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1. Methods 

1.1. General description of the model system 

The model system is constructed of three layered components: (i) a pristine graphene (PrisGr) 

bilayer substrate; (ii) a polycrystalline graphene (PolyGr) layer; and (iii) a trilayer h-BN stack (see 

Fig. 1 of the main text). To construct the periodic PrisGr/PolyGr/h-BN heterojunction, 

incorporating the ~1.8% intralayer lattice mismatch between h-BN and Gr, the lateral dimensions 

of the simulation box (𝐿𝑥 × 𝐿𝑦) are chosen to be approximately 56×56 Gr unit cells, and 55×55 

h-BN unit cells, where the 56/55 ≈ 1.0182 ratio accounts well for the intrinsic lattice mismatch. 

The supercells of the pristine Gr and h-BN layers are rectangular in shape with their armchair 

(zigzag) direction lying along the 𝑥 (𝑦) axis. Given the lattice periods in the zigzag and armchair 

directions (𝑎Gr
zigzag

= √3𝑑cc ≈ 2.46 Å and 𝑎Gr
armchair = 3𝑑cc ≈ 4.26 Å), this results in an overall 

surface area of 23.86 × 13.78 nm2. Using the second-generation reactive empirical bond order 

(REBO) potential [1] and Tersoff potential [2] to describe the intralayer interactions for Gr and h-

BN, the equilibrium carbon-carbon and boron-nitrogen bond lengths are 𝑑cc = 1.42039 Å and 

𝑑BN = 1.44214 Å, respectively. To reduce residual strain, the equilibrium B-N bond length in the 

Tersoff potential is increased by 0.28% to 𝑑BN = 1.446215 Å with a negligible effect on the 

calculated elastic properties [3]. The polyGr layer is constructed from two grains, where their grain 

boundary (GB) seamline lies along the y-direction (see Fig. 1(b) of the main text and Fig. S1(a)). 

The armchair (zigzag) direction of Grain 1 is oriented along the 𝑥 (𝑦) axis forming Bernal (AB) 

stacking with the underlying PrisGr bilayer substrate. The lattice of Grain 2 is rotated 

counterclockwise with respect to that of Grain 1, where the inter-grain misfit angle, θm, is chosen 

to allow for applying lateral periodic boundary conditions with minimal residual strain (see 

Supplementary Methods section of Ref. [4]). 

For comparison purposes, some calculations performed in this study were repeated for a 

homogeneous PrisGr/PolyGr/PrisGr system constructed like the heterogeneous system described 

above with a PrisGr trilayer replacing the h-BN stack. In this case, to avoid commensurate high-

friction stacking, the PrisGr trilayer slider is rotated by 38.2° with respect to the underlying PrisGr 

substrate (see Fig. S1(b)). 
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FIG. S1. Atomic structures of PolyGr and PrisGr layer models. (a) PolyGr layer with an inter-grain misfit 

angle of θm = 8°. The pink and cyan spheres represent the hexagonal and the pentagon-heptagon pair atoms, 

respectively. (b) homojunction PrisGr slider layer rotated by θ0 = 38.2° with respect to the underlying PrisGr 

substrate bi-layer. Zoom-in views, marking the lattice vectors (green) for the different grains, are provided 

on the right-hand side of each panel. 
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1.2. Relaxed topography of the PolyGr layer 

Following structural relaxation, the PolyGr layer renders complex out-of-plane topography, 

exhibiting a series of upward/downward protrusions in the vicinity of the pentagon-heptagon GB 

dislocations, and pronounced moiré superstructures within the grains. This results from the balance 

between intralayer interactions and interlayer interactions with the underlying PrisGr layers and 

the overlying h-BN layers. Below 10°, as the inter-grain misfit angle (𝜃m) increases, the GB 

protrusion density increases (see Fig. S2(a)-S2(b)) and their height decreases, e.g. from 0.85 ±

 0.04 Å  at 𝜃m = 1.8°  to 0.46 ±  0.17 Å  at 𝜃m = 8° , on average. For inter-grain misfit angles 

larger than 10°, the dislocation density further increases such that the pentagon-heptagon pairs 

partially or fully connect with their neighboring counterparts by sharing a C-C bond, a hexagon 

ring, or a pair of mutual edge atoms. This leads to a mutual cancellation of local strains, 

suppressing the corrugation of the protrusions. For certain cases, e.g. 𝜃m = 21.8°, the in-plane 

strain cancellation results in a flat GB (see Fig. S2(c), S2(f)). Further information regarding the 

structural and topological properties of graphene GBs can be found in Ref. [5]. 

The moiré superstructure formed between the graphene surface of the two grains and each of its 

surrounding hexagonal lattices can be described as a triangular superlattice with periodicity 𝜆 and 

angular orientation ψ, given by the following expressions [6]: 

 𝜆 =
(1+𝛿)𝑎cc

√2(1+𝛿)(1−cos𝜃𝑇)+𝛿2
,  

 𝜓 = tan−1 (1+𝛿)sin𝜃𝑇

(1+𝛿)cos𝜃𝑇−1
, (S1) 

where 𝛿 is the mismatch between the lattice constants of each pair of hexagonal lattices, 𝑎cc is the 

period of graphene lattice, and 𝜃𝑇  is the twist angle between the layers. As Grain 1 is Bernal 

stacked with the underlying graphitic substrate layers, its moiré superstructures originate only from 

its incommensurate interface with the overlying h-BN layer. Considering a lattice mismatch of 

𝛿 = 0.0182, the moiré supercell dimensions for the chosen h-BN stack orientation (𝜃𝑇 = 0°) are 

23.86 × 13.78 nm2. Hence, as shown in Fig. S1, in our model system Grain 1 accommodates a 

full moiré period along the 𝑦-direction and half of a moiré period along the 𝑥 (sliding) direction. 

The situation for Grain 2 is more involved as it needs to comply with commensurability 

requirements enforced by its two adjacent layers. For the inter-grain misfit angle of 𝜃m = 8° 
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discussed in the main text, the moiré superstructure periods at its interfaces with the h-BN and 

PrisGr layers are roughly equal (~1.76 nm) yielding a hexagonal pattern with a small rotation 

away from 𝜓 = 0° (see Fig. 1(c) of the main text and Fig. S2(e)). Due to the relatively large twist 

angle, this hexagonal superstructure incorporates out-of-plane surface undulations with a typical 

period much smaller than that of the full moiré pattern. Reducing the inter-grain mismatch angle 

to 𝜃m = 1.8°, results in differing moiré periods of 6.85 nm and 7.83 nm, with the adjacent h-BN 

and PrisGr layers, respectively. As a consequence of these competing interests, a deformed 

hexagonal superstructure is formed with a small rotation away from 𝜓 = 0° (Fig. S2(d)). In this 

case, due to the small twist angle, no short-wave-length undulations are obtained. For large inter-

grain mismatch angles (e.g. 𝜃m = 21.8°), the moiré periods formed between Grain 2 and its 

adjacent h-BN and PrisGr layers are very similar and as small as 0.66 nm and 0.65 nm, respectively. 

Since these values approach the size of the atomic lattice, the resulting moiré superstructure 

becomes nearly unnoticeable, and Grain 2 remains nearly flat (Fig. S2(f)). In general, the smaller 

moiré periods on Grain 2 are characterized by less significant in-plane strain/stress effects than 

those on Grain 1 (see SM Fig. S1 of Ref. [7]). 

Notably, for the homogeneous graphitic systems considered herein we deliberately chose a large 

twist angle (𝜃𝑇 = 38.2°) between the PolyGr surface and its adjacent slider PrisGr layer to avoid 

a-priori high-friction configurations. This results in very small moiré periods of 0.65 nm and 0.48 

nm over Grain 1 and Grain 2, respectively, for an inter-grain mismatch angle of 𝜃m = 8°. Similarly, 

moiré periods of 0.65 nm and 0.86 nm over Grain 1 and Grain 2, respectively, are obtained for an 

inter-grain mismatch angle of 𝜃m = 21.8°. Hence, the corresponding moiré superstructures are 

very minor and their induced in-plane stress effects are negligible. 
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FIG. S2. Relaxed topographies of PolyGr layers with different inter-grain mismatch angles. (a)-(c) Atomic 

structures of PolyGr with inter-grain mismatch angles of (a) 𝜃m = 1.8°, (b) 𝜃m = 8°, and (c) 𝜃m = 21.8°. 

Atoms residing in a hexagonal environment are colored in pink, whereas atoms at lattice dislocation sites 

are colored in cyan. (d)-(f) GB corrugation maps for (d) 𝜃m = 1.8°, (e) 𝜃m = 8°, and (f) 𝜃m = 21.8°. The 

atoms are color according to their out-of-plane displacement with respect to the average height of the 

PolyGr layer according to the color bar on the right of panel (f). We note that in order to visualize the moiré 

structures, the color bar range is limited to -0.1-0.15 Å, whereas the GB corrugation exceeds these values 

at some points. The black frames outline the primary simulation supercell and the rest are periodic replicas 

presented to clearly demonstrate the moiré superstructures.  
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1.3. Simulation protocol 

All simulations were carried out using the LAMMPS package [8]. To describe the intralayer inter-

atomic interactions within each Gr and h-BN layer, we employed the REBO [1] and the Tersoff 

[2] potentials, respectively. For the interlayer interactions we adopted our registry-dependent 

interlayer potential (ILP) [9-13]. Recently, the combination of the REBO intralayer potential and 

the ILP was shown to provide GB energies and topographies consistent with DFT calculations and 

experimental observations [5,14-16]. 

The PolyGr/PrisGr substrate was first minimized and annealed before the h-BN layers were placed 

atop it. The detailed relaxation procedure for the PolyGr/PrisGr can be found in Ref. [4]. After 

combining the relaxed PolyGr/PrisGr substrate with the h-BN slider, the whole system was relaxed 

for 200 ps under zero temperature damped dynamics simulation. Initial configurations under 

different normal loads were prepared by increasing the external force applied to the atoms of the 

top layer, which was kept rigid (allowing only for vertical rigid body motion), in a stepwise manner. 

After each such increment a relaxation process of 100 ps zero temperature damped dynamic 

simulation followed. The applied external force was taken to be in the range of -0.01–0.08 nN/atom, 

corresponding to a normal load range of -0.4–2.9 GPa. The initial configurations for room 

temperature (300 K) were generated by equilibrating the corresponding zero temperature 

configurations for 200 ps under Langevin thermostats. 

The simulation protocol for dynamic sliding simulations was similar to that used in our previous 

study on PrisGr/PolyGr/PrisGr homojunctions [4]. The h-BN slider was modeled by a three-layer 

stack, where the top layer was rigidly shifted in the 𝑥-direction at a constant sliding velocity of 

𝑣0  =  5 m/s allowing only for its rigid body vertical motion. The remaining two h-BN layers 

were flexible to follow the dynamics based on the abovementioned force-fields (see Fig. 1 of the 

main text). Similarly, the bottom graphene substrate layer was kept fixed during the dynamics and 

both the PolyGr and the middle PrisGr layers were fully flexible. To remove the heat generated 

during the shear motion, viscous damping with a damping coefficient of 𝜂 = 1.0 ps-1 was applied 

to the atoms in the second h-BN layer (l2) and the flexible PrisGr (l5) in all three directions. The 

corresponding damping terms are given by: 

𝐟damp
𝑖,𝑙2 (𝑡) = −𝑚𝑖𝜂[𝑣𝑥

𝑖,𝑙2(𝑡) − 𝑣0]𝐱̂ − 𝑚𝑖 ∑ 𝜂

𝛼=𝑦,𝑧

𝑣𝛼
𝑖,𝑙2(𝑡)𝛂̂,   𝑚𝑖 = 𝑚B or 𝑚N, 
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 𝐟damp
𝑖,𝑙5 (𝑡) = −𝑚C ∑ 𝜂𝑣𝛼

𝑖,𝑙5(𝑡)𝛼=𝑥,𝑦,𝑧 𝛂̂,  (S2) 

where 𝑚C, 𝑚B, and 𝑚N are the atomic masses of carbon, boron, and nitrogen atoms, respectively, 

𝑣𝛼
𝑖,𝑙𝑘(𝑡) is the 𝛼 Cartesian velocity component of the ith atom in layer 𝑙𝑘 (𝑘 = 2 or 5) at time t, and 

𝛂̂ = 𝐱̂, 𝐲̂, 𝐳̂ are the unit vectors in the x, y and z directions, respectively. The first term on the right-

hand side of the damping equation for layer l2 implies that the damping in the shear direction of 

this layer is applied to the relative atomic velocities with respect to the driving velocity v0, 

accounting for the fact that in realistic scenarios viscous dissipation is caused by the internal 

degrees of freedom of the sheared bodies. We note that the viscous damping terms are required as 

our model system thickness is finite, such that in their absence unphysical vibrational 

backscattering into the interfacial region from the artificial model system boundaries would occur. 

The viscous damping terms thus mimic energy dissipation via long-lived vibrational excitations 

that propagate away from the frictional interface into the supporting bulk regions present in 

realistic interfaces. Since we are mainly concerned with the overall energy that such vibrations 

carry away rather than their specific dynamics within the bulk regions, the use of viscous damping 

terms is well justified as long as the results do not strongly depend on the chosen damping rate 

(see Ref. [5]). 

In room temperature simulations, Langevin thermostats with the same damping settings as those 

of the zero temperature simulations were applied to layers l2 and l5. Since the random thermostat 

forces are not correlated between the various atoms to which they are applied, the total random 

force applied at each time step does not exactly nullify, leading to a slow random walk of the center 

of mass of the thermostatted layer. Therefore, to avoid artificial contributions to the calculated 

friction, the total random force of each damped layer was cancelled out by subtracting an equal 

part of it from each atom within the layer at each time step. Typically, the dynamic simulations 

lasted for 2-3 ns at zero temperature and 6-10 ns at room temperature so as to achieve sufficiently 

long steady state lateral force traces required for the calculation of the average friction. 

Representative lateral force traces and convergence validation of the friction calculations are 

discussed in detail in Sec. 2 below. 
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1.4. Quasistatic simulations 

In the quasistatic simulations, each minimization cycle included a 0.02 Å displacement of the top 

layer in the x direction followed by geometry relaxation using the FIRE algorithm [17,18] with a 

force tolerance of 1×10-4 eV/Å. The process was repeated up to a total displacement of 4.34 Å 

(217 displacement steps), corresponding to a full period along the armchair h-BN direction. The 

convergence of the extracted quasi-static friction with the optimization force tolerance is shown in 

Fig. S3. As the force tolerance is reduced, the calculated friction force gradually approaches the 

dynamic simulation result obtained at the lowest shear velocity considered (0.1 m/s) . For a force 

tolerance of 1×10-4 eV/Å, the relative difference with respect to the dynamic result is ~6.7%. 

Naturally, part of this difference originates from dynamic effects induced by the finite sliding 

velocity of the latter. The above analysis thus validates convergence of the quasistatic results with 

respect to the optimization force-tolerance parameters and the overall consistency of our approach. 

Similar to the dynamic calculations, during each quasi-static geometry relaxation step, the bottom 

graphene layer was kept fixed, and the top h-BN layer was allowed to rigidly relax only along the 

vertical direction. Due to technical details of the LAMMPS code, the latter was performed by 

artificially setting the atomic masses of boron and nitrogen in the top layer to be identical (here, 

for simplicity, taken to be the mass of a carbon atom) and applying to all of them a uniform vertical 

force equal to the corresponding average force acting on all atoms in this layer at each iteration of 

the FIRE optimization procedure. 

 

 

FIG. S3. Convergence test of the quasi-static friction force calculation with respect to the optimization 

force tolerance applied in the FIRE algorithm.  



9 

 

2. Lateral Force Traces and Friction Force Calculation 

The friction force results presented in Fig. 3 of the main text are calculated by averaging the lateral 

forces acting on the top slider layer over several sliding periods. The number of periods was taken 

to be sufficiently large to assure convergence of the average value and reduction of thermally 

induced fluctuation effects. Figure S4 presents representative force traces for zero and room 

temperature simulations at different normal loads. The lateral force traces exhibit clear periodic 

patterns with a period of 𝑡0 =  
𝑎ℎ−BN

armchair

𝑣0
=

4.33865 Å

5 m s⁄
= 86.77 ps, corresponding to sliding over one 

armchair period of h-BN. To calculate the friction forces, we averaged over time windows of 3𝑡0 

and 40𝑡0 − 60𝑡0 for the zero and room temperature traces, respectively. The larger time window 

chosen for the room temperature traces was required to average out thermal fluctuations induced 

errors. Figure S5 demonstrates the convergence of the calculated zero temperature friction force 

with the length of the averaging window for different normal loads. Once steady state is obtained, 

above a time window of 3𝑡0, the zero-temperature friction force calculation is well converged for 

all normal loads considered. Similarly, for the room temperature simulations the average friction 

force converges at a time window of 40𝑡0 − 60𝑡0, depending on the specific trace (see Fig. S6). 

The error bars for the heterojunctions at 300 K shown in Fig. 3(c)-3(d) of the main text are set as 

standard deviations of temporal friction force averages calculated using a running averaging 

window of 10𝑡0. 

 

 

FIG. S4. Representative lateral force traces at steady state for (a) zero temperature and (b) room temperature 

under normal loads of -0.4, 0, 1.1, and 2.9 GPa from top to bottom in each column. 
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FIG. S5. Convergence of the friction force estimation with the averaging time window for zero temperature 

simulations performed under normal loads of (a) -0.4 GPa, (b) 0 GPa, (c) 1.1 GPa, and (d) 2.9 GPa. For all 

time windows, averaging started after steady-state is well reached, namely after 3𝑡0. 

 

FIG. S6. Convergence of the friction force estimation with the averaging time window for room 

temperature simulations performed under normal loads of (a) -0.4 GPa, (b) 0 GPa, (c) 1.1 GPa, and (d) 2.9 

GPa. For all time windows, averaging started after steady-state is well reached, namely after 20𝑡0. 
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3. Frictional Dissipation Analysis 

3.1. General power balance at steady state 

At steady state, the system achieves a general power balance (𝑝in = 𝑝diss) between the input from 

the slider (𝑝in) and the total dissipation through viscous damping (𝑝diss = 𝐹𝑓 ∙ 𝑣0, where 𝐹𝑓 is the 

friction force and 𝑣0  is the shear velocity). Considering zero-temperature simulations, where 

thermal noises are absent, the total dissipation power 𝑝diss can be calculated according to the 

viscous damping scheme in Eq. S2 as follows: 

𝑝diss = 𝑝diss
𝑙2 + 𝑝diss

𝑙5 , 

 𝑝diss
𝑙2 = ∑ 𝑚𝑖𝑁𝑙2

𝑖
𝜂 (〈[𝑣𝑥

𝑖,𝑙2(𝑡) − 𝑣0]
2

〉 + ∑ 〈𝑣𝛼
𝑖,𝑙2(𝑡)2〉𝛼=𝑦,𝑧 ) , 𝑚𝑖 = 𝑚B or 𝑚N (S3) 

𝑝diss
𝑙5 = 𝑚C𝜂 ∑ ∑ 〈𝑣𝛼

𝑖,𝑙5(𝑡)2〉

𝛼=𝑥,𝑦,𝑧

𝑁𝑙5

𝑖

, 

where 𝑚C, 𝑚B, and 𝑚N are the atomic masses of carbon, boron, and nitrogen atoms, respectively; 

the superscript 𝑙2, and 𝑙5 represent the two damped layers (see Fig. 1 of the main text); 𝑁𝑙𝑘=2,5
 is 

the number of atoms in layer 𝑙𝑘; 𝜂 = 1.0 ps-1 is the damping coefficient; 𝑣𝛼
𝑖,𝑙𝑘(𝑡) is the 𝛼 Cartesian 

velocity component of the 𝑖th atom in layer 𝑙𝑘 at time t, and 〈⋅〉 denotes a steady-state temporal 

average. Figure S7 presents a comparison of 𝑝in and 𝑝diss at steady-state verifying that general 

power balance is indeed achieved. 

 

FIG. S7. General power balance between 𝑝in and 𝑝diss during zero temperature simulations. Plotted is the 

relative difference (in percent), 
|𝑝in−𝑝diss|

|𝑝in|
× 100, as a function of normal load. 
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3.2. Comparison of energy dissipation behaviors in the two damped layers 

In Fig. 2(c) of the main text, we discussed the directional dissipation components of the system, 

where each was summed over the corresponding components in the two damped layers, PrisGr 

layer l5 and h-BN layer l2. In Fig. 2(a)-2(b) of the main text, we only provided the distributions of 

power dissipation density for layer l5. We opted to do this because layer 𝑙2 demonstrates very 

similar qualitative load dependence of the directional dissipated power (Eq. S3) with some minor 

quantitative variations. For completeness, we present in Fig. S8 the distributions of power 

dissipation density for layer l2. Notably, PrisGr layer l5 contributes ~55%-80% of the total power 

dissipation. 

 

 

FIG. S8. 2D maps of the time-averaged dissipation power density for the dissipative layer l2 of the h-

BN/PolyGr heterojunction with 𝜃m = 8° under (a) zero normal load and (b) a normal load of 2.9 GPa. The 

geometric configuration of the PolyGr layer is superimposed on the 2D maps. Carbon atoms belonging to 

pentagon-heptagon and hexagonal lattice regions are present by cyan balls and pink bonds, respectively. 

The dissipation power density distribution maps are calculated by averaging over unit cells of dimensions 

𝑎Gr
armchair × 𝑎Gr

zigzag
, i.e. 4.26×2.46 Å2. 
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3.3. Energy dissipation analysis for the flat h-BN/PolyGr heterojunction with 𝜽𝐦 = 𝟐𝟏. 𝟖° 

For the h-BN/PolyGr heterojunction with flat GBs of θm = 21.8°, the directional dissipation power 

components are shown in Fig. S9. It is seen that the x-direction component, which grows with 

normal load, plays the dominant role in the total energy dissipation throughout the load range 

considered. Moreover, Fig. S10 demonstrates that the energy dissipation mainly originates from 

Grain 1 (where significant moiré superstructures appear) at both low and high normal loads. Due 

to the lack of dynamic buckling of GB protrusions, a monotonic increase of the dissipated power 

with the normal load is obtained, originating from the dynamic moiré instability mechanism (see 

Movie 5). 

 

FIG. S9. Directional components of the energy dissipation power as a function of normal load for the flat 

GB h-BN/PolyGr heterojunction with 𝜃m = 21.8° at zero temperature. 

 

 

 

 

FIG. S10. 2D maps of the time-averaged dissipation power density for the flat GB h-BN/PolyGr 

heterojunction with 𝜃m = 21.8°. Distribution of dissipation power density for dissipative layer l5 under (a) 
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zero normal load and (b) a normal load of 2.9 GPa. The geometric configuration of the PolyGr layer is 

superimposed on the 2D maps. Carbon atoms belonging to pentagon-heptagon and hexagonal lattice regions 

are present by cyan balls and pink bonds, respectively. The dissipation power density distribution maps are 

calculated by averaging over unit cells of dimensions 𝑎Gr
armchair × 𝑎Gr

zigzag
 , i.e. 4.26×2.46 Å2 (see Sec. 1 

above). 
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3.4. Energy dissipation analysis for PolyGr homojunctions 

Unlike the case of PolyGr heterojunctions, the corresponding homojunctions investigated do not 

exhibit significant moiré superstructures due to the large misfit angles chosen between the bottom 

slider layer 𝑙3 and the two grains of layer 𝑙4 (see Fig. 1 of the main text). Therefore, the moiré 

effects on energy dissipation are expected to be negligible in this case. 

For the PolyGr homojunction with 𝜃m = 8°, Fig. S11(a) reports the load dependence of the 

directional dissipation components at zero temperature. Similar to the corresponding 

heterojunction case, in the low normal load range (<1.5 GPa) the energy dissipation is dominated 

by the out-of-plane component and shows a nonmonotonic load dependence. The high dissipation 

sites are the GB protrusions that undergo strong dynamic snap-through buckling (Fig. S11(b)) [4]. 

As expected, in the high normal load regime (>1.5 GPa) the snap-through buckling mechanism is 

suppressed. Furthermore, unlike the case of PolyGr heterojunctions, since the energy dissipation 

in the grains area of the PolyGr homojunction remains very low (see Fig. S11(c)), all directional 

dissipation components show negligible dependence on the normal load in this regime (Fig. 

S11(a)). 

For the homojunction with flat GBs of 𝜃m = 21.8° , where both GB protrusions and moiré 

superstructures frictional mechanisms are absent, the directional energy dissipation components 

remain very low throughout the studied range of normal loads (see Fig. S12). 
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FIG. S11. Energy dissipation characteristics for  the PolyGr homojunction with a GB misfit angle of 𝜃m =

8° at zero temperature. (a) Energy dissipation power component in each Cartesian direction and their sum 

as a function of normal load. (b)-(c) 2D maps of energy dissipation power density in the damped PrisGr 

layer l5 under (b) a normal load of 0.6 GPa and (c) a normal load of 3.1 GPa. The dissipation power density 

distribution maps are calculated by averaging over unit cells of dimensions 𝑎Gr
armchair × 𝑎Gr

zigzag
, i.e. 

4.26×2.46 Å2 (see Sec. 1 above). The results in panel (a) below 2.0 GPa normal load and the results in panel 

(b) are taken from Ref. [4], the latter is replotted for larger cells. 

 

 

FIG. S12. Normal load dependence of the energy dissipation power along each Cartesian direction (blue, 

pink, and green) and their sum (orange) for  the PolyGr homojunction with a GB misfit angle of 𝜃m = 21.8° 

at zero temperature.  
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4. Effect of Grain Boundary Separation on the Moiré Stick-Slip Phenomenon 

In the main text, the PolyGr surface consisted of two grain boundaries, separated by a distance that 

accommodates half of the larger moiré superstructure period along the sliding (x) direction in Grain 

1 (see Fig. 1 of the main text). To evaluate the effect of grain boundary separation in general and 

the difference between having fractional or integer numbers of moiré superstructures, we present 

here results for a system where the 𝑥-length of Grain 1 is increased to ~23.9 nm, accommodating 

a full moiré period (see Fig. S13(a)). The enlarged system shows qualitatively similar moiré stick-

slip motion (see Movie 4) with reduced friction forces, especially at the high normal load regime, 

where stick slip dynamics dominates (see Fig. S13(b)). We attribute this difference to the fact that 

in the present case, less in-plane stress variations are required to maintain interfacial 

commensurability over Grain 1 during sliding, thus reducing energy dissipation along this channel. 

 

 

FIG. S13. Effect of grain boundary separation on moiré stick-slip motion. (a) a 2D topography map of the 

enlarged PolyGr layer with 𝜃m = 8°. The black frame outlines the primary simulation box. (b) Comparison 

of friction-load dependence for the original (black squares, see also Fig. 3(a) of the main text) and enlarged 

(red circles) systems at zero temperature. 
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5. Interfacial Commensurability Characterization using the Registry Index 

To quantitatively characterize the commensurability of the h-BN/PolyGr interface, we calculate 

the global registry index (GRI) in the PolyGr layer, which falls in the range of [0,1] with 0 and 1 

corresponding to the most commensurate (AB stacking with Boron atop carbon) and most 

incommensurate (AA stacking) stacking modes, respectively[19,20]. As shown in Fig. S14, as the 

normal load increases the entire heterogeneous interface becomes more commensurate, consistent 

with the stronger in-plane strain effect, where C-C bonds stretch or compress to better match the 

overlying h-BN lattice [3]. We note that the GRI curves reproduce well the interlayer energy 

profiles at both normal loads considered (see Fig. 4(e) of the main text) down to fine details, 

indicating that geometric considerations dominate the interlayer sliding energy physics. 

 

 

FIG. S14. Global registry index as a function of slider displacement under zero and 2.9 GPa normal loads 

for the system presented in Fig. 1 of the main text simulated under quasistatic conditions. 
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6. Lateral Motion of Moiré Triple Junctions 

The dynamic translation of moiré superstructures can be characterized by tracking the moiré triple 

junctions, i.e. the vertices of intersecting moiré grooves separating three adjacent moiré patterns 

(see Fig. S15(a)). We limit our discussion to zero temperature simulations, where clear moiré triple 

junction trajectories can be extracted, free of thermal fluctuation effects. Based on the direction of 

the connected zigzag grooves, the triple junctions are marked as left or right triple junctions, as 

shown in Fig. S15(a). To track the motion of the triple junctions we use a height criterion to define 

the group of atoms that constitutes each junction and average over their spatial positions at each 

time step. This is enabled since the triple junction region is somewhat lower in height from its 

surrounding. 

Before the triple junction reaches the GB, the moiré superstructure moves opposite to the direction 

of motion of the slider with a velocity given by 𝑣m =
𝜆𝑥

𝑎ℎ−BN
armchair × 𝑣0 =

23.86 nm

4.3386 Å
× 5 m s⁄ =

275 m s⁄ , where 𝜆𝑥 is the full moiré period in the sliding direction, 𝑎ℎ−BN
armchair is the corresponding 

atomic lattice periodicity, and 𝑣0 is the slider velocity. 

Fig. S15(b)-S15(d) presents the trajectories of four triple junction locations at increasing normal 

load. At zero normal load (Fig. S15(b)), the trajectories are relatively smooth demonstrating no 

apparent stick-slip behavior (see also Supplementary Movie 1). Their velocities (estimated from 

the slope averages of the corresponding linear trace sections) are ~340 m/s for the left triple 

junctions and ~300 m/s for the right triple junctions, somewhat higher than the moiré 

superstructure velocity of 𝑣m = 275 m s⁄ . We attributed these differences to in-plane stresses that 

develop within the PolyGr layer due to the presence of GBs and the fact that Grain 1 does not 

accommodate a full moiré period. For an intermediate normal load of 1.5 GPa (Fig. S15(c)), 

oscillations occur when the right triple junctions reach GB 2 and new left triple junctions seed near 

GB 1. Here, the translation velocities for the left and right triple junctions are ~290 m/s and ~280 

m/s, respectively, close to the reference velocity, 𝑣m . In the vicinity of GB 2 the right triple 

junction accelerates to ~1.38 km/s until it collides with the GB. Such high incident velocity causes 

back reflection and subsequent oscillations. Under a high normal load of 2.9 GPa (Fig. S15(d)), 

the incident velocity of the right triple junctions further grows to ~2.64 km/s resulting in even more 

pronounced oscillations (See Supplementary Movie 3). These oscillations correspond to the 

“stripes” pattern in the average 𝜎𝑥𝑥 stress component evolution map appearing in Fig. 5(b) of the 
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main text. This behavior is a clear manifestation of the superstructure stick-slip dynamics and the 

ramification of the triple junctions impact upon the GB on the frictional energy dissipation. 

 

 

FIG. S15. Motion of moiré triple junctions on Grain 1. (a) Snapshot height map of Grain 1 showing the left 

and right triple junctions under a normal load of 2.9 GPa. The black frame denotes the primary simulation 

supercell; the rest are periodic replicas. (b)-(d) Average locations of the triple junctions as a function of 

time at zero temperature under normal loads of (a) 0 GPa, (b) 1.5 GPa, and (c) 2.9 GPa and a slider velocity 

of 𝑣0 = 5 m/s. The dashed blue lines in panels (b)-(d) mark the position of the two GBs. 
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7. Stress and Energy Evolution During Moiré Stick-Slip Motion 

7.1. Moiré superstructures, atomic stress distributions, and total potential energy 

To shed more light on the role of in-plane stress on the discovered frictional mechanism we plot 

in Fig. S16 several moiré superstructure (a)-(c) snapshots obtained under an external load of 

2.9 GPa (panels (b) and (c) are also shown in Fig. 4(a)-4(b) of the main text) and the corresponding 

lateral stress distributions (d)-(f) in the sliding direction. The elevated (blue) regions appearing in 

Grain 1 in the top panels represent areas with elongated C-C bonds (hot colors in the lower panels), 

which are stretched to enhance the commensurability with the adjacent h-BN layer, whereas the 

red grooves are moiré domain walls exhibiting compressive stress (cold colors in the lower panels). 

Fig. S16 demonstrates that before a moiré triple junction hits the GB the overall lateral stresses in 

Grain 1 are relatively small. As the junction approaches the GB, lateral tensile stress develops 

reaching a maximum when the triple junction abruptly eliminates. Further motion of the slider 

results in an eventual release of this stress as a new triple junction seeds at the opposite GB. 

 

 

FIG. S16. Out of plane corrugation (a)-(c) of several moiré superstructures snapshots and the corresponding 

lateral stress maps (d)-(f) along the sliding (x) direction. The results were obtained during quasistatic 

simulation performed under a normal load of 2.9 GPa. 
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In Fig. 4(c)-4(d) of the main text, we presented the interlayer and intralayer energy components 

profiles for this system, respectively, obtained via quasistatic simulations, which demonstrate that 

sharp energy variations occur during moiré superstructure stick-slip motion under high normal 

load. In Fig. S17 we provide the corresponding total potential energy profiles, demonstrating that 

under a normal load of 2.9 GPa, the sliding energy barrier increases by ~ 1.6 eV with respect to 

the load-free case. This, in turn, leads to stronger in-plane stress accumulation and eventual release 

under high normal load, giving rise to higher energy dissipation. 

 

 

FIG. S17. Quasistatic total potential energy as a function of slider displacement under zero normal load 

(black) and a normal load of 2.9 GPa (red). These diagrams are the sums of the inter- and intralayer 

contributions appearing in panels (c) and (d) of Fig. 4 of the main text, respectively. 

 

7.2. Stress evolutions for quasistatic simulations and dynamic simulations at 𝒗𝟎 = 𝟎. 𝟐 𝐦/𝐬 

In Fig. 5 of the main text, we presented an in-plane stress evolution analysis for a high slider 

velocity of v0 = 5 m/s. For completeness, we present in Fig. S18 similar results obtained during 

quasistatic calculations and low velocity (𝑣0 = 0.2 m/s)  simulations under a normal load of 

2.9 GPa and zero temperature. Similar to the high sliding velocity case, clear stick slip motion is 

observed both in the quasistatic and the low-velocity simulations. Due to the quasi-static 

simulation procedure the former (Fig. S18(a)) does not exhibit high-frequency features following 

slip events (See Supplementary Movie 2). The latter, however, does feature multiple wave 

reflections between the two GBs (Fig. S18(b)), however considerably less pronounced than in the 
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high slider velocity case (see Fig. 5 of the main text), with reduced impact on the overall friction 

due to the overall lower kinetic energy of the system. 

 

 

FIG. S18. Two-dimensional PolyGr stress evolution maps. (a) In-plane stress map along the sliding 

direction as a function of slider displacement obtained via quasistatic calculations. (b) Same as (a) but for 

dynamic calculations with a slider velocity of 𝑣0 = 0.2 m/s . The calculations are performed at zero 

temperature and under a normal load of 2.9 GPa. In both maps, the stress is averaged along the direction 

perpendicular to the sliding path (𝑦). Positive and negative values indicate expansion and compressive 

stresses, respectively. 
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7.3. Stress Propagation Speed at the Moiré Instability 

As discussed in the main text, the propagation velocity of the incident and reflected waves induced 

by the stick-slip instability can be estimated from the slope of the wave-fronts in the stress 

evolution maps. In Fig. S19(a) we demonstrate such calculations for the case of a slider velocity 

of 𝑣0 = 5 m/s and a normal load of 2.9 GPa. Both incident and reflection wave front velocities 

are found to increase with the applied normal load (Fig. S19(b)). The kinetic energy associated 

with these two waves are proportional to 𝐸T
in ∝ (𝑣in − 𝑣m)2 and 𝐸𝑇

re ∝ (𝑣re + 𝑣m)2, where we 

have taken into account that the former travels against the sliding direction, whereas the latter 

travels in the sliding direction. This excess kinetic energy is dissipated during sliding. Fig. S19(c) 

shows that the sum of these contributions follows nicely the calculated energy dissipation, thus 

further demonstrating that a major contribution to the friction originates from the in-plane motion 

of the high-frequency multiply reflecting waves induced by the slip events. At a sliding velocity 

of 5 m/s, this contribution is estimated to be ~50%, compared to the quasistatic results of Fig. 3(a) 

of the main text. 

 

 

FIG. S19. Evaluation of the propagation velocity of the incident and reflected waves induced by the stick-

slip instability. (a) An example of wave velocity estimation from the lateral stress evolution map. (b) The 

incident and reflection wave velocities as a function of normal load. (c) Wave energy as a function of 

normal load (red, left vertical axis) compared to the power dissipation in the sliding direction (blue, right 

vertical axis). 
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