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First-principles electronic transport calculations in finite elongated
systems: A divide and conquer approach
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We present a first-principles method for the evaluation of the transmittance probability and the
coherent conductance through elongated systems composed of a repeating molecular unit and
terminated at both ends. Our method is based on a divide and conquer approach in which the
Hamiltonian of the elongated system can be represented by a block tridiagonal matrix, and therefore
can be readily inverted. This allows us to evaluate the transmittance and the conductance using
first-principles electronic structure methods without explicitly performing calculations involving the
entire system. A proof of concept model based on a trans-polyacetylene chain bridging two
aluminum leads indicates that our divide and conquer approach is able to capture all the features
appearing in the transmittance probability curves obtained by a full scale calculation. © 2006
American Institute of Physics. �DOI: 10.1063/1.2349482�
I. INTRODUCTION

The theoretical evaluation of the electronic transport
through molecular systems has been the focus of many stud-
ies in the past few decades. Since the original suggestion of
Aviram and Ratner1 to utilize a molecule for the fabrication
of a nanoscale electronic device, the scientific community
has paid attention to the study of small molecular candidates
for future molecular electronic components.2–11 When con-
sidering single molecule transport, one technologically
promising and scientifically interesting branch of materials is
one-dimensional elongated molecules. Systems such as car-
bon nanotubes,12–20 graphene ribbons,21,22 conducting
polymers,23–25 and biological molecules such as DNA �Refs.
26–29� exhibit high potential to serve as quantum wires and
as electronic elements in future nanoscale electronic devices.
Moreover, such molecules serve as model systems for the
experimental and the theoretical study of the physical phe-
nomena characterizing low-dimensional systems.

Due to the computational complexity of conductance
calculations, many groups focus on very short and/or infi-
nitely long periodic molecules. Several theoretical investiga-
tions have addressed the issue of finite extended systems
using tight binding approximations.30–36 A linear scaling
approach37 has been utilized to investigate the device-lead
coupling effects on the conductance through carbon nano-
tubes with length shorter than 3 nm. Nevertheless, it is pre-
dicted that finite size effects may persist up to hundreds of
nanometers.31

It is the purpose of the present study to introduce a first-
principles theoretical approach for the evaluation of the
transport properties of long molecules, which with current
computational resources cannot be treated using “brute
force” first-principles conductance calculations. We extend
the work of Anantram and Govindan30 to give a first-
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principles treatment of the conductance through finite ex-
tended molecules composed of a repeating unit and termi-
nated at both ends. Similar ideas were employed in other
studies utilizing the principal-layer method for the calcula-
tions of semi-infinite systems and surfaces.38–43 Our method
is based on a divide and conquer approach in which the
elongated molecule is divided into a left part, a middle part,
and a right part. The left �right� part interacts directly with
the left �right� lead, while the middle part has no direct in-
teraction with the leads. Computational efficiency is gained
in both parts of the calculation, the electronic structure phase
and the Green’s function �GF� evaluation phase. On the elec-
tronic structure part, we assume that the middle part is com-
posed of a repeating unit such that the Hamiltonian matrix of
the elongated molecule in a localized basis set representation
can be approximated as a block tridiagonal matrix with a
replicated middle block. By representing this repeating block
as the corresponding block of an infinite periodic system we
replace the calculation of the electronic structure of the full
finite elongated device by a calculation of the corresponding
infinitely long periodic system which can be accomplished
with much less computational effort. Using the sparsity of
the Hamiltonian matrix of the full open system, we employ
an efficient partial inversion algorithm to calculate only the
relevant nonzero submatrices of the GF that contain all the
information needed for the evaluation of the transport prop-
erties of the system.

We verify the validity of our assumptions using a simple
model of a trans-polyacetylene �TPA� chain bridging two
aluminum leads. Comparing the transmittance probability as
calculated using our divide and conquer approach to that
obtained by a full calculation of the elongated TPA system,
we find that the divide and conquer approach is able to ac-
curately capture all of the physical features appearing in the
transmittance probability curve obtained using the full sys-
tem. We quantify the accuracy of our approximation using a

statistical cross-correlation analysis.
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The rest of this paper is organized as follows. In Sec. II
we present the divide and conquer computational approach.
First, we give a brief overview of the general GF method for
conductance calculations �Sec. II A�, then we address the
dimensionality scaling of such calculations for finite sized
extended systems �Sec. II B�, in Sec. II C we present the
algorithm for the efficient calculation of the relevant blocks
of the full GF matrices. Section II D is devoted to the de-
scription of the implementation using density functional
theory calculations to obtain the input submatrices needed
for the calculation. In Sec. III we show results for the TPA
model system. A qualitative and quantitative assessment of
the performance of our approximation is given therein. Fi-
nally, in Sec. IV we summarize and briefly discuss future
directions.

II. COMPUTATIONAL METHOD

A. General formalism

In the current study, we are interested in calculating the
conductance through a �lead�molecular-device�lead� geom-
etry. For simplicity, we apply the Landauer formalism,44,45

which relates the current and the conductance to the prob-

ability of an electron approaching the device from one lead

the left lead �LL�, the device �d�, and the right lead �RL�.
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to leave the device at the other lead. It should be mentioned
that our method can be applied in conjunction with nonequi-
librium Green’s function formalism as well. At finite tem-
perature and bias the current-voltage relation, within the
Landauer framework, can be expressed in the following
manner:46

I�Vb� =
2e

h
� �fL�E,�L�Vb�� − fR�E,�R�Vb���T�E�dE ,

�1�

where I is the current, Vb is the bias voltage, e is the electron
charge, h is Planck’s constant, T�E� is the transmittance
probability, and E is the energy integration variable. The
Fermi occupation functions of the left and the right leads are
given by fL/R�E ,�L/R�=1/ �e��E−�L/R�+1�, where �=1/ �kBT�,
kB is Boltzmann’s constant, and T is the temperature. We
assume that the bias voltage drops sharply at the two leads/
device junctions47 such that the chemical potentials of the
leads have the form �L�Vb�=EF

L −0.5eVb and �R�Vb�=EF
R

+0.5eVb, EF
L and EF

R being the Fermi energies of the left and
right leads, respectively. The differential conductance g is
then given as the derivative of the calculated current with

respect to the applied bias voltage,
g�Vb� =
�I

�Vb
=

2e

h
� ��fL�E,�L�Vb�� − fR�E,�R�Vb���

�Vb
T�E�dE . �2�
Here, we assume that the transmittance probability is bias
independent. This approximation is valid only for low bias
voltages where the electronic structure of the system is con-
sidered to be only slightly perturbed by the bias voltage.

In the above equations the main physical quantity
needed to be evaluated is the transmittance probability,
which is calculated using the following trace formula:46,48,49

T�E� = Tr��L�E�Gd
r�E��R�E�Gd

a�E�� . �3�

Here, Gd
r�E� is the retarded Green’s function �rGF� of the

device, and Gd
a�E�= �Gd

r�E��† is the advanced Green’s func-
tion of the device. �L�E� and �R�E� are the left and right
broadening functions, respectively.

In a localized basis set representation, such as Gaussian-
or Slater-type orbitals, the device’s rGF is one block of the
rGF matrix of the full system �leads+device�. The latter is
defined as

��S − H�Gr��� = I , �4�

where Gr��� is the rGF matrix of the full system, H is the
matrix representation of the Hamiltonian of the full system, S
is the corresponding overlap matrix, �=E+ i�, �→0+, and I
is the unit matrix of appropriate dimensions. It is convenient
to formally divide the system into three subsystems, namely,
When doing so, Eq. �4� takes the following matrix form:

� �SLL − HLL �SLL,d − VLL,d 0

�Sd,LL − Vd,LL �Sd − Hd �Sd,RL − Vd,RL

0 �SRL,d − VRL,d �SRL − HRL
�

�� GLL
r GLL,d

r GLL,RL
r

Gd,LL
r Gd

r Gd,RL
r

GRL,LL
r GRL,d

r GRL
r � = � I 0 0

0 I 0

0 0 I
� . �5�

Here SLL and HLL are the overlap and Hamiltonian matrices
of the semi-infinite left lead, Sd and Hd are the overlap and
Hamiltonian matrices of the device, SRL and HRL are the
overlap and Hamiltonian matrices of the semi-infinite right
lead, SLL,d and VLL,d are the overlap and coupling matrices
between the left lead and the device, Sd,RL and Vd,RL are the
overlap and coupling matrices between the device and the
right lead,

Sd,LL=SLL,d
† , Vd,LL=VLL,d

† , SRL,d=Sd,RL
† , VRL,d=Vd,RL

† ,

and I is the identity matrix of the relevant size. The GF
matrix is divided into nine corresponding blocks. In Eq. �5� it
is explicitly assumed that the leads do not interact directly,

by setting their coupling and overlap matrices to zero.
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Solving Eq. �5� for the middle column of Gr results in
the following expression for the rGF of the device:

Gd
r��� = ��Gd

r0����−1 − �L
r ��� − �R

r ����−1. �6�

Here Gd
r 0���= ��Sd−Hd�−1 is the rGF of the bare device, and

� j=L/R
r ��� is the retarded self-energy of lead j, which is given

by the following expression:

� j=L/R
r ��� = ��Sd,jL − Vd,jL�Gj

r0�����SjL,d − VjL,d� , �7�

where Gj
r0��� is the rGF of the isolated semi-infinite lead j.

Gj
r0��� can be calculated using efficient iterative

procedures.39–41

The broadening functions appearing in Eq. �3� can be
written in terms of the leads self-energies in the following
manner:46,48,49

� j=L/R��� = i�� j
r��� − � j

a���� , �8�

where i is the imaginary unit and � j
a���= �� j

r����†.

B. Finite extended systems: Dimensionality scaling

At a first glance on the expression appearing in Eq. �3�,
it seems that the entire rGF matrix of the device, Gd

r���,
needs to be calculated at each energy point in order to obtain
the transmittance probability. For small molecules this is eas-
ily achieved; however, since our goal is the calculation of the
conductance through finite but extended systems this can be-
come a major obstacle. Nevertheless, if one carefully exam-
ines the equations, a remarkable simplification can be found
to overcome this problem. This simplification is based on the
fact that we are considering a localized basis set. In such a
basis set, the range of the interactions between the leads and
the device is relatively short such that we can further divide
the device into three parts: the left part �L� of the device
which directly couples to the left lead, the right part �R� of
the device which directly couples to the right lead, and the
middle part �M� of the device which couples only to its ad-
jacent left and right counterparts. This division is shown
schematically in Fig. 1. The device Hamiltonian can be writ-

FIG. 1. A schematic representation of the division of the device into three
parts: left �L�, middle �M�, and right �R�. The left part of the device directly
couples to the semi-infinite left lead �LL� while the right part of the device
directly couples to the semi-infinite right lead �RL�. There is no direct cou-
pling between the middle part of the device and the leads.
ten in matrix form as follows:
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Hd = � HL HL,M 0

HM,L HM HM,R

0 HR,M HR
� , �9�

where HL is the left part Hamiltonian matrix, HM is the
middle part Hamiltonian matrix, HR is the right part Hamil-
tonian matrix, HL,M is the coupling matrix between the left
part and the middle part, HM,R is the coupling matrix be-
tween the middle part and the right part, and Hd is Hermitian
such that HM,L=HL,M

† and HR,M =HM,R
† . We assume that the

left and right parts do not directly couple such that
HL,R=HR,L

† =0. The corresponding overlap matrix, Sd, can be
divided in a similar way.

As mentioned above, we assume that the left lead inter-
acts only with the left part of the device. Since our basis set
is localized, we can divide the semi-infinite periodic lead
into blocks �often referred to as principal layers39–41� large
enough such that only the block adjacent to the left part of
the device couples with it. The lead-device coupling matrix,
VLL,d, can now be written in the following form:

VLL,d =�
� � 0 0

0 0 0

0 0 0

] ] ]

� , �10�

where the three columns relate to the coupling of the differ-
ent blocks of the lead with the left, middle, and right parts of
the device, respectively, and only a single block �denoted by
asterisks� in VLL,d is nonzero. The SLL,d matrix has the same
form as in Eq. �10�.

In the same manner one finds that the right lead-device
coupling matrix has the form

VRL,d =�
0 0 � �

0 0 0

0 0 0

] ] ]

� , �11�

and SRL,d has the same form.
We can now use this notation to find out how sparse are

the self-energy matrices. Using Eqs. �10� and �11� in the
self-energy definitions of Eq. �7� we get

�L
r ��� = ��Sd,LL − Vd,LL�GL

r0�����SLL,d − VLL,d�

	 �� � 0 0 ¯

0 0 0 ¯

0 0 0 ¯

��� � � � ¯

� � � � ¯

] ] �

��
� � 0 0

0 0 0

0 0 0

] ] ]

�
= ��L

r ��� 0 0

0 0 0

0 0 0
� . �12�

The full square matrix at the second line of Eq. �12� stands
for the isolated left lead rGF. As can be seen, the self-energy
of the left lead can be represented by a very sparse matrix

r
with only a single nonzero block, which we denote by �L.
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A similar argument can be made for the self-energy of
the right lead to get

�R
r ��� = ��Sd,RL − Vd,RL�GR

r0�����SRL,d − VRL,d�

	 � 0 0 0 ¯

0 0 0 ¯

� � 0 0 ¯

��� � � � ¯

� � � � ¯

] ] �

��
0 0 � �

0 0 0

0 0 0

] ] ]

�
= �0 0 0

0 0 0

0 0 �R
r ���

� , �13�

�R
r being the only nonzero block of �R

r . Using Eqs. �8�, �12�,
and �13� we find that the broadening matrices are also sparse,

�L��� = i��L
r ��� − �L

a���� = �	L��� 0 0

0 0 0

0 0 0
� , �14�

and

�R��� = i��R
r ��� − �R

a���� = �0 0 0

0 0 0

0 0 	R���
� , �15�

where 	L= i��L
r −�L

r†� and 	R= i��R
r −�R

r†� stand for the non-
zero blocks of the broadening matrices. Using the results of
Eqs. �14� and �15� we can express the transmittance formula
of Eq. �3� as follows �as before asterisks, circles, and boxes
stand for nonzero blocks�:

T��� = Tr��L���Gd
r����R���Gd

a���� 	 Tr
�	L 0 0

0 0 0

0 0 0
�

��� � � � �

� � � � � �

� � � � � �
��0 0 0

0 0 0

0 0 	R
��� � � � � �

� � � � � �

�† � � � �
��

	 Tr�� � � � �

0 0 0

0 0 0
� . �16�

From Eq. �16� it can be seen that only the upper left ���
diagonal block of the traced matrix is needed to be evaluated.
The only contribution to this block from the device rGF is
the upper right ��� block of Gd

r��� which couples the left and
the right parts of the device. The contribution from Gd

a��� is
just the Hermitian conjugate of this block.

Therefore, as mentioned in Ref. 30, only the GF block
corresponding to the lead-device junction regions is needed
to be calculated explicitly and the dimensionality of the cal-
culation scales with the length of the regions directly coupled
to the leads rather than with the size of the full device. In this

manner, very long devices can be treated efficiently.
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C. Green’s function of a block tridiagonal Hamiltonian

We now turn to describe the calculation of the relevant
blocks of the rGF of the device. We are interested in the
calculation of the conductance through a very long system
that has two end units and a middle part which is composed
of a repeating unit cell. This setup is presented schematically
in Fig. 2. We choose the end units and the middle part to be
long enough such that we can approximately represent the
finite replicated unit cell of the middle part by the corre-
sponding part of an infinite periodic system.50 We also
choose this replicated unit cell to be long enough such that
only nearest neighboring blocks interact. The Hamiltonian
matrix of the device in a localized basis representation is
then given by a block-tridiagonal matrix,30,51,52

Hd =�
HL HL,m 0

HL,m
† Hm Hm,m

Hm,m
† Hm Hm,m

� � �

Hm,m
† Hm Hm,m

Hm,m
† Hm Hm,R

0 Hm,R
† HR

� .

�17�

Here, as before HL �HR� is the left �right� part Hamiltonian
matrix, Hm is the repeating unit, m, Hamiltonian matrix, HL,m

is the coupling matrix between the left part and the leftmost
repeating unit, m, Hm,m is the coupling between two adjacent
repeating units of type m, and Hm,R is the coupling matrix
between the rightmost repeating unit m and the right part of
the device. By approximating Hm as the corresponding infi-
nite device real-space block matrix, we circumvent the prob-
lem of calculating the electronic structure of the full ex-
tended device �L+M +R� and replace it by the calculation of
the considerably smaller L+m+R setup. A similar represen-
tation, involving no approximations, can be written for the
overlap matrix Sd.

Therefore, the device GF is given by the inverse of the
block tridiagonal matrix �Sd−HD. As described above, only a
single block of the whole rGF of the device is needed for the
conductance calculation. To evaluate this block we utilize an

53

FIG. 2. A schematic representation of the subdivision of the device into the
left �L�, the middle �M�, and the right �R� parts. The middle part is con-
structed by a replication of a repeating unit �m�.
efficient scheme that allows for the calculation of specific
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submatrices of the inverse of a finite block tridiagonal ma-
trix. Within this method the diagonal GF blocks of the device
are given by

Gd
r�i,i� = �Mi,i − Xi − Yi�−1, �18�

where
easily calculated using the procedure described above.
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Mi,i = ��SL − HL − �L
r , i = 0

�Sm − Hm, 0 
 n 
 N − 1

�SR − HR − �R
r , i = N − 1.


 �19�

Here, N is the number of blocks on the diagonal of the full
matrix to be inverted. Xi is given by the following recursion
relation:
XN−1 = 0,

XN−i = MN−i,N−i+1�MN−i+1,N−i+1 − XN−i+1�−1MN−i,N−i+1
† 2 � i � N , �20�
and Yi is given by

Y0 = 0,

Yi+1 = Mi,i+1
† �Mi,i − Yi�−1Mi,i+1, 0 � i � N − 2, �21�

where

Mi,i+1 = � �SL,m − HL,m, i = 0

�Sm,m − Hm,m, 0 
 n 
 N − 2

�Sm,R − Hm,R, i = N − 2.

 �22�

The off-diagonal blocks of the GF are given in terms of the
corresponding diagonal blocks in the following manner:

Gd
r�i, j� = �CiGd

r�i − 1, j� , i � j

DiGd
r�i + 1, j� , i 
 j ,

� �23�

for 0� i, j�N−1 and the Ci and Di coefficients are calcu-
lated by

Ci = − �Mi,i − Xi�−1Mi−1,i
† 1 � i � N − 1,

Di = − �Mi,i − Yi�−1Mi,i+1 0 � i � N − 2. �24�

Since we are only interested in the block that couples the left
and right parts of the device, we are able to calculate this
specific block while avoiding the calculation of the full �very
large� GF of the device. To do this we first use Eq. �21� to
calculate and store the Yi matrices. Next, we calculate the
last diagonal block of the GF, namely, Gd

r�N−1,N−1�,
through Eq. �18�. We finally obtain the required
Gd

r�0,N−1� block by calculating, in a recursive manner,
Xn �Eq. �20��, Dn �Eq. �24��, and Gd

r�n ,N−1� �Eq. �23�� for
n=N−2, . . . ,0.

For a density of states calculation we need the trace of
the isolated rGF of the device multiplied by the overlap ma-
trix,


�E� = −
1

�
Im�Tr�Gd

r0Sd��; �25�

therefore, all the information needed is contained in the di-
agonal and the first two off-diagonal blocks. These can be
D. Hamiltonian and overlap submatrice calculation

To obtain all the relevant submatrices needed for the
conductance calculation we employ density functional theory
�DFT�. Molecular and periodic boundary condition �PBC�
DFT calculations were carried out using the GAUSSIAN suite
of programs.54,55 Molecular orbitals �or Bloch functions in
the PBC case� are expanded in terms of atomic Gaussian-
type orbitals, and the Kohn-Sham �KS� equations are solved
self-consistently in that basis set. The use of localized
Gaussian-type orbitals as basis functions allows us to employ
the formalism presented above.

The implementation of the conductance calculation is
performed in six stages as described below.

�1� A one-dimensional PBC calculation for the left lead is
performed. We extract the real-space KS and overlap
matrices of the unit cell of the semi-infinite lead, as
well as the KS and overlap coupling matrices between
two adjacent unit cells within the lead. These matrices
are then used to produce the rGF of the isolated semi-
infinite left lead.39–41

�2� Same as the first stage but executed for the right lead.
This stage can be skipped if the leads are identical.

�3� A one-dimensional PBC calculation for the repeating
unit, m, is performed. We extract the real space KS
matrices Hm and Hm,m and the corresponding overlap
matrices.

�4� In this stage we perform a molecular calculation for the
isolated device �L+m+R parts�. We extract the follow-
ing KS matrices: HL, HR, HL,m, and Hm,R, and the cor-
responding overlap matrices.

�5� The goal of this stage is to calculate the KS and overlap
coupling matrices between the left lead and the left part
of the device. For that purpose we perform a one-
dimensional PBC calculation of the left lead and the
device �LL+L+m+R�. The periodic direction is per-
pendicular to the elongated dimension of the device as
shown in Fig. 1, and the unit cell of the left lead is
chosen to be big enough such that the direct coupling
between the elongated molecule and its replicated PBC

images can be neglected. The extracted coupling matri-
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ces are the nonzero blocks represented by asterisks in
Eq. �10�.

�6� Same as stage five, but executed for the right lead.

The output submatrices of each one of these six stages
are stored in separate files. These matrices are then employed
to calculate the conductance using the method described in
the previous sections.

III. PROOF OF CONCEPT

In order to evaluate the proposed method, we calculate
the transmittance probability through a TPA chain coupled to
two aluminum leads �see Fig. 3�. This simple model system
allows us to systematically compare the results of our ap-
proach to those of a full scale calculation. We choose a setup
in which TPA physisorbs on top of the leads similar to the
setup commonly used in elongated system conductance
measurements.12,26 The lead replicated unit cells are repre-
sented by two fcc slabs comprising of 72 aluminum atoms
each with a lattice constant of 4.05 Å. The total length of the
TPA chain is 18 unit cells, where each unit cell contains two
carbon-hydrogen pairs. The TPA geometry was taken from
Ref. 56. We divide the TPA chain such that the left, middle,
and right parts of it consist of six unit cells each. The dis-
tance between the TPA chain and the aluminum surface is
fixed at 	3 Å.

Since we are interested in proof of concept, we use a
minimal STO-3G basis set within the local density approxi-
mation �RSVWN5 keyword in GAUSSIAN� for both the leads
and the TPA chain. This enables us to readily perform the full
scale calculation for the elongated device and compare the
results to those obtained by the divide and conquer approach.

In Fig. 4 we present the transmittance probability
through a 30 unit cell length TPA chain at an energy window
of 1 eV around the Fermi energy of the leads. We compare
the result obtained using our divide and conquer approach
�solid black line in the figure� to those obtained for the full
30 unit cell TPA chain �dashed red line�. For the divide and
conquer calculation we use a 6−6�3−6 TPA chain where
the notation A−B�n−C stands for a left part comprising of
A unit cells, a middle part comprising of B unit cells repli-
cated n times, and a right part comprising of C unit cells.

As can be seen in Fig. 4, the divide and conquer calcu-
lation is able to correctly capture the physical features ob-

FIG. 3. Schematic side view �a� and top view �b� of the Al-TPA-Al junction
employed for the transmittance calculations.
tained by the full transmittance calculation in the energy re-
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gion explored. The source for the minor differences between
the two curves can be traced back to two approximations
done during the calculation. The first approximation is the
truncation of the Hamiltonian and overlap matrices when
dividing the device into the different blocks. This approxi-
mation can be systematically improved by increasing the size
of the blocks. The second �and more subtle� approximation is
the fact that we represent all the m blocks �see Fig. 2� by the
real-space block of the corresponding infinite periodic sys-
tem. For a full scale self-consistent calculation this, of
course, is not correct and an m block adjacent to the left �or
right� part of the molecule will have a somewhat different
Hamiltonian matrix than a corresponding block near the
middle of the elongated system. This approximation can be
relived by including some of the middle part repeating units
in the left and right parts of the molecule.

Despite the approximations mentioned above, the corre-
spondence between the curves is remarkable. There does not
seem to exist a constant shift between the curves, as one may
expect due to the difference in the Fermi energies between
the finite TPA chain and the infinite periodic TPA system
used to produce the divide and conquer results. Such a shift
is not observed due to the fact that for the finite �30 unit cells
long� system considered, the Fermi energy is calculated to be
very close to that of the infinite system.

A similar analysis has been performed for the transmit-
tance probability in the vicinity of the Fermi energy of the
TPA chain. As can be seen in Fig. 5, the divide and conquer
method produces a very good transmittance probability esti-
mation for a region of 0.8 eV around the Fermi energy of the
infinite periodic TPA system. The general location of the
regions of high transmittance around ±0.45 eV is also cap-
tured well, although some peaks appear to be shifted and
altered �shown as an inset in Fig. 5�.

At this point it is worth mentioning that there is no direct
measure of the accuracy of the divide and conquer method
with respect to the full scale calculation. Nevertheless, a sys-

FIG. 4. The transmittance probability through a 30 unit cell long TPA chain.
The solid black line is the divide and conquer approach calculation for a
6−6�3−6 TPA system. The dashed red line is a direct calculation for the
full length TPA chain. The Fermi energy of the leads �2.00 eV� is set to 0. In
this scale, the Fermi energy of the infinite periodic TPA chain is −3.66 eV.
tematic route to investigate how well the method captures the
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direct calculation results would be to check the sensitivity of
the calculated transmittance probability to an increase �or
decrease� of the size of the elongated device blocks.

In order to quantify our results we apply a linear cross-
correlation analysis utilizing Pearson’s formula.57 Given two
discrete data sets Xi and Yi, where 0� i�M one can calcu-
late their cross-correlation using the following formula:

r�d� =
�i��Xi − X̄��Yi−d − Ȳ��

��i�Xi − X̄�2��i�Yi−d − Ȳ�2
. �26�

Here r is the cross-correlation factor, X̄ is the mean value of

the Xi data set, Ȳ is the mean value of the Yi data set, and d
is a shift we apply to the Yi data set. For each shift we
calculate the cross-correlation coefficient, r. We assume cir-
cular symmetry of the data sets such that whenever the index
deviates from the data set boundaries it is folded back into
the allowed region. The cross-correlation factor of Eq. �26� is
normalized such that −1�r�1. When r=1 the two sets are
completely correlated, when r=−1 one set is completely cor-
related with the inverse of the other set, and when r=0 there
is no significant correlation between the two sets.

In Fig. 6 we present the cross correlation of the trans-
mittance probability curves obtained by the divide and con-
quer approach and by the direct calculation, for both energy
regions studied. As can be seen from the solid black curve,
the two calculations around the Fermi energy of the leads are
highly correlated �r=0.98� at zero shift. This verifies our
previous qualitative findings that all the physical features
arising from the full device calculation are captured by the
divide and conquer approach at this energy region and that
there is no constant shift between the two diagrams. As ex-
pected from the analysis of Fig. 5, the peak correlation for
the energy region around the Fermi energy of the TPA peri-
odic system is slightly shifted to the negative shift region,
and has a somewhat lower �yet still significant� value of r

FIG. 5. The transmittance probability through a 30 unit cell long TPA chain.
The solid black line is the divide and conquer approach calculation for a
6−6�3−6 TPA system. The dashed red line is a direct calculation for the
full length TPA chain. The Fermi energy of the infinite periodic TPA chain
�−1.66 eV� is set to 0. In this scale, the Fermi energy of the leads is 3.66 eV.
Inset: zoom in on the region of 0.4–0.5 eV.
=0.86.
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IV. SUMMARY

In this paper we present a method to evaluate the trans-
mittance probability and the coherent conductance through
elongated molecules composed of a repeating unit and termi-
nated at both ends. The method is based on a divide and
conquer approach in which the Hamiltonian matrix of the
elongated molecule in a localized basis set representation can
be regarded as a block tridiagonal matrix. By approximating
the Hamiltonian matrix blocks of the middle part of the elon-
gated molecule by those of the corresponding infinite peri-
odic system, we circumvent electronic structure calculations
involving the entire open system. Employing dimensionality
scaling arguments relevant to the calculation of the conduc-
tance through such systems, we have been able to efficiently
obtain the GF submatrices needed for the evaluation of the
transmittance probability.

Using our approach, computational efforts can be re-
duced in both the electronic structure part of the calculation
and the GF conductance evaluation. This allows us to evalu-
ate the transmittance probability and the conductance of a
one-dimensional finite sized extended system using first-
principles electronic structure methods. To this end we have
employed density functional theory in the Kohn-Sham
framework and Gaussian basis functions.

A proof of concept model based on a trans-
polyacetylene chain bridging two aluminum leads indicates
that our divide and conquer approach is able to capture all
the physical features appearing in the transmittance probabil-
ity curves of a full scale calculation. Work in the direction of
calculating the conductance through extended systems such
as carbon nanotubes, graphene ribbons, and DNA is cur-
rently under progress. It is worth mentioning that our method
is not restricted to the simplified Landauer picture presented
in the current study. Extensions to nonequilibrium Green’s
function calculations or absorbing potential treatments
should be relatively straight forward.

In recent studies, the ground state electronic structure of
58,59

FIG. 6. The cross-correlation coefficient comparing the direct transmittance
probability calculation with the divide and conquer method for the energy
region around the Fermi energy of the leads �solid black curve� and around
the Fermi energy of an infinite periodic TPA chain �dashed red curve�.
elongated systems was accurately captured using hybrid
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functionals, such as the screened exchange hybrid functional
of Heyd, Scuseria, and Ernzerhof60 �HSE� within the frame-
work of DFT. The combination of the current method with
the utilization of such state of the art electronic structure
calculations including electron-electron interaction effects
may lead to a better understanding of the electronic transport
properties through elongated systems.
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