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ABSTRACT: We present a semi-anisotropic interfacial potential (SAIP) designed to
classically describe the interaction between gold and two-dimensional (2D) carbon
allotropes such as graphene, fullerenes, or hydrocarbon molecules. The potential is able
to accurately reproduce dispersion-corrected density functional theory (DFT+D3)
calculations performed over selected configurations: a flat graphene sheet, a benzene
molecule, and a C60 fullerene, physisorbed on the Au(111) surface. The effects of
bending and hydrogen passivation on the potential terms are discussed. The presented
SAIP provides a noticeable improvement in the state-of-the-art description of Au−C
interfaces. Furthermore, its functional form is suitable to describe the interfacial
interaction between other 2D and bulk materials.

1. INTRODUCTION

The reproducibility of the phenomena emerging at the
interface between two bodies in contact is often limited by
the availability of clean and well-controllable surfaces. Gold
and graphene are two very stable materials that can be
produced with a high level of crystallinity and cleanness over
large surface areas. For these reasons, the gold−graphene
interface has been the prototypical choice for a large number of
case studies, including diffusing and sliding gold nano-
clusters,1−6 nanomanipulation of graphene nanoribbons,7−9

plasmon-enhanced optics,10,11 sensing and biomedical appli-
cations,12 and surface-enhanced Raman scattering,13,14 among
many others.
Despite the vast interest expressed by the scientific

community in this composite system, to date, no reliable
classical force field is available for computational simulations
involving interfaces of gold with graphitic systems. Since the
interaction between graphene and metals is mainly governed
by van der Waals forces,15,16 a simple two-body Lennard-Jones
(LJ) potential, often expressed in the form VLJ(r) = 4ϵ[(σ/r)12

− (σ/r)6], has been so far employed and parametrized in order
to fit observations from specific experimental setups.6,7

However, the oversimplified nature of the LJ potential, with
just ϵ and σ setting the two-body dissociation energy and
equilibrium length, respectively, makes it extremely challenging
to fit more than a few among the several physical quantities
impacting the static and dynamical properties of a gold−
graphene assembly. As a consequence, previous studies have
employed very different parametrizations to match some
particular quantities of interest, with ϵ varying from 2.5 to

90.0 meV and σ varying from 2.5 to 3.2 Å,1,2,6,7,17 making a
straightforward comparison among these studies often
impractical.
Beside quantitative errors, even a qualitative description in

LJ terms is questionable. For a single gold atom residing on a
graphene surface, a typical pairwise isotropic potential (i.e.,
depending only on the distance between pairs of atoms), such
as the LJ potential, would find the minimum energy position,
where the gold atom is located over a graphene hexagon center
(hollow position). Nevertheless, experiments and first-principle
calculations have demonstrated that the atop position, where
the Au atom resides over a C atom, is energetically
favorable.18,19 This exemplifies the need for an anisotropic
potential to describe the gold−graphene interfacial energy
landscape.
Beyond the single-atom contact, when an extended gold−

graphene interface is considered, the sliding energy landscape
becomes much more complex due to the intrinsic incom-
mensurability of the contact. In fact, nanoscale graphene flakes
and ribbons residing over the (111) surface of gold can be
found in both the epitaxially aligned R0 and the R30 tilted
orientations.7,20 Extended contacts, on the other hand, were
predicted to prefer intermediate misfit angles 0 < θ < 30°.21
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This, in turn, is expected to be manifested in the interfacial
tribological properties, where the combination of the weak
Au−C interactions and the strong internal cohesive forces of
gold and graphene may lead to exceptionally low friction
coefficients (<10−3)a condition often referred to as
structural superlubricity.6,22,23 In superlubric systems, the
corrugation energy (CE)the energy barrier resisting
slidingcan decrease to values much below meV per interface
atom. Therefore, studies aiming at describing superlubricity,
often considering a combination of metals and graphitic
materials,3,7−9,24−26 are critically sensitive to the chosen
experimental or theoretical setup.
It is, therefore, evident that there is an urgent need to

develop a new force field able to reliably describe the
interaction between graphene and gold. Unfortunately, there
is only a handful of experimental studies providing data that
can be directly employed to parametrize such a force field. For
example, Torres et al. measured an adhesion energy (AE) Ea =
7687.1 mJ/m2 in the case of graphene-covered gold nano-
particles,27 while a pull-off force of Fa = 45.7 ± 5.1 nN was
measured by Li et al. for gold-coated atomic force microscopy
probes forming a ∼200 nm2 contact with a graphite
substrate.23 Other experiments provide only indirect informa-
tion based on empirically fitted models or simulations.6,7,9,28

The comparison with experiments is further complicated by
the presence of surface reconstruction at the gold surface,
usually neglected in first-principles calculations due to the large
supercell size required to encompass its long (∼6.3 nm)
wavelength. Leaving out such reconstruction effects potentially
overestimates the computed interaction energies, but in most
cases, this approximation yields only minor structural
modifications in the model systems.29

Due to the lack of direct experimental measurements and
accurate computational reference data for the adhesion and
corrugation energies of graphene−gold interfaces, we per-
formed dispersion corrected density functional theory (DFT
+D3) calculations on the R30 tilted graphene−gold hetero-
junction. This reference dataset allowed us to parametrize a
newly developed semi-anisotropic interfacial potential (SAIP)
that is able to simultaneously reproduce the DFT+D3 AE
curves and sliding potential energy surfaces (PES). The
developed SAIP and its suggested parameterization present a
significant advancement with respect to the present stand of
classical description of the interfacial interactions in gold and
graphene junctions. Furthermore, the SAIP formulation
provides a general tool for describing interfaces formed
between two-dimensional (2D) materials and bulk solids.

2. POTENTIAL DESCRIPTION

The presented SAIP is based on the concept of anisotropic
interlayer potentials for 2D materials.30−34 The potential
consists of two terms: an isotropic term that describes the
long-range attractive dispersive interactions and an anisotropic
term that describes the Pauli-type repulsion between the
graphene π electrons and the gold surface electron density.
The dispersive term treats long-range van der Waals
interactions via a C6/r

6 LJ type potential, dampened in the
short range with a Fermi−Dirac-type function similar to that
introduced in dispersion-corrected DFT calculations to avoid
double counting of correlation effects35

= −
+

·
− [ · − ]

l
m
ooo
n
ooo

|
}
ooo
~
ooo

E r r
e

C

r
( ) Tap( )

1

1
ij ij d r s r

ij

ij
dis ( /( )) 1

6,
6

ij ijR
eff

(1)

Here, rij is the distance between carbon or hydrogen atom i
and gold atom j, d and sR are unit−less parameters determining
the steepness and onset of the short-range Fermi-type
dampening function, and rij

eff and C6,ij are the sum of effective
atomic radii and the pair-wise dispersion coefficients,
respectively. The Tap(rij) function provides a continuous (up
to 3rd derivative) long-range cutoff at rij = Rcut to the potential
aiming to reduce computational burden36
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Following the Kolmogorov−Crespi30 scheme, the aniso-
tropic term of the potential is constructed from a Morse-like
exponential isotropic term, multiplied by an anisotropic
correction, in which the orientation of graphene is described
by normal vectors associated with each carbon or hydrogen
atom
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Here, Tap(rij) is the cutoff smoothing function of eq 2, αij and
βij set the slope and range of the potential, and γij sets the
width of the Gaussian decay factors in the anisotropic
correction term and thus determines the sensitivity to the
transverse distance, ρij, between carbon or hydrogen atom i
and gold atom j (see Figure 1). C and ϵij are constant scaling

factors bearing units of energy. The normalized normal vectors
ni (i.e., ∥ni∥ = 1) serve to calculate the transverse distance ρij
between pairs of carbon or hydrogen atom (i) and gold atom
(j)
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Each normal vector ni defines the local normal direction to
the graphene sheet (or to the benzene molecule) at the
position of atom i (see Figure 1). Note that the definition of
the normal vector is not unique and can follow different
schemes.30 For example, one can calculate the normal vector of

Figure 1. Normal vectors and transverse distance(a) construction
of a normal vector ni associated with carbon or hydrogen atom i (see
text); (b) scheme of the relation between the normal vector ni and the
transverse distance ρij between atom i and gold atom j.
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atom i by averaging the three normalized cross products of the
vectors connecting atom i to its three nearest neighbors k, l,
and m or, in a more simple way, by calculating it as ni = (rkl ×
rkm)/(∥rkl∥ ∥rkm∥) [see Figure 1a]. In our implementation, the
former definition is adopted. However, when dealing with a flat
graphene (or benzene molecule) lying on the xy plane, all
definitions of the normal vector should give ni = z,̂ making the
specific choice irrelevant. In the case of curved graphene, such
as for nanotubes, all normal vector definitions should produce
very similar results except for extremely small radii of
curvature.30,37

To account for the isotropic nature of the isolated gold atom
electron cloud, their corresponding normal vectors are
assumed to lie along the interatomic vector rij. Notably, this
assumption is suitable for many bulk material surfaces, for
example, for systems possessing s-type valence orbitals or
metallic surfaces, whose valence electrons are mostly
delocalized, such that their Pauli repulsions with the electrons
of adjacent surfaces are isotropic. Caution should be used in
the case of very small gold contacts, for example, nanoclusters,
where edge effects may become relevant.
Following the above assumption, nj∥rij, one gets ρji = 0. The

latter simplification reduces the anisotropic term to the
following final form
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3. MODEL SYSTEMS AND METHODS
3.1. Model Systems. As model systems for the parameter-

ization process, we choose the two interfaces depicted in
Figure 2. The first is composed of a graphene layer positioned
at the R30 stacking configuration over three Au(111) layers.20

The second is composed of a benzene molecule residing over

three Au(111) layers. DFT spin-polarized calculations were
performed by the Perdew−Burke−Ernzerhof (PBE) ex-
change−correlation functional within the generalized gradient
approximation augmented by Grimme’s D3 long-range
dispersion correction and the Rappe−Rabe−Kaxiras−Joanno-
poulos ultrasoft core-corrected pseudopotentials, as imple-
mented in the Quantum ESPRESSO software.38−41 Previous
benchmark DFT calculations of metal−organic frameworks
indicate that the PBE exchange correlation density functional
approximation with the D3 dispersion correction can
accurately describe the energetics of complex systems involving
organic and inorganic components.39,42,43 However, whether
this is the best DFT approach (out of tens of currently
available dispersion-oriented density functional approxima-
tions) for the system under consideration cannot currently be
concluded mainly due to the lack of experimental results or
high-accuracy computational reference data.
Kinetic-energy cutoffs of 600 eV for the wavefunctions and

4952 eV for the density were employed, with a reciprocal-space
mesh of 7 × 7 × 1 k-points for the Au(111)−graphene
interface and 3 × 3 × 1 k-points for the Au(111)/benzene
system (see below). Convergence of total energy over the
above cutoffs and k-points grid was established. Periodic
boundary conditions were applied in all directions. In all the
calculations, graphene or benzene were kept flat15 and the gold
atoms were maintained in the fcc bulk configuration.
In the Au(111)−graphene case, the lateral stress was

minimized by iteratively rescaling the system size. The final
supercell vector length and angles were a = b = 4.965638 Å, c =
30 Å, α = β = 90°, and γ = 60° (see Figure 2a,b). The out-of-
plane periodicity c was chosen to be as large as possible to
avoid interactions with replicas along the vertical direction.
The calculated lattice constants of the isolated bulk gold and
graphene systems were 2.8825 and 2.4652 Å, corresponding to
a final strain of −0.54 and +0.7%, respectively, in the relaxed
composite system. In the Au(111)/benzene and Au(111)/C60

cases, we have employed a supercell with a = b = 14.896914 Å,
c = 30 Å, α = β = 90°, and γ = 60° (see Figure 2c,d).
Equilibrium distances of 3.5 Å between graphene and gold, 3.3
Å between benzene and gold, and 3.3 Å between C60 and gold
were found by rigid vertical displacement of the adsorbate
molecule.

3.2. Fitting Protocol. The parameters of the SAIP were
determined against reference M = Mb + Ms DFT datasets
including Mb AE curves and Ms sliding PESs. The AE curves
were calculated for five high-symmetry stacking modes (see
top panel of Figure 3), which are concisely denoted by rm,
where m ∈ [1, Mb], such that ∈ rm

N3 m and Nm is the number
of atoms in configuration m. Each AE curve includes 15 data
points as a function of the gold−graphene (gold−benzene, or
gold−fullerene) distance. The sliding PESs were obtained at a
fixed vertical (z) distance of 3.5 Å, by rigidly shifting the
adsorbate along the lateral (x−y) directions with respect to the
gold substrate. The single-point total energy at each of the 441
points of a uniform mesh grid was recorded. The origin (0,0)
configurations of the PESs correspond to those presented in
Figure 2.
Optimal SAIP parameters were obtained by minimizing the

following objective function that quantifies the difference
between the DFT reference data and the potential predictions

Figure 2. Reference model systems(a) top and (b) side views of
the graphene/Au(111) model system in the “atop” configuration. (c)
Top and (d) side views of the benzene/Au(111) model system in the
“hollow” configuration. Carbon and hydrogen atoms are depicted in
gray and white, respectively. First, second, and third Au layers are
colored in yellow, orange, and red, respectively. Blue lines outline the
primitive cell.
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Here, ∥·∥2 is the Euclidean norm (2-norm) that measures the
difference between the SAIP predictions and the DFT
reference data, ξ represents the set of potential parameters,
and Em

b (rm,ξ) and Em
s (rm,ξ) represent the Mb AE curves and Ms

sliding PES data sets, respectively. wm
b and wm

s are the
corresponding weighting coefficients. The reference DFT
interfacial energies, Em

b,DFT and Em
s,DFT, are obtained as follows:

for any given configuration m of the heterostructure, the total
energy is first obtained from DFT+D3 calculation: Em

DFT,total.
Then, the energies of the isolated graphene, Em

DFT,graphene, and of

isolated gold, Em
DFT,gold, are computed separately using the same

cell as that of the composite system. The DFT interfacial
energy appearing in eq 6 is then defined as

= − −E E E Em
b/s,DFT

m
DFT,total

m
DFT,graphene

m
DFT,gold

(7)

Since the CEdefined as the difference between maximum
and minimum PES energyis much smaller than the AE (∼1
vs hundreds of meV/cell), the energy weights for the AE
curves were set to wm

b = 1 (m = 1, ..., 5), and those of the
sliding PESs were chosen as =w 100m

s , thus providing
comparable precision. The optimization was carried out
using MATLAB with an interior-point algorithm44,45 (further
details are provided in refs 34 and 37). To obtain transferable
parameters that can account for varying gold thickness, we first
parameterized the potential for the heterostructure with
trilayer gold using the objective function defined in eq 6;
then, we added the training sets of the heterostructure with
bilayer and single layer gold and reparameterized the potential
following the same procedure.

4. RESULTS AND DISCUSSION
The fitted parameters for Au−C and Au−H interactions are
reported in Table 1. We note that the negative sign in the C
parameter can be attributed to the fact that the atop position of
an Au atom on graphene is energetically favorable with respect
to the hollow position,18,19 where the Au atom resides over the
graphene hexagon center (see top panel of Figure 3). When
applying this potential to describe the interfacial interaction in
other 2D and bulk material interfaces, the parameter C can be
either positive or negative, depending on the sliding
energetics.30,37

4.1. Graphene on Gold. Figure 3 shows the comparison
between the AE curves of the Au(111)−graphene hetero-
structure with trilayer (Figure 3a), bilayer (Figure 3b), and
single layer gold (Figure 3c) obtained using DFT+D3
(symbols) and the SAIP using the parameters provided in
Table 1 (solid lines), calculated at different stacking modes.
Good agreement between the DFT and SAIP is obtained
especially in the tri- and bilayer case, while for the single layer,
a larger discrepancy is found. Note that the DFT calculations
show a similar AE, regardless of the number of gold layers,
while the SAIP predicts a reduced adhesion in the case of a
single gold layer. We associate the former with the fact that
decreasing the number of layers reduces the adhesive
interactions, but at the same time the undercoordinated Au
surface becomes more chemically reactive. This is also related
to the known increased atomic density of gold surfaces with
respect to bulk.46−49 Such compensation yields an almost
unchanged AE value, just slightly reduced with respect to the
bilayer case. This change of reactivity is lacking in the present
form of the SAIP. Here, the reduced adhesion obtained in the
case of the gold monolayer is clearly due to the reduced
number of Au−C interacting pairs, whereas the binding
energies obtained for the 2- and 3-layer substrates are very
similar being the third layer distant from the graphene surface.

Figure 3. Graphene on gold: adhesion energy curves of the
graphene−gold heterostructure with (a) trilayer gold, (b) bilayer
gold, and (c) single layer gold. Symbols and lines represent DFT+D3
reference data and SAIP results, respectively. Insets provide a
magnification around the minimum energy. Different symbols and
colors represent different stacking modes, as depicted in the top panel
(see text).

Table 1. Potential ParametersList of SAIP (Equations 1, 3, and 5) Parameters for the Interfacial Au−C and Au−H
Interactions

atom pair α β (Å) γ (Å) ϵ (meV) C (meV) d sR reff (Å) C6 (eV Å6)

Au−C 13.56556 3.69133 1.01755 7.09648 −1.03683 11.05865 1.06356 3.75526 81.58471
Au−H 4.30650 3.78996 10.68118 225.08878 −111.68915 18.61492 0.983319 3.35076 70.68654
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AE curves of the tri-, bi-, and single-layer Au(111) systems are
11.38, 11.43, and 70.95 meV/cell, respectively.
As mentioned earlier, comparison with experiment is

challenging due to the limited availability of measured AE
values for the graphene−gold interface. Specifically, Torres et
al. found an AE of Ea = 7687.1 mJ/m2 = 48 eV/nm2 in an
experiment exploring graphene-covered gold nanoparticles,27

whereas Li et al. found a pull-off force of ≈0.23 nN/nm2 = 1.44
eV/nm3 for gold−graphite interfaces.23 Notably, in order to
obtain the AE measured by Torres et al., this force (even if
assumed to remain constant) has to be applied along a distance
of ≃33 nm, way beyond the interlayer interaction range. This
indicates a discrepancy between the two experimentally
measured values. We note that our calculated AE of about
0.5 eV/cell (375 mJ/m2) obtained for the trilayer gold−
graphene interface model (Figure 3a) is lower than that found
by Torres et al. while the corresponding pull-off force of 2.04
nN/nm2, evaluated from the first derivative of the SAIP AE
curves, is larger than the experimental value of Li et al.,
suggesting that the SAIP provides values within the
experimentally available range. A much better agreement is
obtained between the SAIP predictions and previous computa-
tional results, such as an AE of 467 mJ/m2 calculated by Tesch
et al. for graphene nanoflakes on Au(111)15 and 394 mJ/m2

recently calculated for the Cu(111)−graphene interface50 that
is also dominated by vdW interactions.
The sliding PESs calculated using the SAIP parametrization

show good agreement with the reference DFT+D3 data (see

Figure 4), as well, with an error of 7.8, 11, and 10% for the PES
corrugation of the trilayer, bilayer, and single layer gold,
respectively, and corresponding average deviations of 0.010,
0.020, and 0.044 meV/cell, respectively. When comparing the
AE of the different stacking modes considered (see Figure 3a),
one finds that the maximum difference is about 0.5 meV/cell.
This value is related to the CE as shown in Figure 4. We note
that the CE is of the order of 0.075 meV per C-atom,
indicating an exceptionally lubric contact.22 We would like to
note that we obtain CE and AE values using energy differences
of nearly identical systems, thus we expect a very high
numerical accuracy. Furthermore, in the case of rigid contacts
considered herein, such small CE ensues from the approx-
imation employed to describe the lattice mismatch between
gold and graphene. A truly incommensurate lattice mismatch,
only obtainable in the thermodynamic limit of an infinite
supercell size, would in fact yield a vanishing CE regardless of
the potential parameters.
An LJ fitting of the DFT+D3 tri-layer gold−graphene PES

resulted in ϵ = 14.86 meV and σ = 3.8 Å, in agreement with
previous semi-empirical LJ parameterizations used to repro-
duce experimental results of gold cluster diffusion on
graphene.1,6 Notably, an LJ fitting of the AE curves results in
substantially different values, ϵ = 8.50 meV and σ = 3.37 Å,
confirming that the isotropic LJ description is incapable of
simultaneously describing the binding and sliding physics of
vdW interfaces.

4.2. Benzene on Gold. Going beyond the periodic
interface, we next consider the case of a benzene molecule
residing atop a gold surface. Figure 5 reports the AE curves

Figure 4. Graphene on gold: PESsliding potential energy surface of the graphene−gold heterostructure, calculated at an interface separation of
3.5 Å. The upper, middle, and bottom rows are for trilayer, bilayer, and single layer gold, respectively. The left, center, and right columns present
the PES calculated using DFT+D3, SAIP, and their difference, respectively. In the latter, the differences are magnified ×10 to clearly present the
fine features. For better visibility, a 4 × 4 linear interpolation has been applied to all the PES maps. The minimum of the PES was shifted to zero for
clarity.
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(Figure 5a,b) and sliding PES (Figure 5c−e) of the benzene/
Au(111) heterostructure obtained using DFT+D3 and the
SAIP using the parameters provided in Table 1. Good
agreement between the DFT and SAIP results is found for
both the AE curve and the sliding PES, with average deviations
of 28.0 meV/cell (∼4% of the AE) and 0.73 meV/cell (∼1.4%
of the CE) for the AE curve and the PES, respectively, and a
deviation of 1.7% in the overall PES corrugation. The obtained
AE value of 0.689 eV is in good agreement with a reference
experimental value of ∼0.64 eV at finite temperature.51

We note that SAIP parameterization yields a smaller Au−H
C6 coefficient and a larger d value than those of the
corresponding Au−C parameters, suggesting a weaker and
shorter-range dispersion term for the former. Furthermore, the
Au−H anisotropic repulsive term (eq 5) is considerably

weaker than the corresponding Au−C term. This results from
the tenfold larger γ parameter of the former (see Table 1) that

yields ∼−
ρ
γe 1( )ij
ij for any reasonable value of ρij in eq 5.

Together with the fact that ϵ ≃ 2|C| in the Au−H case (see
Table 1), the square brackets appearing in eq 5 are small in
magnitude and quite insensitive to the value of the lateral
interatomic distance. This indicates that the Au−H interaction
has a minor effect on the lateral shear motion and that most of
the lateral forces originate from Au−C interaction. Therefore,
we expect that the present parametrization should hold for
other planar benzenoid systems.

4.3. C60 on Gold. Finally, we challenge our developed SAIP
against extremely bent graphitic systems. In this case, one
might expect significant deviations of the interfacial energy

Figure 5. Benzene on gold(a) AE curve, and (b) zoom-in around its minimum, of a benzene molecule residing over a trilayer gold surface at the
configuration depicted in Figure 2c,d. Symbols and lines represent DFT+D3 reference data and SAIP results, respectively. The corresponding
sliding PESs calculated using (c) DFT+D3 and (d) SAIP, and (e) their difference are obtained at a benzene−gold separation of 3.3 Å. For better
visibility, isoenergetic contour lines are superposed on the PES maps, which were smoothened by a 8 × 8 linear interpolation. The minimum of the
PES was shifted to zero for clarity.

Figure 6. C60 on gold(a) top and (b) side views of the C60/Au(111) model system in the α configuration. (c) Top and (d) side views of the C60/
Au(111) model system in the β configuration. Carbon atoms are depicted in gray, and first, second, and third Au layers are colored in yellow,
orange, and red, respectively. Blue lines outline the primitive cell. (e) AE curves for the α and β configurations, with symbols corresponding to the
reference DFT+D3 data and solid lines to SAIP results obtained using the parameters appearing in Table 2.
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profiles from the ideally flat graphene case discussed above. In
particular, it is known that mechanical bending can alter the
reactivity of graphene sheets52 and introduce additional
interfacial effects, such as curvature-induced structural
lubricity.53 Since the latter effects should mainly depend on
the structural properties (geometry) of the adjacent surfaces,
they should be captured by the SAIP with the parameterization
presented in Table 1. However, accounting for the different
reaction energies of the curved graphene requires a full
quantum-mechanical treatment and thus a reparameterization
of the SAIP for the curved system. To demonstrate this, we
considered the case of a C60 fullerene physisorbed over an
Au(111) surface in two different orientations, marked as α and
β, as depicted in Figure 6a−d. By performing DFT+D3
calculations at different separations from the Au(111) surface,
we obtained the adhesion curves, reported in Figure 6e,
showing adhesion energies of 1.2545 and 1.2373 eV for the α
and β configurations, respectively. On average, the C60 AE is
larger than that of benzene by about 80%, thus supporting the
need to provide a separate parameterization for curved
systems. This is in agreement with previous calculations
indicating an increased reaction energy for nanotubes of a
smaller curvature radius.52 The increased surface reactivity is
manifested also in the equilibrium distance from the gold
surface, which reduces from 3.48 Å for flat graphene to 2.6 and
2.8 Å for C60 at the α and β configurations, respectively (see
Figure 6e). The simultaneous fitting of the two adhesion
curves for C60 produced a distinct set of SAIP parameters,
reported in Table 2. In comparison with the graphene/
Au(111) interface, the larger C6 and smaller d parameters
indicate a stronger and longer range vdW dispersion term.
Nonetheless, the anisotropic term reduces significantly, mostly
due to a ϵ ≃ 2|C| balance (see discussion above), indicating
that the Au−C interaction is weakly dependent on shear
motion in this highly curved system and that the sliding energy
surface corrugation is expected to be very small. Similar
considerations could be made in the case of very small-
diameter carbon nanotubes (CNTs) on gold, for which Table
2 could apply. However, the SAIP parameters should approach
those of Table 1 as the CNT diameter increases. The
possibility of including such parameter transition in a revised
SAIP functional form capable of describing general CNT−gold
assemblies54 is presently under investigation.

5. CONCLUSIONS

The results presented above indicate that the proposed semi-
anisotropic interface potential (SAIP) is able to accurately
reproduce the energetics of graphene−gold, benzene−gold,
and C60−gold interactions, as obtained from DFT+D3
calculations. While the functional form of the SAIP is suitable
to treat many interfaces between graphitic systems and gold
surfaces, system specific parametrizations of the SAIP are
recommended in order to obtain optimal accuracy. However,
the presented potential is expected to describe the structural
and dynamical response to external forces of a large number of
prototypical systems, such as gold nanoclusters on graphite,3,4

graphene nanoribbons on Au(111),7−9 and C60 on
Au(111),55,56 among others, with much improved accuracy

with respect to previous classical models. Furthermore, our
formulation can be generalized to describe a wide variety of
interfaces between hexagonal 2D materials and bulk solids,
such as MoS2/Au,

25 h-BN/Au,24,26 or graphene/Ag.15 This, in
turn, will considerably increase the scope of material interfaces
that can be treated using reliable dedicated classical force-
fields.
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