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Supplementary section 1: Conductance as a function of magnetic fields in Pt atomic wires

Most probable conductance analysis:

We measure the conductance G (G=1/R, where R is the resistance) as a function of magnetic field by fixing the
field and collecting 10,000 conductance traces as a function of inter-electrode displacement (see Fig. 1b of the
main text). These traces are used to construct conductance histograms at different magnetic fields as seen in Figs.
Sla-h. The observed peak at about 1.6 G in these histograms provides the most probable conductance of the Pt
atomic wires. The conductance above the 1.6 G, peak is the outcome of contacts with more than one atom in
their cross section that are formed before wire elongation, and the tail at low conductance stems from tunneling
conductance that follows wire rupture. The figures show a sequence of conductance histograms taken one after
the other at different magnetic field magnitudes, either perpendicular or parallel to the junction’s axis. We do not
observe any indications for a systematic shift in the conductance peak at ~1.6 G as a function of magnetic field.
Figs. S1i,j show the average value of the conductance peak maximum as a function of perpendicular (i) and parallel
(j) magnetic fields for several measurement sets, similar to the two sets presented in Figs. S1a-h. Each data point
is an average based on at least 8 different conductance histograms collected at a given magnetic field but in
different experimental sessions. As exemplified in Figs. S1i,j, in the limit of the experimental error, we do not find

any magnetic-induced variations in the conductance of Pt atomic wires.

We note that our analysis is insensitive to possible magnetoresistance variations that might exist in atypical and
infrequently-formed structures of Pt atomic wires or to finite magnetoresistance with an arbitrary sign for
different junction realizations, since we average-out their possible contributions. Furthermore, we cannot detect
very small magnetic-induced conductance variations of the order of a few percent, since they are in the range of
the minor differences in the peak locations sometimes detected in different conductance histograms regardless
of the presence or absence of an external magnetic field. Such variations can possibly stem from changes in the
atomic structure of the electrodes. These characteristics of ensemble-based analysis may explain the discrepancy

between our transport measurements and the one reported in Ref. 1 (Ref. 14 in the main text).

The approach that we use in our analysis has an important advantage. In magnetoresistance measurements,
variations in resistance (or conductance) can be an outcome of magnetostriction effects rather than pure
magnetoresistance of electronic origin. Such undesirable magnetostrictive effects can take place when the inter-
electrode distance is kept constant after an atomic wire is formed and then a magnetic field is swept. In this case,
conductance variations as a function of magnetic field can stem from magnetic-induced structural variations, such
as: (i) extrinsic magnetostriction-induced changes in the dimensions of the sample or sample-holder that lead to
changes in the interelectrode distance; (ii) intrinsic magnetostriction, where the interelectrode distance remains

intact but possible changes in the wire length and tension in response to magnetic field variations may lead to
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conductance changes. In our measurements, we avoid these unwanted effects by performing repeated
conductance measurements during wire elongation under a fixed magnetic field. As mentioned in the main text,
minor conductance variations due to the reported magnetic effect on the interatomic distance are expected to be

smaller than the uncertainty range of the presented ensemble analysis in Figs. S1i,j.
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Fig. S1 Conductance as a function of applied magnetic fields during the formation of Pt atomic wires. a-d, Conductance
histograms collected at different magnetic fields perpendicular to the junction’s axis. e-h, Similar to a-d but for a parallel
magnetic field. i, Conductance at the peak maximum as a function of magnetic field perpendicular to the junction’s axis. j,
Similar to i but for a parallel magnetic field. In i,j each data point is an average of the peak value, based on at least 8 different
conductance histograms taken in different experimental sessions. Each such histogram is composed of 10,000 conductance
traces, measured under a bias voltage of 20 mV. The error bars are the standard deviation of peaks’ maxima. No
magnetoresistance is detected within the measurement uncertainty. Figs. S1i,j appear in the main text as Insets in Fig. 1g,h.
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Conductance oscillations during wire elongation:

As mentioned above and in the main text, we do not observe variations in the most probable conductance larger
than several percent. However, we find clear indications for the effect of applied magnetic fields on electronic
transport when focusing on conductance as a function of elongation. Figure S2, presents the average conductance
measured during wire elongation under parallel (a), zero (b), and perpendicular (c) applied magnetic fields. Clear
conductance oscillations are seen riding on a decaying conductance baseline. These oscillations are ascribed to
variations in the local orbital structure during the elongation process of Pt atomic wires?3. Specifically, a relaxed
wire has a zigzag structure, however, when the wire is stretched it becomes linear. This results in an enhanced
orbital hybridization and higher density of states at the Fermi energy, translated to conductance increase. Further
stretching results in either rupture or the insertion of another atom into the wire, and partial relaxation of the wire
back to the less-conducting zigzag configuration. Therefore, during wire elongation the conductance oscillates (Fig.

$2) and the magnitude of these oscillations probes the extent of orbital overlap at the Fermi level®.

Focusing on the influence of parallel and perpendicular magnetic fields on the amplitude of the conductance
oscillations (Fig. S2), we find that a perpendicular magnetic field enhances the oscillations and a parallel field
suppresses them. These findings provide another indications that magnetic fields affect the orbital structure, and
specifically a perpendicular (parallel) magnetic field enhances (suppresses) orbital overlap at the Fermi level.
Transport measurements probe the states located in a window around the Fermi energy (about 20 meV in our
case). In contrast, the magneto-structural response probes variations in the orbitals that are involved in the
interatomic bonds that are not limited to the vicinity of the Fermi level. Thus, the two types of analysis complement
each other. We note that the magnetic induced changes in the amplitude of the oscillations is clear, though it is

limited to a few present and therefore not seen in the most probable conductance analysis.
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Fig. S2 Magnetic field effect on the average conductance traces of Pt atomic wires. a-c, Average conductance (blue) as a function
of inter-electrode separation under a parallel magnetic field of 1.5 T (a), no applied magnetic field (b), a perpendicular magnetic
field of 1.5 T (c) for applied bias voltage of 20 mV. The dashed black line is an exponential fit. Insets, difference between the average
traces and the exponential fit. The observed conductance oscillations are enhanced (suppressed) when a perpendicular (parallel)
magnetic field is applied. The data of each panel is based on 10,000 conductance traces taken at an applied bias voltage of 20 mV.
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Supplementary section 2: Length calibration

The relative displacement of the electrodes in our break junction setup is proportional to the voltage applied on
the piezo element (piezo voltage). We find the calibration constant between the piezo voltage and the inter-
electrodes displacement based on the exponential decay of the conductance with distance in the tunneling regime
(Fig. S3) as described in more details in Ref. 4 and its supplementary materials. Specifically, we collect histograms
of the calibration constant based on thousands of traces of conductance as a function of piezo voltage to obtain
a statistically reliable calibration (Fig. S3, Inset). The measured average inter-peak distance at zero applied
magnetic field, which is determined based on the found calibration constant is in agreement with the value of
2.340.2 Athat appears in the literature®®. We note in passing that in our work the key information is the magnetic-

field-induced variations in the inter-peak distance and the dgo rather than their absolute values.

The calibration factor may, in principle, vary in response to different magnetic fields. This is due to
magnetostriction response that can affect the dimensions of the sample and sample-related components (the
phosphor-bronze sample substrate, sample holder, etc.). Therefore, the relevant setup components and the
sample itself are composed of materials with negligible magnetostriction. We verify that magnetic fields do not
affect the calibration factor by repeating our measurements with gold (Au) atomic wires, which are not expected
to exhibit any magnetic response in the relevant magnetic field range. As can be seen in Supplementary section
3, we did not detect any variations in the interatomic distances and dgg in response to magnetic fields for the case
of Au atomic wires. This indicates that the calibration factor in our experimental setup is not affected by magnetic

fields, for any practical purpose.
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Fig. S3 Length calibration by conductance dependence on piezo voltage. Conductance as a function of piezo voltage
measured during the increase of the distance between the electrode apices. The red line is an exponential fit to the tunneling
conductance dependence on inter-electrode distance. Inset: histogram of the constant K relating the inter-electrode distance
and the applied piezo voltage.
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Supplementary section 3: Applied voltage effect on the magneto-structural response of Pt wires

Figures S4 and S5 show no apparent effect of applied bias voltage on the reported magneto-structural response,
when increasing the bias from 20 mV to 100 mV and 180 mV. This analysis is limited to 180 mV, since we typically

observe clear shortening of atomic wires due to Joule heating at above 200 mV or higher bias voltages.
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Fig. S4 Magnetic field effect on interatomic distance in Pt atomic wires. a,b, Inter-peak distance as a function of
perpendicular (a) and parallel (b) magnetic fields for an applied bias voltage of 20 mV. d,_; and d;_, are the inter-peak
distances as defined in Fig. 2 of the main text, which provide an indication for the average interatomic distance in the
elongated wires. ¢,d, Similar to a,b, but with an applied bias voltage of 100 mV. e,f, Similar to a,b, but with an applied bias
voltage of 180 mV. No significant detectable dependence on bias voltage is found. Each data point was obtained from at least
8 length histograms that were collected during different experimental sessions. Each such length histogram is based on 10,000
conductance traces. The error bars provide the standard deviation of the averaged data.
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Fig. S5 Magnetic field effect on length of Pt atomic wires. a,b, dqy, @ measure of the wire length as defined in the main text,
as a function of perpendicular (a) and parallel (b) magnetic fields for an applied bias voltage of 20 mV. ¢,d, Similar to a,b, but
with an applied bias voltage of 100 mV. e,f, Similar to a,b, but with an applied bias voltage of 180 mV. No significant detectable
dependence on bias voltage is found. Each data point was obtained from at least 8 length histograms that were collected
during different experimental sessions. Each such length histogram is based on 10,000 conductance traces. The error bars
provide the standard deviation of the averaged data.

Supplementary section 4: Magneto-structural measurements in Au atomic wires

The magnetization and magnetic anisotropy of Au atomic wires are expected to be negligibe’. Therefore, we
repeat our entire experimental analysis with Au atomic wires as a control experiment. As can be seen in Fig. S6
and Fig. S7, the inter-peak distance and atomic wire length are not sensitive to parallel or perpendicular magnetic
field in the range used in the main text for Pt wires. Interestingly, Fig. S8 shows that the peak width is not affected
by a parallel magnetic field, but it increases for a perpendicular magnetic field. This indicates a different magneto-

structural effect in comparison to the case of Pt atomic wires. This effect will be reported elsewhere.
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Fig. S6 Inter peak distance in Au length histograms as a function of magnetic field. a,b, Length histograms formed at zero
applied magnetic field and at a magnetic field of 1.5 T (Tesla) perpendicular to the junction’s axis, as defined in Fig. 1a. d,_,
d;_, and d,_5 are the inter-peak distances, which are good measures for the average interatomic distance in the elongated
wires. ¢, Inter-peak distance as a function of a perpendicular magnetic field. No change in the inter-peak distance is observed
within the experimental uncertainty (standard deviation). d,e, Similar to a,b but the magnetic field applied parallel to the
junction’s axis, as defined in Fig. 1a of the main text. f, Similar to c but with a parallel magnetic field. Here, as well, no change
in the inter-peak distance is observed within the experimental uncertainty. All length histograms are based on 5,000
conductance traces, measured under a bias voltage of 20 mV.
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Fig. S7: Wire length for Au atomic wires as a function of magnetic field. a,b, Length histograms formed at zero magnetic
field and at a magnetic field of 1.5 T applied perpendicular to the junction’s axis, as defined in Fig. 1a of the main text. The
dashed line represents the location of dqj, which is a measure of the wire length as explained in the main text. ¢, dog as a
function of a perpendicular magnetic field to the junction’s axis. d,e, Similar to a,b but with a parallel magnetic field. f dyg as
a function of a parallel magnetic field. Panels ¢ and f compile results of at least 5 measurements. All length histograms are
based on 5,000 conductance traces, measured under a bias voltage of 20 mV. The error bars represent the corresponding
standard deviation. No change in dq, is observed as a function of magnetic field for Au atomic wires within the experimental
uncertainty.
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Fig. S8 Peak width for Au atomic wires as function of magnetic field. a,b, Show length histograms for atomic wires in the
absence of magnetic field and under a field of 1.5 T applied perpendicular to the junction’s axis, respectively. The peaks are
fitted by Gaussian functions (red dots). ¢, Peak widths (obtained from the Gaussian fitting) as a function of magnetic field
strength applied perpendicular to the junction’s axis. d,e, Similar to a,b, but for a parallel magnetic field. f, Similar to c, but
for a parallel magnetic field. Panels c,f compile results of at least 5 measurements. The error bars represent the corresponding
standard deviation. All length histograms are based on 5,000 conductance traces, measured under a bias voltage of 20 mV.
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Supplementary section 5: dgo and its response to magnetic field

As mentioned above (and in the main text), to evaluate the length of the Pt atomic wires we have defined the
parameter, dgo, such that 90% of the formed wires are shorter than its value. This parameter is more reliable than
the evaluation of the maximal wire length, which is determined by a limited number of long wires and thus is
highly sensitive to variations between different experiments. Fig. S9 presents the location of dgp with respect to
the corresponding length histograms and the influence of perpendicular and parallel magnetic fields on this
parameter. dgo reduces in response to a magnetic field applied perpendicular to the junction’s axis, whereas it

increases when a magnetic field is applied parallel to the junction.
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Fig. S9 The location of dgy within the Pt length histogram and its response to magnetic field. a,b, Length histograms
constructed from 10,000 conductance traces in the absence of magnetic field (a) and in the presence of a magnetic field of
1.5 T applied perpendicular to the junction’s axis (b). ¢,d, Similar to a,b, but for a parallel magnetic field. The dashed line
represents the location of dgp. The measurements were performed using a bias voltage of 20 mV.

Supplementary section 6: Comparison between different wire length evaluations

To verify that the observed trends in dgo in response to magnetic field direction and strength in Fig. 2 of the main
text is not sensitive to the exact definition of the wire length parameter, we examine the magnetic field
dependence of d;o, and dgs. The definition of dx is analogous to the one of dgg, as discussed in Supplementary
Section 4 above, with x% of the atomic wires being shorter than dx. Fig. S10 reveals that the magnitude of the

magnetic-induced shifts is different for different dx, but the shift trends are identical. Namely, the qualitative
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behavior is preserved. Similar trends can be seen in Fig. S11 that presents the magnetic-field dependence of the

average length of the 10 longest wires.
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Fig. S11 Longest wires response to magnetic field. Averaged length of the ten longest atomic wire as a function of magnetic
field applied perpendicular (a) and parallel (b) to the junction’s axis. For each magnetic field, 5 different sets of 10,000
conductance traces each were measured, then the average length of the 10 longest plateaus at ~1.6 G, were calculated for
each set. The average and standard deviation of these values for the 5 sets are presented.
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Supplementary section 7: magnetic field effect on the number of atoms in Pt wires

Figs. S12a,b show an estimation of the average number of atoms in Pt atomic wires as a function of magnetic field.
This information is obtained by dividing the wire length by the interatomic distance. Specifically, the wire length is
given by dg, and the interatomic distance is given by the average inter peak distance ((ds_, + d,_1)/2) at each
magnetic field. Based on Figs. S12a,b, a parallel magnetic field increases the average number of atoms in the
wires by 0.7£0.1 atoms and a perpendicular magnetic field decreases it by 0.7£0.1 atoms. We repeat this
analysis for the average length of the ten longest atomic wires to get a similar, though pronounced, behavior as
seen in Figs. S12c,d. Here, the length increases by 2.3+0.5 atoms or decreases by 3.1+£0.4 atoms for the same fields,
indicating a higher sensitivity of the longest wires to magnetic fields. This is expected, considering that the wire’s
magnetization increases for longer wires®. This analysis estimates the magnetic field effect on the number of atoms
added to or subtracted from the wires, and it does not provide an accurate estimation for the number of atoms in

the wires that depends on the exact definition of where the wires begin/end.
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Fig. S12 Number of atoms in Pt atomic wires as a function of magnetic field. a,b, dq, divided by the interatomic distance
given by the average inter peak distance (d,ye =(ds_, + d,_1)/2), at the relevant magnetic field magnitude. The resulted
number of atoms is plotted as a function of perpendicular (a) and parallel (b) magnetic fields. c,d, Average length of the
longest 10 wires (dyg jongest) divided by the average inter peak distance, at the relevant magnetic field magnitude. The
resulted number of atoms is plotted as a function of perpendicular (c) and parallel (d) magnetic fields. The number of atoms
decreases by 0.68 atoms for the dq, analysis (3.07 atoms for the 10 longest wires) when a perpendicular magnetic field is
applied, and it increases by 0.69 atoms (2.25 atoms for the 10 longest wires) when a parallel field is applied.
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Fig. S13 Magnetic field effect on the peak area in the length histograms of Pt atomic wires. a,b,d,e, Length histograms
(based on 10,000 conductance traces measured under a bias voltage of 20 mV) recorded at zero magnetic field (a,d), and at
a field strength of 1.5 T applied perpendicular (b) or parallel (e) to the junction’s axis. The peaks are fitted with Gaussian
functions (red dots) and the sum of these fits appears in black. c,f, Areas of the fitted Gaussians as a function of the applied
perpendicular (c) and parallel (f) magnetic field strength for the three peaks. The colors correspond to the peak colors
appearing in a,b. Each data point provides the average area based on at least 8 length histograms taken at different
experimental sessions under the same magnetic field. Error bars represent the corresponding standard deviation. g,h, Total
areas of length histograms as a function of applied perpendicular (a) and parallel (b) magnetic fields. Each point represents
the average area of 8 histograms (c,d) or 5 histograms (g,h). The error bars indicate the variance at each point.

Next, we focus on the relative weights of the peaks in the length histograms. Using Gaussian fittings, Figs. S13a-f
present the relative area of each peak with respect to the total area of all peaks as a function of magnetic field. In
response to the application of a parallel magnetic field, the area below the 3™ peak increases, while the area bellow
the 1% peak decreases. The application of a perpendicular field leads to an opposite trend. Interestingly, the area
bellow the 2" peak is not very sensitive to magnetic fields, indicating that changes in the populations of the 1 and
3™ peaks are done on account of each other, while the population of 2" peak is not significantly affected. The
preservation of the 2" peak can be understood in the following way. When a parallel field is applied, a larger
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number of wires successfully survive rupture at the 1% peak and are being elongated to the 2" peak. However, a
similar number of wires successfully survive rupture at the 2" peak as well, and are being elongated to the 3™ peak.
We note that when examining the total area below the length histogram (Fig. S13g,h), we find a negligible change
that can be rationalized as an outcome of the mentioned balance: the pronounced elongation to the 3™ peak is
compensated by the suppression of wires that are broken in the 1° peak.
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Supplementary section 8: Magnetic field effect on the peak sharpness in the length histograms of Pt
atomic wires

In different length histograms taken in the absence of a magnetic field, arbitrary changes in the sharpness of the
peaks may take place. This is probably due to changes in the atomic arrangement of the electrode apices. To
clearly present the effect of magnetic field on the sharpness (or width) of the peaks in the length histograms, in
Fig. 3 of the main text as well as in Figs. S14-S15 (presenting an extended version of Fig. 3), we deliberately choose
an initial length histogram with wide (sharp) features at B = 0 T and then apply a perpendicular (parallel) magnetic

field to exemplify the full range of peak widths response to the magnetic field.

To demonstrate that this choice does not influence our conclusions, in Fig. S16 we start with length histograms of
similar sharpness before applying a magnetic field either parallel or perpendicular to the junction’s axis. Then, we
quantitatively analyze the effect of the magnetic fields on the peak width by fitting Gaussian functions to the peaks
and examining the magnetic field influence on the Gaussian widths (Figs. S16a,b,d,e). Figs. S16¢,f present the
response of the Gaussian width, where each data point is an average based on at least 8 histograms per magnetic
field value. For a perpendicular magnetic field, a clear reduction in the peaks’ width is seen for the second and
third peaks, while there is no clear influence on the first peak. For a parallel magnetic field, an increase in the
width of the third peak is observed. The minor increase in the width of the second peak is of the order of the
measurement uncertainty and we do not detect any magnetic field influence on the first peak. Former density
functional theory (DFT) calculations showed that the magnetic moment in Pt atomic wires increases as a function
of their length®, probably up to saturation. Therefore, shorter atomic wires are expected to have lower or no

magnetic moment, explaining the observed reduced sensitivity of such wires to the external magnetic field.
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Fig. S14 The effect of perpendicular magnetic field on the peak sharpness in the length histograms of Pt atomic wires.
Length histograms recorded sequentially as a function of increasing (a-g) and decreasing (m-h) magnetic field applied
perpendicular to the junction’s axis. The peaks’ sharpness increases for higher magnetic field strengths. This response is
inverted when the magnetic field is reduced. All length histograms are based on 10,000 conductance traces measured under
a bias voltage of 20 mV.
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Fig. S15 The effect of parallel magnetic field on the peak sharpness in the length histograms of Pt atomic wires. Length
histograms recorded sequentially as a function of increasing (a-g) and decreasing (m-h) magnetic field applied perpendicular
to the junction axis. The peaks’ sharpness decreases for higher magnetic field strengths. This response is inverted when the
magnetic field is reduced. All length histograms are based on 10,000 conductance traces, measured under a bias voltage of
20 mV.
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Fig. S16 Magnetic field effect on the peak width in the length histograms of Pt atomic wires. a,b, Length histograms (based on 10,000
conductance traces measured under a bias voltage of 20 mV) recorded at zero magnetic field and at a field strength of 1.5T
applied perpendicular to the junction’s axis, respectively. The peaks are fitted with Gaussian functions (red dots) and the sum
of these fits appears in black. ¢, Widths of the fitted Gaussians as a function of the applied perpendicular magnetic field
strength for the three peaks. The colors correspond to the peak colors appearing in a,b. Each data point provides the average
width based on at least 8 length histograms taken at different experimental sessions under the same magnetic field. Error
bars represent the corresponding standard deviation. d,e, Similar to a,b, but for a parallel magnetic field. f, Similar to c, but
for a parallel magnetic field.
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Supplementary section 9: First-principles calculations

Zigzag to linear atomic wire transition

Pt atomic wires are known to have a zigzag structure near equilibrium?®’. Nevertheless, upon stretching, the wires
become linear>®’ To obtain a qualitative description of the stretching process from compact zigzag wire
configurations up to the breaking point, we performed DFT calculations (see technical details below) on junction
models consisting of 1- and 2- Pt atoms bridging two Pt14 square pyramidal structures®, serving as electrode apex
models (see Fig. S17). A constrained structural relaxation of the apices and the bridging Pt atoms was performed
by keeping the 13 atoms of the base and center layer of each pyramid fixed. The calculation was repeated for
several inter-pyramid distances corresponding to junction configurations ranging from compact zigzag to
stretched and up to the breaking point of the junction, as seen in Figs. S18a,e. From these calculations, we
extracted geometric parameters of the junction (Figs. S18b,c,f,g), including the angles defining the zig-zag
structure and the bond lengths within the bridge, as illustrated in Fig. 712. Furthermore, we evaluated the tension
developing within the bridge (hereafter termed the force) while pulling the electrodes apart, by forward two-point
numerical differentiation of the total energy for a set of relaxed structures of different inter-electrode separations.
In this procedure, we first set the inter-electrode separation, then we relax the wire structure while keeping the
apex model bases (13 atoms) fixed, and finally we shift both apex bases along the junction’s axis to increase the
inter-electrodes separation and perform a single-point energy evaluation. The force is evaluated as the numerical
derivative of the energy corresponding to the relaxed and stretched configurations with respect to the inter-
electrode separation. The resulting force-distance curves appear in Figs. S18d,h. Our calculations show that the Pt
atomic wire adopts a linear configuration during stretching (zero zigzag angle) at an early stage before the rupture
event (Figs. $18b,f), in agreement with former calculations done for infinite Pt atomic wires®. This suggests that a

linear wire model is required when studying the wire breaking process.

Fig. S17 Schematic representation of 1- and 2- Pt atoms bridging two Pt;, square pyramidal model electrode apices. a,
Zigzag angle and bond length for the 1-Pt atom junction used in Figs. S18a-d. b, Zigzag angles and bond lengths for the 2-Pt
atom junction used in Figs. S18e-h.
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Fig. S18 Zigzag to linear transition and non-collinear spin DFT calculations for Pt atomic wire between electrode apices.
Spin-compensated calculations for 1 atom (a-d) and 2 atoms (e-h) bridging the two electrode apex models. a,e, Total energy
as a function of wire length. b,f, Zigzag angle (see Fig. S17) as a function of wire length (inter-electrode separation). In f, the
average of the two zigzag angles is presented. c,g, Bond length as a function of wire length. An abrupt increase in bond length
indicates bond rupture. d,h, Force as a function of wire length. The wire is broken at the maximal force. i, Non-collinear spin
DFT force calculations as a function of wire length for parallel (black) and perpendicular (red) magnetizations (2 atoms bridge
is used).

Bare finite atomic wires

Since we are interested in the breaking process, which occurs when the wires are stretched and linear, we next
focus on linear wires. In the main text, we have deduced, based on experimental observations, that the force as a
function of wire elongation (and hence the total energy curve) depends on the magnetization orientation within
the wire. To validate this assumption, we adopted simple, finite linear wire models and performed non-collinear
DFT calculations, including spin-orbit interactions, to evaluate the force acting on the wire’s edge atoms (prone to

rupture, based on our calculations) during wire stretching. This approach extends previous collinear spin
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calculations by Thiess et al.!® that compared the elongation tendency of metallic atomic wires in their non-
magnetic and (anti)ferromagnetic states. More elaborate non-collinear spin DFT calculations, including explicit
electrode apices models are presented below. Since non-collinear spin calculations can lead to multiple solutions
with different spin orientations and configurations, we took special care in preparing the starting initial guesses
guiding the self-consistent iterations to target solutions with magnetization either perpendicular or parallel with
respect to the Pt wire’s main axis. We started the non-collinear spin calculations from collinear spin initial guesses
with a spin polarization perpendicular and parallel to the wires, for wires of 4-6 equidistant Pt atoms with 3 to 13
unpaired electrons. Once the non-collinear spin calculations converged, we displaced the Pt atoms to a slightly
stretched or compressed configuration (with the same number of wire atoms) and performed a new self-
consistent calculation using the previous density as a starting guess. To select the solutions that better represent
the Pt wire in the presence of electrodes, we discarded solutions with sizable atomic magnetization at the edge

atoms®.

Figure S14a presents the total energy as a function of length for linear wires of different number of atoms, with
magnetization parallel or perpendicular to the wire axis. Our results show that the energy of the stretched wires
(beyond equilibrium) is sensitive to the magnetization orientation. Focusing on the wire breaking process, we plot
in Figs. 4b,c the calculated force on the peripheral wire atoms during stretching. The force curves for parallel and
perpendicular magnetization are clearly different. In view of the distinct energy and force curves for the
orthogonal magnetizations, one may expect that the interatomic distance at the breaking point and wire stability

during elongation is affected by controlling the magnetization direction in the wire.

Non-collinear spin DFT calculations for Pt atomic wires between electrode apices

To examine the effect of electrode apices on our stretched wire calculations, we selected a few 2-atom junction
structures, in the stretched bond region prior to the breaking point, from the zigzag to linear atomic wire transition
calculations (described above) and performed non-collinear spin DFT calculations including the spin-orbit
interaction for spin magnetizations parallel and perpendicular to the wire’s axis. Because the electrodes are not
semi-infinite as in the experiments, the magnetization may contaminate the small Pt atomic clusters. Therefore,
we took special care to obtain solutions that involve minimal spin polarization on the electrode apices. To this
end, we started the non-collinear spin calculations from fragment guesses with closed-shell electrode pyramids
and spin polarized bridge atoms with spin orientation parallel and perpendicular to the wire’s axis. The resulting
force-distance curves are shown in Fig. S18i. For a given wire length, a smaller force is obtained for the
perpendicular magnetization orientation than for the parallel one, in line with our results for the bare wire model

calculations presented in Fig. S19, supporting the assumptions made in the minimal model described below.
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Fig. $19 Non-collinear spin DFT calculations for finite Pt atomic wires. a, Total energy as a function of wire length for wires
of 3-6 atoms with parallel and perpendicular magnetization. When the wires are stretched beyond the equilibrium length (at
minimum energy), the energy versus length dependence is different for the two magnetization orientations. Since emphasis
is put on stretched configurations, linear wires are considered, with equal interatomic distance as a simplification. b,c, Force
on one of the peripheral atoms as a function of wire length for wires composed of 4 (b), and 5 (c) atoms with parallel and
perpendicular magnetizations.

Technical details

All DFT calculations were performed with the Gaussian Suite of programs!!, using the PBEh hybrid density
functional approximation??!*, This particular DFT approximation, which admixes 25% of Hartree-Fock exchange
with 75% of PBE exchange and 100% PBE correlation, was chosen due to three important features: a) it can be
derived from first-principles; b) it admixes orbital-dependent Hartree-Fock type exchange, which has been
identified as a necessary component to accurately capture spin-orbit effects’; and c) it reduces the self-
interaction error, which negatively affects density functional calculations involving stretched bonds®. The
Stuttgart-Cologne energy-consistent relativistic (10 electrons) small-core effective core potential, including the
spin-orbit component for the non-collinear spin calculations, was employed along with the corresponding aug-cc-
pVDZ-PP basis-set’. A self-consistent convergence criteria of maximal variations of 10 a.u. in the root mean

square density matrix and energy between any two consecutive iterations was employed throughout. No explicit
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magnetic field was included in the calculations as it has a negligible effect on the calculated total energies and

properties, considering the experimentally relevant magnetic field range of B< 1.5T.

Supplementary section 10: Description of the minimal model

A simplified description of the process that takes place in the break-junction experiments presented in this work
can be summarized as follows. Initially, two metallic Pt electrodes are pulled apart until a monatomic Pt wire is
formed. Upon further pulling apart the electrodes, the wire stretches and can potentially extract another atom
from one of the electrodes to form a wire longer by one atom. This will occur provided that the force required for
pulling an atom from an electrode does not exceed the force required for wire rupture (maximal force in Fig. 4b
of the main text). Providing a fully first-principle description of the wire elongation and rupture processes in the
presence of a magnetic field is an intractable problem. Therefore, in order to rationalize the experimental results
presented above, we introduce a phenomenological model that captures the main physical aspects of the involved

processes. In what follows, we present the essentials of this model.
The basic ingredients and simplifying assumptions of the model are as follows:

1. Out of the intricate manifold of non-collinear spin states that the system has, we consider only two coherent
spin states corresponding to magnetization directed in parallel to the wire direction (longitudinal) or
perpendicular to it (transverse). This is consistent with the orientation of the external magnetic field relative
to the wire axis in the experimental setup. These two extreme magnetization orientations are expected to
be the most susceptible to the application of the magnetic field. Other states, such as essentially
antiferromagnetic states, are less influenced by the external magnetic field.

2. Since in our experimental setup we focus our attention on wire rupture processes, where the wires are
stretched beyond the transition point from zigzag to linear configuration®, we limit the scope of the rupture
model to linear atomic wires, as well. This assumption is supported by the above DFT calculations of the
wire’s structure during elongation and rupture.

3. Unstretched Pt wires are known to be non-magnetic. Upon stretching, however, magnetism develops’18-2,

4, Once magnetization arises, its direction remains predominantly unchanged during the entire stretching
process up to the wire elongation point, due to an energetic barrier?. See discussion below regarding the
height of this barrier.

5. Upon wire elongation, a rapid structural rearrangement occurs, due to the insertion of the additional atom.
As a result, the mechanical strain within the wire reduces, leading to near-equilibrium structures and hence

suppression of magnetization preference.
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Wire breaking occurs when the force exerted on its peripheral atoms exceeds the maximal force, which is
reached at a different wire length for each magnetization (see Fig. 4b of the main text). This picture is
supported by our experimental observations, as well as by ab-initio calculations presented above.

In the absence of a magnetic field the wire can adopt either perpendicular or parallel magnetization during
stretching. Therefore, when performing many repetitions of the experiment, two distributions of the
breaking length will appear for a wire with a given number of atoms, each corresponding to a different
magnetization direction. Note that, we assume that in the experiment the separation between the peaks
of these two distributions is small, and the distributions of breaking length for a wire with a given number
of atoms is seen as a single peak in the experimental length histogram. For the purpose of the present model
we assume that these distributions are Gaussian and denote them as G/(d;d},o;) = G{*(d) and
G*'(d;d}', ;) = G[*'(d) for the perpendicular (transversal) and parallel (longitudinal) magnetization
orientations, respectively, where d is the wire length at the breaking point and n is the peak index. Note
that to avoid notational confusion between the orientation of the external magnetic field (denoted as
perpendicular (1) or parallel (||)) and the orientation of the spin magnetization of the wire, we use the
terms transversal (t) and longitudinal (I) to describe the perpendicular and parallel magnetization
orientations, respectively. With this notation, d* and d* are the mean values of the two distributions of
breaking lengths, o, and o; are their respective widths. The latter are chosen to be g, = g, = 0.5 A, which
reproduces well the experimental peak width in the length histograms (sensitivity tests against this
parameter are shown in Supplementary section 11).

Once the magnetic field is switched on, the relative weights of these two distributions change, and the
probability to form wires with one magnetization orientation increases, while the probability to form wires
with the other magnetization orientation decreases, depending on the direction of the external field. This,

in turn, causes the observed shift in the combined peaks envelope that are experimentally observed.

Parallel Magnetic Field

To evaluate the relative probability to adopt one of the two considered magnetization orientations as a function

of the magnetic field direction and magnitude as well as the temperature, we assign standard Boltzmann weights

to each distribution. For the case of a parallel magnetic field applied along the wire direction (chosen as the z

direction here), only longitudinal spin configurations aligned parallel (z) and anti-parallel (—z) to the wire axis

will be Zeeman shifted by the magnetic field, yielding the following Boltzmann weights:

B
wi'(B) = e*sT,
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w;?(B) = e *sT,
where u is the effective magnetic moment of the wire (see Supplementary section 9), B is the strength of the
magnetic field, and kgT is the thermal energy. The energetics of the transversal (x and y) spin states remains
unaffected by the field resulting in four equivalent spin directions (two, one positive and one negative, along each

transversal direction) that are equally populated, giving a total Boltzmann weight of:
wit(B) = w; (B) = 2€°,

where the factor of 2 stands for the two degenerate spin orientations. Using these weights, the overall probability
distribution for a wire elongation event to occur as a function of parallel magnetic field intensity and wire length
can now be expressed as:

wi (B)+wy ?(B)

Djf(d; B) = | =755

wﬁ‘(B)+wﬁ’(B)] G (d)
t ’

n
]Gl (d) + [ ()
where the partition function W, (B) is given by the sum of all unnormalized weights:

Wy (B) = wi(B) + w; “(B) + wif(B) + w; (B).

The wire n — n + 1 elongation length is then defined as the peak position, pj'(B), of the resulting combined
distribution Dj*(d; B) for any given magnetic field and temperature. To make direct comparison with the

experimental results we then plot the inter-peak distance for the parallel field case:

d(n+1)—n = pﬁHl(B) - pﬁl(B)-

Perpendicular Magnetic Field

Similarly, when the magnetic field points in a direction perpendicular to the wire axis (chosen as the x direction)
we have:
E
Wf(B) = ekT,
_HB
wi*(B) = e T,
wy (B) = wi(B) = 2¢°,
Then, the overall probability distribution for a wire elongation event to occur as a function of magnetic field and

wire length can now be expressed as:

w¥ (B)+wI*(B)+w)(B)
Wy (B)

Dr(d; B) = 22 6r(d) + [

n
wy (B) Gt (d)l
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with the partition function:
W, (B) = wi(B) +wi*(B) +wy (B) + wi(B).

The wire n - n + 1 elongation length is then defined as the peak position, p(B), of the resulting combined
distribution DT(d; B) for any given magnetic field and temperature. To make direct comparison with the

experimental results we then plot we then plot the inter-peak distance for the perpendicular field case:

d(n+1)—n = pJT_hLl(B) - pJT_L(B) .

The energy barrier height between parallel and perpendicular wire magnetizations

In the model description, presented earlier in this section, an assumption was made that following elongation,
when an atom is inserted into the wire, the wire’s strain is partially relaxed and the magnetization preference is
suppressed’'#2° thus facilitating magnetization alignment by a relatively small magnetic field. As the elongated
wire is further stretched, parallel and perpendicular magnetization states develop with a corresponding energy
barrier separating them (see point number 4 above). To support this picture and demonstrate that the barrier
height is larger than the thermal and Zeeman energies under the experimental conditions, we revisit the results
of the temperature-dependent experiments appearing in Figs. 4i,j of the main text. Two important observations
can be drawn: (i) as discussed in the main text and predicted by our minimal model, the effect of varying the
temperature is translated to a change in the saturation magnetic fields (dashed red line in Figs. 4i,j) due to the
Boltzmann competition between the thermal and Zeeman energies; and (ii) at any of the three temperatures
considered, we find an identical saturation magnetic field for the parallel and perpendicular field orientations. The
later observation indicates that the energetic barrier between the two magnetization configurations is larger than
the thermal energy in the experiment. To understand this, let us assume that the magnetization barrier is lower
than or comparable to the thermal energy. In such a case, starting from the suppressed magnetization state of
the partially relaxed elongated wire, the application of a parallel magnetic field favors the parallel magnetization
state over its perpendicular counterpart. Elongating the wire will not lead to magnetization locking, due to the
low barrier, and thermodynamic considerations will lead to thermal population favoring the lower energy
perpendicular magnetization state. To reach saturation with a parallel magnetic field, would then require a very
high field strength, beyond the value used in our experiments, that would lower the energy of the parallel
magnetization state below that of its perpendicular counterpart. In contrast, to reach saturation with a
perpendicular magnetic field, one would need to apply a much lower field strength since the population of the
perpendicular magnetization state would be thermodynamically dominating already in the absence of a magnetic

field. This would be translated to different saturation field values for the two field orientations at any given
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temperature, in contrast to our experimental observations. The fact, that we observe the same parallel and
perpendicular saturation fields for the three different temperatures considered, indicates that the barrier height
is considerably larger than experimental thermal energy, such that at the experimental timescale there is no
thermal drift of population from the less stable longitudinal magnetization state to the energetically favorable
transverse magnetization state of the stretched wires. We further note that the Zeeman energy in our experiments
is of the order of the thermal energy and therefore also smaller than the barrier height of the stretched wire under
the experimental conditions. This, therefore, makes it impossible to affect the wire’s magnetization state using

magnetic fields, once the wire is stretched.

Supplementary section 11: Model sensitivity with respect to input parameters

Our model includes three free parameters, the elongation distribution width (o), the magnetic moment of the Pt
wire (W), and the breaking length (d). These parameters are defined in Supplementary section 10. To test the
sensitivity of our model outcomes with respect to its input parameters, we repeated the calculations presented
in the main text for several values of the distribution width, effective magnetic moment, and the breaking length.
As shown below, the qualitative nature of our results is insensitive to the value of these parameters within

reasonable physical bounds.

Distribution Width o

The choice of the widths a; and g; of the distribution functions G*(d) and G;*(d) affects the resulting distributions
D{*(d; B) and DT'(d; B) and thus also the calculated peak positions, p;'(B) and pl'(B). These widths are used as
empirical fitting parameters to obtain good agreement with the experimentally measured peak widths as
appearing in the length histograms. In the main text, we presented results obtained using a value of g; = g, =
0.5 A. To evaluated the robustness of this choice we repeated the calculations of the inter-peak distance
dependence on the magnetic field, using slightly smaller and larger values of g, = g; = 04 A and o =0, =
0.6 4, respectively. As can be seen in Fig. S20, the results are weakly sensitive to variations of the width parameters

within the range considered, regardless of the magnetization orientation.
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Fig. S20 Model sensitivity test against the peak width parameter. Calculated inter-peak distances as a function of
perpendicular (upper panels) and parallel (lower panels) applied magnetic field for o, = g, = 0.4 A (panels a and d), 0.5 A
(panels b and e), and 0.6 A (panels c and f). The calculations are performed using iy = 2.5 piz.

Effective Magnetic Moment u

The effective magnetic moment that enters in the weight functions discussed above, can be written as yu = n py,,
where n is the number of Pt atoms in the wire and y is the average magnetic moment per atom. This allow us to
use the same p, for the different wires as an additional simplification. Comparing the magnetic field dependence
of the inter-peak positions obtained from our model with the experimental results, one can estimate the value of
Uo = 2.5 ug, used to obtain the results presented in the main text. As reference, the magnetic moment of a
stretched Pt wire was reported in the literature by several authors. Ferndndez-Seivane et al.” predicted a spin
magnetic moment of approximately 1.25 ug per Pt atom, using generalized gradient DFT approximation (GGA)
calculations on stretched linear and zig-zag wires. Smogunov et al.?° estimated a total magnetic moment per Pt
atom (with comparable spin and orbital contributions) of approximately 1.5 pg, using the GGA. Considering that
GGA tends to underestimate the calculated magnetic moments?!, we believe that our estimated value is within
reasonable physical bounds. Nonetheless, to assess the robustness of our predictions towards variations in the
value of pg, we repeated the calculations of the inter-peak distance dependence on the magnetic field using
slightly smaller and larger values of pg = 2.0 ug and 3.0 ug, respectively. As can be seen in Fig. S21, the general
trend is not affected by varying the effective magnetic moment within the considered range, for both

magnetization orientations.
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Fig. S21 Model sensitivity test against the effective magnetic moment parameter. Calculated inter-peak distances as a
function of applied perpendicular (upper panels) and parallel (lower panels) magnetic field for yy, = 2.0 ug (panels a and d),
2.5 ug (panels b and e), and 3.0 ug (panels c and f). The calculations are performed using ¢ = 0.5 A.

Breaking length

For a wire with a given number of atoms, the parallel and perpendicular breaking lengths (d;, d) are defined as
the stretching lengths at which the force is maximal (see Fig. 4b of the main text). These breaking lengths can be
extracted from the experiments by considering the peak positions at saturation (B >1.25 T for Pt atomic wires).
In these conditions and at zero temperature, the positions of the peaks provide the breaking length of wires with
magnetization along the applied magnetic field. However, at the experimental temperature (5.1 K) this method
underestimates the experimental breaking lengths by roughly 20% due to the thermal energy competition with
the Zeeman energy. To check the sensitivity of the model results with respect to the values of the breaking lengths,
we present in Fig. S22 the calculated inter-peak distance dependence on the magnetic field strength using
breaking lengths increased by 10% and 20%, with respect to that used in Fig. 4. The overall quantitative behavior
is found to be only mildly sensitive to the value of the breaking length with no influence on the qualitative nature

of the results.
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Fig. S22 Model sensitivity test against the breaking length. Calculated inter-peak distances as a function of applied
perpendicular (upper panels) and parallel (lower panels) magnetic field for the obtained breaking length based on the
saturation location of the peaks (a,d), and larger breaking length values by 10% (b,e) and 20% (c,f). The calculations are
performed using o = 0.5 Aand g = 2.5 .

Supplementary section 12: Temperature dependent measurements

The effect of magnetic field on the inter peak distance measured at different temperatures is presented in Fig.
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Fig. S23 Magnetic-field-induced structural variations in Pt atomic wires. Inter-peak distance as a function of perpendicular
(a,c) and parallel (b,d) magnetic fields at 7.8 K (a,b) and 9.7 K (c,d).
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Supplementary section 13: Absence of hysteresis

In contrast to magnetostriction measurements, in our experiments no hysteresis is expected because of the
following: (i) An insignificant magnetization preference whenever an atom is inserted to the wire and the
interatomic distance is partially relaxed’*®%°, as supported by the relatively low involved magnetic fields (~ 1 T).
(ii) Lack of memory between different wire elongation events. Namely, we compare independent wires that are
formed under different magnetic field orientations. Before the formation and characterization of any given wire,
we crash the two electrodes into each other to form a contact of about 70-100 atoms to allow the independent

formation of a new wire without being affected by past induced magnetic fields and the structure of former wires.
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