (see SM Section 2). 

By neglecting in-plane elastic deformation effects, we are able to isolate the effects of moiré tile incompleteness arising in 
incommensurate finite contacts of different shapes on the frictional scaling laws. Our simulations show that for the systems considered, 
the calculated static friction forces obtained for rigid model systems are in good agreement with those obtained for flexible interfaces 
(see SM Section 3). This is in agreement with previous results demonstrating that the rigid flake assumption reproduces well exper
imental friction results in supported nanoscale graphitic interfaces, where elasticity effects are suppressed (Hod, 2012). Notably, for 
the system considered, elasticity effects on the static friction are expected to be significant only at the 10-100 μm length scale (Cao 
et al., 2022b; Sharp et al., 2016) (see SM Section 3). Hence, our rigid simulation protocol, which is computationally more efficient, 
allows us to consider large contact area interfaces without compromising the accuracy (Feng et al., 2022). 

The color scheme on the surface of the flakes in Fig. 1 designates interlayer lattice registry patterns, obtained via the local registry 
index (LRI) approach (Cao et al., 2022a; Hod, 2010; Hod, 2012; Leven et al., 2016a), which highlight the moiré superlattices appearing 
in the twisted interfaces. The period of the moiré superstructures, am, is given by (Hermann, 2012; Wang et al., 2019c): 

am =
(1 + δ)agr

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(1 + δ)(1 − cosθ) + δ2

√ , (1)  

and its angle with respect to the zigzag direction of the substrate lattice is given by: 

ψ = tan− 1
[

(1 + δ)sinθ
(1 + δ)cosθ − 1

]

(2)  

where, agr = 2.4602Å is the period of the hexagonal graphene lattice, θ is the twist angle, and δ = asub/agr − 1 is the mismatch between 
the lattice constants of the interfacing layers (asub being the lattice constant of the substrate). For the case of a twisted rigid graphitic 
flake residing on a fixed graphene surface, we have δ = 0, yielding am =

agr
2sin(θ/2) and ψ = π

2+
θ
2. Naturally, for a given twist angle, all 

flake types present the same bulk moiré superstructure, which is expected to be manifested by similar moiré induced frictional 
characteristics. However, different flake shapes exhibit different incomplete rim moiré tiles along their circumference, which may 

Fig. 2. Size dependence of the static friction of (a) circular, (b) triangular, (c) square, and (d) hexagonal 5∘ twisted rigid graphene flakes sliding 
along the armchair direction of a fixed graphene surface. Red circles represent simulation results and black dashed-lines correspond to the theo
retical predictions (Eq. (5) in panel (a), Eq. (A.16) in panel (b), Eq. (6) in panel (c), and Eq. (A.20) in panel (d)) obtained using U0 = 5.85 meV/Å2. 
The blue solid lines represent the envelopes of friction curves obtained from the theoretical expressions (Eq. (A.15) in panel (a) and Eq. (7) in panels 
(b)-(d)). R, L and am are the radius and side length of the flake and the period of the moiré superlattices, respectively. 
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induce shape and edge orientation dependent frictional scaling behavior with increasing contact size. 
Fig. 2 presents the calculated static friction force as a function of flake size (radius or side length) normalized by the moiré period of 

incommensurate, 5∘ twisted, homogeneous graphitic contacts of different shapes. Notably, regardless of the flake shape, the static 
friction exhibits undulations with a period of the order of moiré supercell dimension, consistent with previous predictions (Gigli et al., 
2017; Koren et al., 2016a; Koren et al., 2016b; Wang et al., 2019a; Yaniv et al., 2019). However, the larger scale behavior, dictated by 
the incomplete rim moiré tiles, shows different scaling with contact size for circular shaped flakes compared to that of the polygonal 
ones. The friction force scaling behavior obtained for the former (Fig. 2a) matches well previous results (Koren et al., 2016a; Yan et al., 
2023), showing an increase with the fourth root of the contact area (A1/4). For the polygonal shaped flakes (Fig. 2b-d), on top of the 
moiré-level friction undulations, the static friction force exhibits an additional periodic behavior on an order of magnitude larger 
length-scale. Surprisingly, in contrast with the case of the circular shaped flakes, no overall increase of friction with contact area is 
observed for the polygonal shaped ones. Notably, this finding seems to contradict previous predictions of linear scaling of the friction 
with side length in hexagonal shaped flakes (Koren et al., 2016a). This linear scaling, however, stems from the fact that in Ref. (Koren 
et al., 2016a), a twist angle dependent cut was imposed, where the flakes edges were chosen parallel to the moiré superlattice axes (see 
Appendix A). 

2.2. The physical mechanism underlying double-periodic friction modulations 

To understand the origin of the double-periodic modulation behavior, we compare the size dependence of the sliding potential 
energy barrier along the sliding path and the corresponding variations of the global registry index (GRI) (Koren et al., 2016c), a simple 
geometric measure of interlayer lattice registry (see SM Section 4). The excellent agreement between the two measures indicates that 
the conditions for vanishing sliding energy barriers and static friction forces have a geometric origin. This can be further quantified by 
considering local registry index (LRI) (Cao et al., 2022a; Hod, 2010; Hod, 2012) maps (see Fig. 1b-c) that reveal the central role played 
by the moiré superstructures along the flake sides. Specifically, two different conditions can be fulfilled in order for the static friction to 
vanish, which are easiest to demonstrate for the case of square flakes. The first condition is the compensation of incomplete moiré tiles 
on the front and back sides of the sliding flake, which occurs when the distance between these sides is approximately an integer 
multiple of the moiré period in the direction perpendicular to those sides (see Fig. 1b), as =

̅̅
3

√
am

2cos(θ/2). This leads to the short periodicity 
of the static friction force observed in Fig. 2c. The second condition corresponds to the incorporation of approximately an integer 
number of moiré tiles on either the front or back sides of the square flake, leading to “self-compensation” with a longer period (see 
Fig. 1c), written as: 

aL =

̅̅̅
3

√
am

2sin(θ/2)
(3) 

While similar conditions apply also for other regular polygonal structures, especially those with parallel sides, circular flakes lack 
straight sides and thus do not exhibit the larger friction oscillation period corresponding to the self-compensation effect. 

3. Analytical model 

A more quantitative analysis of the discovered double-periodic behavior and size scaling (or lack of) can be obtained via an 
analytical model that assumes that the interaction between the flake and the substrate is described by a moiré induced periodic po
tential. Treating the flake as a continuum surface, the potential experienced by an infinitesimal surface area of the flake can be 
approximated as (Dong et al., 2011; Huang et al., 2022; Steiner et al., 2009; Verhoeven et al., 2004; Yan et al., 2022) (see Appendix A): 

dU = ±
2
9

U0

[

2cos
2πx
̅̅̅
3

√
am

cos
2πy
am

+ cos
4πx
̅̅̅
3

√
am

]

dxdy, (4)  

where U0 is the amplitude of the potential energy landscape corrugation per unit area, and the plus or minus signs apply for graphene 
or h-BN substrates, respectively. Integrating Eq. (4) over the entire flake area Sflake(x0,y0), where (x0, y0) is the geometric center of the 
flake, yields the shape and position dependent interaction energy between the flake and the substrate, E(x0, y0) =

∫

Sflake(x0 ,y0)

dU. 

Considering that the contribution of complete bulk moiré tiles to the total potential variations during sliding vanishes (Yan et al., 
2023), the changes in the corresponding integrated interlayer potential energy originate entirely from the incomplete rim moiré tiles. 
The derivative of the total energy with respect to x0 (or y0) gives the resistive force in the armchair (or zigzag) directions, for a given 
flake displacement, the maximum of which along the sliding path is defined as the static friction force Fs (see SM Section 1). 

For circular flakes, this model yields a static friction force of the following form (Cao et al., 2022b; Morovati et al., 2022; Yan et al., 
2023) (see Appendix A): 

FCirc
s (R) =

αamπRU0

asub

⃒
⃒
⃒
⃒J1

(
4πR
̅̅̅
3

√
am

)⃒
⃒
⃒
⃒, (5)  

where, J1(⋅) is the Bessel function of the first kind, α is a coefficient that depends on the sliding direction (α ≈ 0.7823 for the scan line 
chosen in this study, see Eq. (A.14)), and R is the radius of the flake. The dashed line in Fig. 2a presents FCirc

s (R) calculated according to 
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Eq. (5), showing excellent agreement with the simulation results (open red circles). In this case, only the short periodicity (of the order 
of the moiré superstructure dimensions) prevails with an envelope that scales asymptotically as A1/4 as expected (see Appendix A). 

For the polygonal shaped flakes, somewhat more involved static friction expressions are obtained (see Appendix A and Table 1). For 
example, for square shaped flakes at small twist angles one gets: 

FSqr
s (L, θ) ≈

⃒
⃒
⃒
⃒
⃒
⃒
⃒

2
̅̅̅
3

√
a2

mU0

9πasubsin
θ
2

cos
θ
2

sin

⎛

⎜
⎝

2πLcos
θ
2̅̅̅

3
√

am

⎞

⎟
⎠sin

⎛

⎜
⎝

2πLsin
θ
2̅̅̅

3
√

am

⎞

⎟
⎠

⃒
⃒
⃒
⃒
⃒
⃒
⃒

. (6) 

Corresponding expressions for triangular and hexagonal flakes are presented in Appendix A and Table 1. For all polygonal shaped 
flakes considered, excellent agreement is found between the theoretical model results (black dashed lines in Fig. 2) and the simulation 
results (open red circles). A qualitatively different behavior of the short period oscillations is found for the triangular flake (Fig. 2b), 
where the absence of parallel sides leads to less efficient cancellation of incomplete moiré superlattices. As a result, there is no full 
elimination of static friction force in the lower envelope of the short period oscillations. The corresponding oscillation amplitude for 
the square (Fig. 2c) and hexagonal (Fig. 2d) flakes, with parallel sides, does lead to efficient compensation and vanishing static friction 
force. 

As is evident in Table 1, the model prediction for the asymptotic (L /am ≫ 1) behavior of the envelopes of Fs(L, θ) for the polygonal 
flakes reads as follows: 

Fenv
s (L, θ)∝

⃒
⃒
⃒
⃒
⃒
⃒
⃒

sin

⎛

⎜
⎝

2πLsin
θ
2̅̅̅

3
√

am

⎞

⎟
⎠

⃒
⃒
⃒
⃒
⃒
⃒
⃒

, (7)  

where L is the side length of the flake. This expression clearly demonstrates that for the polygonal shaped flakes considered, the static 
friction force does not overall grow with the flake side length. Moreover, they present the same long period of 

̅̅
3

√
am

2sin(θ/2) (see Fig. 2b-d), 
reflecting the universal self-compensation of incomplete moiré tiles at the sides with angle of θ/2 to the moiré superlattice directions. 
We note that when considering friction as a function of contact area, the long modulation periods become shape-dependent. Naturally, 
this arises from pure geometric considerations relating the side length to the regular polygon area, L = 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
A ⋅ tan(π/N)/N

√
. Written in 

terms of the contact area, the long periodicity (
̅̅̅̅
A

√
l) of the static friction grows with increasing side number, N, as 

̅̅̅̅
A

√
l =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N

tan(π/N)

√
aL
2 ≈ NaL

2
̅̅
π

√ , thus approaching infinity at the circular flake limit (N→∞). This is manifested by the fact that the envelope of the N 

= 50 curve in Fig. S7 of the SM matches the curve of the circular flake. Therefore, a smooth transition of the friction force scaling 
between polygonal and circular shaped flakes with increasing number of polygon sides is predicted. 

4. General nature of the double-periodic modulation and friction scaling with contact size 

Furthermore, to verify that our findings are not limited to regular polygonal shaped flakes, we performed additional simulations, 
accompanied by theoretical model predictions, for irregular shaped flakes (see SM Sec. 6). The results show that the predicted long- 
period modulation of the static friction and the lack of frictional scaling with system size are robust and expected also for irregular 
polygonal shaped flakes. Nonetheless, the introduction of curved edges, whose curvature varies with flake size results in frictional 
scaling with an exponent of ¼, reminiscent of the case of circular flakes (see SM Secs. 6 and 8). 

The qualitative nature of the double-periodic behavior remains unchanged with increasing twist angle, as long as the moiré 
supestructure dimensions are substentially larger than the lattice constant and smaller than the side length of the flake. Due to the 
moiré superlattice size reduction, both periodicities and the friction amplitude decrease with increasing twist angle (see Fig. 3a for 
square flakes results). As may be expected, the short periodicity, as, which is directly related to the moiré superstructure dimensions, 

Table 1 
Summary of the analytical expressions obtained for the static friction (FS) and its envelope (Fenv

S ) for different flake shapes at small angles between one 

polygonal flake side and the moiré superlattice, given by θ1 =
θ
2 

for homogeneous graphene interfaces and θ1 = ψ − θ for heterogeneous graphene/h- 

BN interfaces.  

Flake Shape FS Fenv
S 

Square ⃒
⃒
⃒

2
̅̅̅
3

√
a2

mU0

9πasubsinθ1cosθ1
sin
(

2πLcosθ1
̅̅̅
3

√
am

)

sin
(

2πLsinθ1
̅̅̅
3

√
am

)⃒
⃒
⃒
⃒

⃒
⃒
⃒

2
̅̅̅
3

√
a2

mU0

9πasubsinθ1cosθ1
sin
(

2πLsinθ1
̅̅̅
3

√
am

)⃒
⃒
⃒
⃒

Triangular  ⃒
⃒
⃒

2a2
mU0cotθ1

̅̅̅
3

√
π(1 + 2cos2θ1)asub

sin
2πLsinθ1
̅̅̅
3

√
am

⃒
⃒
⃒
⃒

Hexagonal (
̅̅̅
3

√
+

̅̅̅̅̅̅
11

√
)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
30 + 2

̅̅̅̅̅̅
33

√√
a2

mU0

16π(1 + 2cos2θ1)asub

⃒
⃒
⃒
⃒cotθ1sin

(
2πLcosθ1

am

)

sin
(

2πLsinθ1
̅̅̅
3

√
am

)⃒
⃒
⃒
⃒

(
̅̅̅
3

√
+

̅̅̅̅̅̅
11

√
)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
30 + 2

̅̅̅̅̅̅
33

√√
a2

mU0

48π(1 + 2cos2θ1)asub

⃒
⃒
⃒
⃒cotθ1sin

(
2πLsinθ1
̅̅̅
3

√
am

)⃒
⃒
⃒
⃒

Circular (3 +
̅̅̅̅̅̅
33

√
)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
30 + 2

̅̅̅̅̅̅
33

√√

72
amπRU0

asub

⃒
⃒
⃒
⃒J1

(
4πR
̅̅̅
3

√
am

)⃒
⃒
⃒
⃒ (

̅̅̅
3

√
+

̅̅̅̅̅̅
11

√
)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
5
̅̅̅
3

√
+

̅̅̅̅̅̅
11

√√

24
a

3
2
mR

1
2U0

asub   
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scales as am∝sin− 1( θ
2
)
. As per Eq. (3), the scaling of the long periodicity, aL, is a2

m. The maximal friction force, Fmax
s (θ), can be obtained 

by taking the maximum of Eq. (6), yielding: 

Fmax
s (θ) =

4
̅̅̅
3

√
a3

mU0

9πa2
grcos θ

2
=

̅̅̅
3

√
agrU0

18πsin3θ
2 cos θ

2

, (8)  

which scales with a3
m or sin− 3( θ

2
)
, as shown in Fig. 3b. 

The revealed double-periodic frictional behavior and the lack of frictional size-scaling for polygonal structures are not limited to 
homogeneous graphitic interfaces. To demonstrate this, we repeated our calculations for the heterogeneous interface of graphene and 
hexagonal boron nitride (h-BN). The intrinsic lattice mismatch (δ ≈1.8%) of the two materials gives interfacial incommensurability 
also at the aligned configuration, with a moiré supestructure period of am ≈ 13.9 nm, leading to ultralow friction at any twist angle 
(Leven et al., 2013; Leven et al., 2016b; Liao et al., 2021; Song et al., 2018). This allows us to study also aligned contacts while avoiding 
high-friction commensurate states. Fig. 4 compares friction results for aligned and 1∘ twisted circular and square shaped graphitic 
flakes sliding along the armchair direction of the underlying rigid h-BN substrate. Similar to the case of homogeneous circular in
terfaces, the circular shaped heterogeneous junctions exhibit periodic oscillations with an envelope scaling of Fs∝A1/4 (matching Eq. 
(5)) for both the aligned (Fig. 4a) and twisted (Fig. 4b) configurations. The heterogeneous square interfaces exhibit qualitatively 
different frictional size-scaling for the aligned (Fig. 4c) and twisted (Fig. 4d) configurations. The θ = 1∘ twisted system presents 
double-periodic behavior, similar to that of the homogeneous square interface, with quantitative differences that originates from the 
large rotation (ψ = 44.9∘) of the moiré superstruture (see Sec. 7 of SM). The aligned square interface, whose sides are parallel to the 
moiré superstruture, exhibits only the short-period oscillations with an envelope that scales as Fs∝L∝A1/2 (see Fig. 4c), reminiscent of 
previous results (Koren et al., 2016b). This is due to the fact that in this case all incomplete tiles are identical and vary in phase when 
the flake slides in all directions except the one parallel to this side (see Fig. 1d), such that self-compensation is prohibited. Furthermore, 
since the number of incomplete moiré tiles grows proportionally to the flake side length, the static friction scales linearly with system 
dimensions. This unique orientational effect is well captured by the analytical model for square flakes (see Table 1), which demon
strates zero scaling with flake side length for misaligned configurations, whereas for the aligned case (θ1→0) it yields: 

Fenv
s,sqr(L) ≈

4amU0L
9asub

, (9)  

giving linear scaling with side length. Similar expressions are obtained for other polygonal flakes in the aligned configuration (see, for 
instance, Eq. (A.22) for hexagonal flakes), demonstrating the general nature of this finding. 

We note that the analytical model predicts only double periodicity for the three equilateral polygonal shapes investigated. 
Nonetheless, additional periodicities may occur for asymmetric polygonal flakes due to the combined effect of different periods 
associated with the various flake sides. Interestingly, the physical origin of these periodic behaviors is different from that predicted for 
the interwall sliding barrier of DWNTs, where the long period appears when the transitional vectors of the inner and outer tube walls 
have a common deviser (or close to having one) (Damnjanović et al., 2002; Kolmogorov et al., 2000; Lozovik et al., 2003). 

Fig. 3. Size dependence of the static friction of square rigid graphene flakes sliding along the armchair direction of a fixed graphene surface at twist 
angles of 5◦ (blue circle), 10◦ (red square), 15◦ (green triangular), and 20◦ (black diamond). Open circles, dashed lines, and solid lines represent 
results of atomistic calculations, theoretical predictions (Eq. (6)), and the envelope curves (Eq. (7)), respectively, obtained using the same pa
rameters as in Fig. 2. (b) Twist angle-dependence of the maximal static friction for a square rigid graphene flake. The inset illustrates the deter
mination of Fmax

s for θ = 5◦. 
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5. Conclusions 

To put our results into context, we note that existing experimental measurements suggested a power law scaling of the friction 
(mainly kinetic) with contact area, Fk∝Aγ, but with relatively wide scatter of the reported data (Cihan et al., 2016; Dietzel et al., 2017; 
Dietzel et al., 2013; Dietzel et al., 2008; Hartmuth et al., 2019; Koren et al., 2016a; Koren et al., 2016b; Koren et al., 2015; Liao et al., 
2021; Qu et al., 2020; Varini et al., 2015; Wang et al., 2019a). Theoretical studies further attributed different values of γ to the shape of 
the sliding nanoflakes and its relative orientation with respect to the underlying layered material substrates (de Wijn, 2012; Dietzel 
et al., 2013; Varini et al., 2015). Our results show that static friction scaling with contact area in layered interfaces strongly depends on 
the shape of the slider and the specific orientation in which it is cut with respect to the emerging interfacial moiré superstructures. This 
may lead to various scaling behaviors with γ = 0 for twisted polygonal flakes with edges that do not coincide with the moiré super
lattice, 0.25 for circular shaped flakes, and 0.5 when the edges of polygonal flakes are parallel to the moiré superstructure. Since the 
static friction force scaling with contact dimensions obtained in our rigid flake calculations is in good agreement with that obtained for 
flexible interfaces (see SM Section 3) and since the latter serves as an upper limit for the corresponding kinetic friction of these systems, 
we expect strong dependence of the kinetic friction scaling on these factors, as well. This, in turn, may partially rationalize the wide 
scattering of results observed in experiments measuring the size dependence of friction. Other factors including edge chemical 
contamination, poor control over the twist angle (Feng et al., 2013; Filippov et al., 2008; Qu et al., 2020) (see also Appendix A), as well 
as elastic effects (Sharp et al., 2016) may further contribute to the experimentally observed data scattering. Therefore, when setting to 
explore the size dependence of friction in layered interfaces, one should carefully consider the shape of the studied contacts, their 
oreintation, twist angle, and sliding direction. This should allow for unveiling the predicted novel tribological phenomena including 
multiple-periodicities and lack of size scaling, thus opening the way for obtaining large-scale superlubricity via shape tailoring. 
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Appendix A. Analytical approach for calculating the static friction force 

In this appendix, we introduce a detailed theoretical approach for calculating the static friction force of twisted layered interfaces at 
which moiré superlattices form. For incommensurate hexagonal layered material interfaces, such as twisted bilayer graphene or 
graphene/h-BN, one can construct a continuum interlayer potential with the following potential energy density function (Dong et al., 
2011; Huang et al., 2022; Steiner et al., 2009; Verhoeven et al., 2004; Yan et al., 2022): 

U(x, y) = ±
2
9
U0

[

2cos
(

2πx
̅̅̅
3

√
am

)

cos
(

2πy
am

)

+ cos
(

4πx
̅̅̅
3

√
am

)]

, (A.1)  

where the y-axis resides along one of the moiré superlattice vector, U0 is the potential energy density corrugation, am is the moiré 
superlattice period, and the ± sign applies for twisted bilayer graphene and graphene/h-BN interfaces, respectively. Fig. A1 compares 
the pair-averaged interlayer potential energy density calculated using the dedicated ILP (Leven et al., 2014; Leven et al., 2016b; 
Maaravi et al., 2017; Ouyang et al., 2018) with a refined parameterization (Ouyang et al., 2018) for (a) 5∘ twisted bilayer graphene and 
(c) aligned graphene/h-BN, with the corresponding continuum model potential energy density of Eq. (A.1) (b, d). Clearly, the con
tinuum model potential energy, which enables us to extract analytic expressions for the static friction force, has the appropriate 
symmetry of the atomic potential and captures well the potential energy corrugation – two characteristics that are important for the 
static friction calculations. The somewhat smoothened hexagonal structure of the continuum model potential energy is found to have a 
minor effect on the qualitative conclusions of our analytic expressions. 

Using the approximated continuum model potential energy density function of Eq. (A.1), we can derive analytic expressions for the 
static friction force experienced by flakes of different shapes that allow for deciphering the origin of the double-periodic behavior with 
contact size discussed in the main text, as well as the asymptotic scaling.  
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Fig. A1. Comparison between the pair-averaged interlayer potential energy density map of a (a) 5∘ twisted bilayer graphene interface and (c) 
aligned graphene/h-BN bilayer, and (b, d) the corresponding continuum model potential energy density maps (Eq. (A.1)). To avoid atomic scale 
sharp features, the pair-averaged atomic potential energy is calculated by averaging the potential energy of each covalently bonded carbon pair in 
the flake interacting with the substrate, and assigning the average value, normalized by the area occupied by a single atom (2.62 Å2), to the center of 
the bond formed by the carbon pair. In panels (b) and (d) U0 is 5.85 and 4.5 meV/Å2, respectively. 

To obtain analytical expressions for the static friction force, one has to integrate the potential energy density expression over the 
entire flake area. The result of this integration will depend on the shape, size, and twist angle of the flake, as well as on the identity of 
the substrate. Given a general twist angle, θ, between the contacting surfaces (defined here as the angle between the zigzag directions 
of the interfacing hexagonal lattices), the moiré superlattice period is given by Eq. (1) (Hermann, 2012; Wang et al., 2019c). For the 
description of the static friction, it is convenient to introduce the angle θ1 between one of the sides of a polygonal shaped flake and the 
moiré superlattice. Since in the present study all polygonal flakes are cut with either armchair or zigzag edges, we have θ1 =

θ
2 for 

homogeneous graphene interfaces and θ1 = ψ − θ for heterogeneous graphene/h-BN interfaces, where ψ is defined in Eq. (2). For the 
purpose of the integration, one further needs the following transformation that relates between the coordinate system of the flake (x′,

y′), where x′ is aligned with the zigzag (armchair) direction of the hexagonal lattice of the graphene flake in the homogeneous (het
erogeneous) junction, and that of the moiré superlattice (x,y): 

{
x = x′cosθ1 + y′sinθ1

y = − x′sinθ1 + y′cosθ1

. (A.2)  

The two reference frames are taken to have a common origin located at a potential maximum (minimum) for homogeneous gra
phene (heterogeneous graphene/h-BN) interfaces. Note that the origin is not necessarily located within the flake. 

The various angles defined above, as well as the two reference frames, are illustrated in Fig. A2 for the θ = 5∘ homogeneous 
graphene interface and in Fig. S10 for the θ = 1∘ heterogeneous graphene/h-BN interface. 
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Fig. A2. Illustration of the moiré (x, y) and flake (x′,y′) reference frames plotted atop the pair-averaged potential energy density map of a θ = 5∘ 

twisted square graphene flake sliding atop a graphene surface. The reference frames are rotated with respect to each other by an angle of θ /2 = 2.5∘. 

A.1. Square flakes 

For a square flake of side-length L, the integration of the potential energy density at a given flake position is performed as follows: 

Esqr
(
x′

0, y
′
0,L, θ1

)
=

∫
x′

0+
L
2

x′
0 −

L
2

∫
y′

0+
L
2

y′
0 −

L
2

U(x′, y′, θ1)dx′dy′, (A.3)  

Here, (x′
0, y′

0) is the position of the geometric center of the flake, written in the reference frame of the flake. Note that for simplicity 
the integration is performed in the reference frame of the twisted flake, whereas Eq. (A.1) is written in the moiré superlattice reference 
frame. Hence, the arguments of the potential in Eq. (A.3) include the angle between the two reference frames. Substituting Eqs. (A.1) 
and (A.2) into (A.3) yields: 

Esqr
(
x′

0, y
′
0,L, θ1

)
= ±

2
9

U0

∫
x′

0+
L
2

x′
0 −

L
2

∫
y′

0+
L
2

y′
0 −

L
2

[

2cos
2π(x′cosθ1 + y′sinθ1)

̅̅̅
3

√
am

cos
2π( − x′sinθ1 + y′cosθ1)

am
+ cos

4π(x′cosθ1 + y′sinθ1)
̅̅̅
3

√
am

]

dx′dy′, (A.4)  

which can be written explicitly as: 

Esqr
(
x′

0, y
′
0,L, θ1

)
=

∓4a2
mU0

π2(1 + 2cos4θ1)

[

csc2θ1sin
(π

3
− 2θ1

)
sin
(π

3
+ 2θ1

)
sin
(

2πLcosθ1
̅̅̅
3

√
am

)

sin
(

2πLsinθ1
̅̅̅
3

√
am

)

cos
(

4π
(
x′

0cosθ1 + y′
0sinθ1

)

̅̅̅
3

√
am

)

+sin
(π

3
− 2θ1

)
cos

⎛

⎝
4π
(

x′
0cos

(π
3
− θ1

)
− y′

0sin
(π

3
− θ1

))

̅̅̅
3

√
am

⎞

⎠sin

⎛

⎝
2πLcos

(π
3
− θ1

)

̅̅̅
3

√
am

⎞

⎠sin

⎛

⎝
2πLsin

(π
3
− θ1

)

̅̅̅
3

√
am

⎞

⎠

+sin
(π

3
+ 2θ1

)
cos

⎛

⎝
4π
(

x′
0cos

(π
3
+ θ1

)
+ y′

0sin
(π

3
+ θ1

))

̅̅̅
3

√
am

⎞

⎠sin

⎛

⎝
2πLcos

(π
3
+ θ1

)

̅̅̅
3

√
am

⎞

⎠sin

⎛

⎝
2πLsin

(π
3
+ θ1

)

̅̅̅
3

√
am

⎞

⎠

⎤

⎦.

(A.5)  

In the results presented below, we choose the initial position of the geometric center of the flake (located at the middle of the central 
carbon hexagon) atop one substrate atom and slide it along the armchair direction of the substrate. With this choice, in the moiré 
reference frame, an observer located at the geometric center of the flake is moving along the x0 axis with y0 = 0. By substituting this in 
Eq. (A.2), we then obtain y′

0 = x′
0tanθ1 and x′

0 = x0cosθ1, which we use for obtaining the dependence of the energy on the position of 
the flake along the chosen scanline via the integration boundaries in Eq. (A.4). 

To calculate the force experienced by the flake at each position, one needs to take a derivative of Eq. (A.4) with respect to the sliding 
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coordinate, taken to be the armchair direction of the substrate. Notably, sliding one full lattice period along this direction induces a full 
moiré superlattice period shift along the x axis in the moiré superlattice reference frame (Hermann, 2012; Huang et al., 2022). Hence, 
taking the derivative of the energy with respect to the sliding direction in the reference frame of the substrate is equivalent to taking the 
derivative of the energy in the moiré superlattice reference frame with respect to x0 and correcting for the ratio between the substrate 
lattice (asub) and superlattice (am) periods: 

FFlake =
am

asub

(

−
∂E
∂x0

)

. (A.6) 

Taking the derivative in Eq. (A.6) using the energy expression of Eq. (A.5) we obtain the following expression for the force 
experienced by the flake when sliding along the armchair direction of the substrate: 

Fsqr(L, x0, θ1) = ±
2
̅̅̅
3

√
a2

mU0

9π(1 + 2cos4θ1)asub

[
(1 + 2cos4θ1)

sinθ1cosθ1
sin
(

2πLcosθ1
̅̅̅
3

√
am

)

sin
(

4πx0
̅̅̅
3

√
am

)

sin
(

2πLsinθ1
̅̅̅
3

√
am

)

+4sin
(

2πx0
̅̅̅
3

√
am

)
⎛

⎝sin
(π

3
− 2θ1

)
sin

2πLsin
(π

3
− θ1

)

̅̅̅
3

√
am

sin
2πLcos

(π
3
− θ1

)

̅̅̅
3

√
am 

+sin
(π

3
+ 2θ1

)
sin

2πLsin
(π

3
+ θ1

)

̅̅̅
3

√
am

sin
2πLcos

(π
3
+ θ1

)

̅̅̅
3

√
am

⎞

⎠

⎤

⎦. (A.7) 

The static friction is defined as the maximum of Eq. (A.7) (after reversing the sign to obtain the force required to initiate motion) 
along the scanline, Fs = max

scanline
( − FFlake). For small θ1, the first term in the square parenthesis on the right-hand side of Eq. (A.7), which 

has a sin(θ1) ≈ θ1 factor in its denominator, dominates, allowing us to neglect the contribution of the second and third terms. With this, 
the static friction force can be approximated as: 

Fs,sqr(L, θ1) ≈

⃒
⃒
⃒
⃒

2
̅̅̅
3

√
a2

mU0

9πasubsinθ1cosθ1
sin
(

2πLcosθ1
̅̅̅
3

√
am

)

sin
(

2πLsinθ1
̅̅̅
3

√
am

)⃒
⃒
⃒
⃒ ≈

⃒
⃒
⃒
⃒
2
̅̅̅
3

√
a2

mU0

9πasubθ1
sin
(

2πL
̅̅̅
3

√
am

)

sin
(

2πLθ1
̅̅̅
3

√
am

)⃒
⃒
⃒
⃒. (A.8) 

From Eq. (A.8) we see that there are two different periods in the dependence of the static friction on the contact size, a smaller 
period of ∼

̅̅̅
3

√
am/2 and a larger one of ∼

̅̅̅
3

√
am/2θ1. The latter provides the envelope of the static friction force dependence on the 

contact size: 

Fenv
s,sqr(L, θ1) ≈

⃒
⃒
⃒
⃒

2
̅̅̅
3

√
a2

mU0

9πasubsinθ1cosθ1
sin
(

2πLsinθ1
̅̅̅
3

√
am

)⃒
⃒
⃒
⃒, (A.9) 

Fig. A3 demonstrates that the approximations taken to obtain Eqs. (A.8) and (A.9), which are used to plot the results presented in 
Fig. 2c and Fig. 3a, work extremely well for twist angles below 10∘ and remain valid even for twist angles as large as θ = 20∘. 
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Fig. A3. Comparison of the static friction force dependence on the contact size calculated via the full expression of Eq. (A.7) (black line) and the 
approximation of Eq. (A.8) (red line) for square graphene flakes sliding on graphene with twist angles of (a) 5◦, (b) 10◦, (c) 15◦, and (d) 20◦. The 
envelopes calculated via Eq. (A.9) are presented by the blue lines. 

Finally, we note that in the aligned case (θ1→0∘), Eq. (A.7) reduces to: 

Fsqr(L, x0) = ±
4a2

mU0

9πasub

[
πL
am

sin
(

2πL
̅̅̅
3

√
am

)

sin
(

4πx0
̅̅̅
3

√
am

)

+ 2sin
(

2πx0
̅̅̅
3

√
am

)

sin
(

πL
am

)

sin
(

πL
̅̅̅
3

√
am

)]

, (A.10)  

whose maximum as a function of x0 gives the following for the static friction force: 

Fs,sqr(L) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

8 − 2c2 + 2|c|
̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 + 8

√√

a2
mU0

9πasub

⎡

⎣2
⃒
⃒
⃒
⃒sin
(

πL
̅̅̅
3

√
am

)

sin
(

πL
am

)⃒
⃒
⃒
⃒+

(
− |c| +

̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 + 8

√ )
πL

2am

⃒
⃒
⃒
⃒sin
(

2πL
̅̅̅
3

√
am

)⃒
⃒
⃒
⃒

⎤

⎦, (A.11)  

where c =
amsin( πL

am)

2πLcos
(

πL̅̅
3

√
am

). Note that for large flakes (L ≫ am and c→0) the last term in the square parentheses of Eq. (A.11) dominates 

yielding the expression for the envelope of the static friction force with flake dimensions, Fenv
s,sqr, in Eq. (9). 

A.2. Circular flakes 

For circular shaped flakes, a similar derivation with an appropriate modification of the integration boundaries yields the following 
expression for the static friction force: 

Fs,circ(R) =
(
3 +

̅̅̅̅̅
33

√ ) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
30 + 2

̅̅̅̅̅
33

√√

72
amπRU0

asub

⃒
⃒
⃒
⃒J1

(
4πR
̅̅̅
3

√
am

)⃒
⃒
⃒
⃒, (A.12)  

where J1(⋅) is the Bessel function of the first kind, and R is the radius of the flake. For large flake radii, the Bessel function can be 
approximated as (Morovati et al., 2022; Yan et al., 2023): 

J1

(
4πR
̅̅̅
3

√
am

)

≈

̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅
3

√
am

2π2R

√

cos
4πR
̅̅̅
3

√
am

, (A.13)  

such that Eq. (A.12) yields: 
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Fs,circ(R) ≈
( ̅̅̅

3
√

+
̅̅̅̅̅
11

√ ) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
5
̅̅̅
3

√
+

̅̅̅̅̅
11

√√

24
a

3
2
mR1

2U0

asub

⃒
⃒
⃒
⃒cos

(
4πR
̅̅̅
3

√
am

)⃒
⃒
⃒
⃒,

(A.14) 

which exhibits a single period of 
̅̅̅
3

√
am/4 and an upper envelope of: 

Fenv
s,circ(R) ≈

( ̅̅̅
3

√
+

̅̅̅̅̅
11

√ ) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
5
̅̅̅
3

√
+

̅̅̅̅̅
11

√√

24
a

3
2
mR1

2U0

asub
, (A.15)  

with an asymptotic scaling of R1
2. 

A.3. Triangular flakes 

For triangular shaped flakes, a similar derivation with an appropriate modification of the integration boundaries yields the 
following expression for the force experienced by the flake when sliding along the armchair direction of the substrate: 

Ftri(L, x0, θ1) = ±
a2

mU0cotθ1

3π(1 + 2cos2θ1)asub

[
̅̅̅
3

√
sin

2πLsinθ1
̅̅̅
3

√
am

(
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2π
(
2
̅̅̅
3

√
x0 − Lcosθ1

)

3am
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2π
( ̅̅̅

3
√
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)

3am

)
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(
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2π
( ̅̅̅

3
√
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. (A.16) 

A closed form solution for the static friction force is difficult to obtain from Eq. (A.16). Instead, we obtain the static friction force via 
a numerical search of the maximum force experienced by the triangular flake along the scanline. The envelope of the static friction 
force dependence on the triangular contact size can be approximated as: 

Fenv
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⃒. (A.17)  

A.4. Hexagonal flakes 

For hexagonal shaped flakes, a similar derivation with an appropriate modification of the integration boundaries yields the 
following expression for the force experienced by the flake when sliding along the armchair direction of the substrate: 
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, (A.18)  

from which the following closed form solution for the static friction force can be extracted: 
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(A.19)  

where L is the side length of the hexagonal flake. For small θ1, the static friction can be approximated as: 
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and the envelope is given by: 
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Equations (A.8), (A.14), (A.16) and (A.20) are used to produce the theoretical curves (dashed lines) presented in Fig. 2 and Eqs. 
(A.9), (A.15), (A.17) and (A.21) are used to trace the envelope curves (blue lines) in Fig. 2 and to derive Eq. (6) of the main text. 

At the limit of θ1→0∘ (the aligned configuration), Eq. (A.19) for the static friction force reduces to: 
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Fs,hex(L) =
(
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demonstrating asymptotic linear scaling with side length, similar to the square flake case. 
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