
1 
 

The scaling laws of edge vs. bulk interlayer conduction in 

mesoscale twisted graphitic interfaces 

 

Supporting Information 

Debopriya Dutta,1ǂ Annabelle Oz,2ǂ, Oded Hod,2 and Elad Koren1*  

1Faculty of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute, Technion – Israel Institute of 

Technology, 3200003 Haifa, Israel. 

2Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences and The 

Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, IL 6997801. 

 

The supporting information contains the following items: 

1. Lateral Force Measurements 

2. Fitting Procedure to Extract Interfacial Bulk and Edge Resistance 

3. Experimental Data of Current vs. Voltage on a Single Graphitic Contact 

4. Electronic Transport Calculations 

5. Validity Test for the Value of the Broadening Factors 

6. Convergence Test with respect to the Number of Modeled Layers 

7. Illustration of the Wave Function of Eight Eigenstates Within the Fermi Window for Circular 

Junctions  

 

 

 

 

ǂ
 
Equal authors contribution 

* email: eladk@technion.ac.il 



2 
 

1. Lateral Force Measurements 

The lateral shear force was measured during the sliding process in order to verify that sliding is performed under 

superlubric conditions, thus ensuring the existence of an angular mismatch at the bilayer graphene interface1. The 

shear force was evaluated using the relation 𝐹 = 2𝜎𝑟, applicable for small shear distances1, where 𝑟 is the mesa radius 

and 𝜎 = 0.227 [J‧m-2] is the adhesion energy of graphite1. Supplementary Figure 1 shows the lateral displacement 

(top panel), the measured lateral force (middle panel), and current (bottom panel) as function of time. The lateral force 

oscillations as well as the average friction (calculated as the difference between the force averages along the trace and 

retrace measurements) are smaller than 10 nN indicating that sliding is performed under superlubric conditions and 

that there is a rotational mismatch of 5° − 15° between the bottom and top graphene layers1. 

                                 

Supplementary Figure 1: Electromechanical manipulation of graphitic contacts. (a) lateral displacement (top 

panel), measured lateral force (middle panel), and current (bottom panel) as a function of time. The measured structure 

is 300 nm in diameter, the applied voltage is 1 V, and the tip velocity is 100 nm‧sec-1. (b) AFM image of a fully 

sheared graphitic mesa. The exposed bottom mesa consists a single crystalline graphitic surface with an arithmetic 

average surface roughness, 𝑅𝑎 = 0.108 𝑛𝑚. 
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We note that when shear forces are applied to bare graphitic surfaces, peeling and rippling effects may appear. 

Nevertheless, the situation in our experiments is quite different, as the sliding interface is buried deep inside the pillar 

and is supported by two thick graphitic slabs. This induces very strict constraints on the out-of-plane motion of the 

carbon atoms. Furthermore, as discussed above, our sliding interfaces are incommensurate, thus the shear forces are 

expected to be very small and hence rippling and buckling are highly unlikely to occur. One may think that some 

rippling may occur at the exposed surfaces during the sliding process. Nevertheless, we do not see any evidence for 

such rippling in the frictional behavior of the system, that demonstrates power law scaling of the friction forces with 

the contact area with an exponent of 0.3 as expected for incommensurate flat circular contacts1,2. This is also supported 

by the fact that there is no experimental evidence of wear in our contacts (Supplementary Figure 1b). Furthermore, 

the bottom panel of Fig. 1A (see main text) shows that the measured current is symmetric with respect to the fully-

eclipsed configuration. Namely, for a given absolute shift value the current is the same when the top mesa shifts 

towards the center or away from it. If, in the former case, puckering of the lower surface would occur in front of the 

sliding surface3, the current would not be symmetric. Another experimental support for these claims comes from the 

fact that all current vs. shift distance scaling laws derived in this paper rely on the circular geometry of the interface. 

Random rippling and buckling effect would not obey such straight-forward scaling laws with the shift distance. Based 

on all the above, we may exclude surface rippling effects and rely on the rigid sliding interface model. 
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2. Fitting Procedure to Extract Interfacial Bulk and Edge Resistance 

A numerical fitting procedure was employed to obtain the current vs. sliding distance profiles, 𝐼(𝑥), and to extract 

the corresponding resistance of the sheared interface, 𝑅𝑖𝑛𝑡, and its Edge (E) and Bulk (B) contributions. 𝐼(𝑥) was 

calculated based on the equivalent electrical circuit depicted in Fig. 1d of the main text, i.e. 𝐼(𝑥) =
𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑

{2×𝑅𝐺𝑟+𝑅𝑠𝑦𝑠+𝑅𝑖𝑛𝑡}
, 

where 𝑅𝑖𝑛𝑡 = [(𝑅𝑖𝑛𝑡
𝐵𝑢𝑙𝑘)

−1
+ (𝑅𝑖𝑛𝑡

𝐸𝑑𝑔𝑒
)
−1
]
−1

. The bulk and edge interfacial resistances are related to the lateral sliding 

distance, x, via 𝑅𝑖𝑛𝑡
𝐵𝑢𝑙𝑘 =

𝜌𝐵𝑢𝑙𝑘

𝑆𝐵𝑢𝑙𝑘(𝑥)
 and 𝑅𝑖𝑛𝑡

𝐸𝑑𝑔𝑒
=

𝜌𝐸𝑑𝑔𝑒

𝐿𝐸𝑑𝑔𝑒(𝑥)
, where 𝑆𝐵𝑢𝑙𝑘(𝑥) and 𝐿𝐸𝑑𝑔𝑒(𝑥) are given by Eqs. 1 and 2 of 

the main text, respectively, and the corresponding resistivities 𝜌𝐵𝑢𝑙𝑘 and 𝜌𝐸𝑑𝑔𝑒 serve as fitting parameters. The values 

of 𝑅𝐺𝑟 and 𝑅𝑠𝑦𝑠 (considered herein to be constant throughout the sliding) are obtain from 𝐼(𝑥 = 0). The interface 

voltage (in Fig. 2d) is extracted via: 𝑉𝑖𝑛𝑡 = 𝐼 ∙ 𝑅𝑖𝑛𝑡. The quality of the numerical fit is assessed based on a 𝜒2 test, 

where the average sum of the differences between calculated and measured currents, 𝜒2 = ∑
(𝐼𝑐𝑎𝑙𝑐−𝐼𝑚𝑒𝑎𝑠)

2

𝑛
𝑛
𝑖=1 , is 

minimized. Here, 𝐼𝑐𝑎𝑙𝑐 and 𝐼𝑚𝑒𝑎𝑠 are the calculated and measured currents, respectively and 𝑛 is the number of data 

points. Typical results for two current vs. slides curves measured under different bias voltages and their 𝜒2 diagram 

are shown in Supplementary Figure 2. 
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Supplementary Figure 2: Experimental determination of edge and bulk interlayer transport contributions 

in a graphitic contact. (a) Measured (black) and fitted (red) interface conductivities for an applied voltage of 1 V. 

The total calculated conductivity (red) is the sum of bulk (orange) and edge (purple) interface conductivities. (b) 𝜒2 

for different edge and bulk interface resistances considered in the numerical fitting procedure. The 𝜒2 minimum 

corresponds to the optimally fitted interface edge and bulk resistance contributions. (c) Measured (black) and fitted 

(red) interface conductivities for an applied voltage of 0.5 V; and (d) its corresponding 𝜒2 diagram.  
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3. Experimental Data of Current vs. Voltage on a Single Graphitic Contact 

In the main text, we presented surface plots of the current vs. voltage and interfacial shearing distance (Fig. 2a). To 

construct these diagrams using the same contact, we performed the experiment by shearing the interface in steps of 5 

nm and measuring a full current-voltage profile for each shift position. Supplementary Figure 3a shows the original 

experimental data of the measured current vs. time taken from the oscilloscope. Supplementary Figure 3b provides a 

zoom-in on a region of two consecutive 5 nm sliding steps and voltage sweeps (between -1 V and 1 V) cycles. The 

measured current vs. voltage curves for each shearing position are then taken to construct the surface plots shown in 

Fig. 2a of the main text. 

 

Supplementary Figure 3: Reconstruction of current-voltage profiles as a function of interfacial mesas 

overlap. (a) A typical current vs. time plot measured by shearing the interface in steps of 5 nm and measuring a full 

current-voltage profile for each shift position, where the voltage is swept from -1 V to 1 V. The contact diameter is 

300 nm and the tip velocity during the sliding steps is 100 nm‧sec-1. (b) Zoom-in on a region of two consecutive 

sliding and voltage sweeps cycles. 
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4. Electronic Transport Calculations 

To evaluate the interlayer transport behavior of the graphene junction (modeled herein as a bilayer graphene 

system composed of two finite hexagonal or circular graphene flakes) as a function of the layers relative 

position and bias voltage we adopt the approach presented in Ref. 4. The current-voltage characteristics are 

evaluated via the Landauer scattering formalism5 under which the current,  

 𝐼 =
2𝑒

ℎ
∫d𝐸[𝑓𝑇(𝐸) − 𝑓𝐵(𝐸)]𝑇(𝐸) (1) 

is related to the transmittance probability through the system, 𝑇(𝐸). In Supplementary Eq. (1), 𝑒 is the 

electron charge, ℎ is Plank’s constant and 

 𝑓𝑇/𝐵(𝐸) ≡ 𝑓𝑇/𝐵(𝐸; 𝜇𝑇/𝐵, 𝛽𝑇/𝐵) = [1 + 𝑒
𝛽𝑇/𝐵 (𝐸−𝜇𝑇/𝐵)]

−1
 (2) 

is the equilibrium electronic Fermi-Dirac distribution of the top/bottom lead. Here, 𝛽𝑇/𝐵 = (𝑘𝐵𝑇𝑇/𝐵)
−1

 are 

the inverse electronic thermal energies of the top (𝑇) and bottom (𝐵) leads, 𝑇𝑇/𝐵 are the corresponding 

electronic temperatures, and the chemical potentials of the leads are assumed to evenly split the bias voltage, 

𝑉𝑏, around the ground state Fermi energy of the entire finite model system, 𝐸𝐹, such that 𝜇𝑇/𝐵 = 𝐸𝐹 ±

0.5𝑒𝑉𝑏. The factor of two appearing in Supplementary Eq. (1) accounts for spin degeneracy. Note that, in 

the present treatment, we neglect the self-consistent effect of the electric field drop across the junction due 

to the externally applied bias voltage on the transmittance probability. This approximation can be partly 

justified by the semi-metallic nature of the graphene layers that may lead to screening effects, where most 

of the potential drop would occur at the lead/system interface. 

The transmittance probability 𝑇(𝐸) appearing in Supplementary Eq. (1), is calculated using the non-

equilibrium Green’s function technique for elastic electronic transport: 

 𝑇(𝐸) = Tr[𝑮𝑑
𝑟 (𝐸)𝚪𝐵(𝐸)𝑮𝑑

𝑎(𝐸)𝚪𝑇(𝐸)]. (3) 

Here, 𝑮𝑑
𝑟/𝑎(𝐸) are the retarded (𝑟) and advanced (𝑎) Green’s function matrix representations of the junction 

and 𝚪𝑇/𝐵(𝐸) are the top and bottom broadening matrices. The formers are given by: 

 𝑮𝑑
𝑟 (𝐸) = [𝐸𝑰 − 𝒉𝑑 − 𝚺𝐵

𝑟 (𝐸) − 𝚺𝑇
𝑟(𝐸)]−1, (4) 

and 𝑮𝑑
𝑎(𝐸) = [𝑮𝑑

𝑟 (𝐸)]†, where 𝑰 is a unit matrix of dimensions of the system and 𝒉𝑑 is the matrix 

representation of the device’s Hamiltonian given by the following block form: 

 𝒉𝑑 = (
𝒉𝑇 𝒗𝑇𝐵
𝒗𝐵𝑇 𝒉𝐵

), (5) 
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where 𝒉𝑇/𝐵 are the Hamiltonian blocks of the top and bottom flakes given in the tight-binding atomic basis 

representation and 𝒗𝐵𝑇 = 𝒗𝑇𝐵
†

 are their mutual coupling matrices. Note that in the present treatment the 

Hermitian matrix 𝒉𝑑 is taken to be real-valued and is therefore symmetric. The leads self-energies are 

approximated as energy independent (wide band approximation) diagonal matrices providing the same 

lifetime, 𝛾−1, to each atomic site in the top and bottom sections: 

 𝜮𝑇
𝑟 = 𝑖ℏ𝛾 (

𝑰𝑇 𝟎
𝟎 𝟎

) ,  𝜮𝐵
𝑟 = 𝑖ℏ𝛾 (

𝟎 𝟎
𝟎 𝑰𝐵

), (6) 

and 𝜮𝑇/𝐵
𝑎 = (𝜮𝑇/𝐵

𝑟 )
†
. Finally, the broadening matrices are given in terms of the self-energies as: 

 {
𝜞𝑇 = 𝑖[𝜮𝑇

𝑟 − 𝜮𝑇
𝑎] = 𝑖 [𝑖ℏ𝛾 (

𝑰𝑇 𝟎
𝟎 𝟎

) − (−𝑖ℏ𝛾) (
𝑰𝑇 𝟎
𝟎 𝟎

)] = −2ℏ𝛾 (
𝑰𝑇 𝟎
𝟎 𝟎

)

𝜞𝐵 = 𝑖[𝜮𝐵
𝑟 − 𝜮𝐵

𝑎] = 𝑖 [𝑖ℏ𝛾 (
𝟎 𝟎
𝟎 𝑰𝐵

) − (−𝑖ℏ𝛾) (
𝟎 𝟎
𝟎 𝑰𝐵

)] = −2ℏ𝛾 (
𝟎 𝟎
𝟎 𝑰𝐵

)
. (7) 

The broadening, ℏ𝛾, is chosen to be sufficiently large to obtain a smooth density of states of the top and 

bottom flakes to mimic their periodic counterparts. The results are tested to be insensitive to this choice (see 

Supplementary note 5). 

For computational efficiency we transform the transmittance probability expression of Supplementary Eq. 

(3) to the diagonal basis of the dressed Hamiltonian: 

 𝑯𝑑
r = 𝒉𝑑 + 𝜮𝐵

𝑟 + 𝜮𝑇
𝑟 . (8) 

To this end, we denote by 𝑼 the transformation matrix that transforms the complex symmetric matrix 𝑯𝑑
r  

to its diagonal representation �̃�𝑑
𝑟 : 

 �̃�𝑑
r = 𝑼−1𝑯𝑑

𝑟𝑼 (9) 

By inserting 𝑼𝑼−1 or its conjugate transpose between each pair of matrices in Supplementary Eq. (3) and 

using the cyclic property of the trace operation we obtain: 

𝑇(𝐸) = Tr[𝑮𝑑
𝑟 (𝑼𝑼−1)𝜞𝐵(𝑼𝑼

−1)†𝑮𝑑
𝑎(𝑼𝑼−1)†𝜞𝑇(𝑼𝑼

−1)] =

Tr [𝑼−1𝑮𝑑
𝑟𝑼⏟    

≡�̃�𝑑
𝑟

𝑼−1𝜞𝐵(𝑼
−1)†⏟        

≡�̃�𝐵

𝑼†𝑮𝑑
𝑎(𝑼−1)†⏟        
≡�̃�𝑑

𝑎

𝑼†𝜞𝑇𝑼⏟    
≡�̃�𝑇

] = Tr[�̃�𝑑
𝑟 �̃�𝐵�̃�𝑑

𝑎�̃�𝑇]. (10) 

Note that, in the new basis, the retarded and advanced Green’s functions matrices still obey the required 

relation: 

 �̃�𝑑
𝑎 = 𝑼†𝑮𝑑

𝑎(𝑼−1)† = [𝑼−1(𝑮𝑑
𝑎)†𝑼]† = [𝑼−1𝑮𝑑

𝑟𝑼]† = �̃�𝑑
𝑟 † (11) 

and have diagonal representations: 
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 �̃�𝑑
𝑟 = 𝑼−1𝑮𝑑

𝑟𝑼 = 𝑼−1(𝐸𝑰 − 𝑯𝑑
𝑟 )−1𝑼 = [𝑼−1(𝐸𝑰 − 𝑯𝑑

𝑟 )𝑼]−1 = [𝐸𝑼−1𝑰𝑼 − 𝑼−1𝑯𝑑
𝑟𝑼]−1 = [𝐸𝑰 − �̃�𝑑

𝑟 ]
−1

. (12) 

This allows us, at the expense of a single complex symmetric matrix diagonalization and a single evaluation 

of �̃�𝐵 and �̃�𝑇, to evaluate �̃�𝑑
𝑟 (𝐸) and �̃�𝑑

𝑎(𝐸) at any value of 𝐸 while avoiding matrix inversion. Note also 

that, since 𝑯𝑑
r  is complex symmetric, 𝑼 is complex orthogonal such that 𝑼𝑇 = 𝑼−1 (or 𝑼∗ = (𝑼−1)†) and 

𝑼† = (𝑼−1)∗ [2]. Hence, we have: 

 

{
 
 

 
 �̃�𝑑

𝑟 ≡ 𝑼−1𝑮𝑑
𝑟𝑼 = 𝑼T𝑮𝑑

𝑟𝑼

�̃�𝐵 ≡ 𝑼
−1𝜞𝐵(𝑼

−1)† = 𝑼T𝜞𝐵𝑼
∗

�̃�𝑑
𝑎 ≡ 𝑼†𝑮𝑑

𝑎(𝑼−1)† = (𝑼−1)∗𝑮𝑑
𝑎𝑼∗

�̃�𝑇 ≡ 𝑼
†𝜞𝑇𝑼 = (𝑼

−1)∗𝜞𝑇𝑼

 (13) 

To evaluate the separate contributions of the edge and bulk sections of the graphene bilayer junction to the 

total current we classify the various elements of the broadening matrices �̃�𝐵 and �̃�𝑇 according to their 

corresponding spatial location. To this end, we write the tight-binding Hamiltonian of the graphene bilayer 

in the following block form: 

 𝑯 =

(

 
 

𝒉𝑇
𝑒 𝒗𝑇

𝑒𝑏 𝒗𝑇𝐵
𝑒𝑒 𝒗𝑇𝐵

𝑒𝑏

𝒗𝑇
𝑏𝑒 𝒉𝑇

𝑏 𝒗𝑇𝐵
𝑏𝑒 𝒗𝑇𝐵

𝑏𝑏

𝒗𝐵𝑇
𝑒𝑒 𝒗𝐵𝑇

𝑒𝑏 𝒉𝐵
𝑒 𝒗𝐵

𝑒𝑏

𝒗𝐵𝑇
𝑏𝑒 𝒗𝐵𝑇

𝑏𝑏 𝒗𝐵
𝑏𝑒 𝒉𝐵

𝑏
)

 
 

. (14) 

Where 𝒉𝑇(𝐵)
𝑒  is a block corresponding to all top (bottom) flake sites residing in a narrow region around the 

edge of the flake, 𝒉𝑇(𝐵)
𝑏  represents all the complementary top (bottom) flake bulk sites, and the various 𝒗 

blocks are the corresponding inter-block coupling matrices. In this representation the diagonal broadening 

matrices are written as: 

 𝜞𝑇 = −2ℏ𝛾 (

𝑰𝑇
𝑒 𝟎 𝟎 𝟎

𝟎 𝑰𝑇
𝑏 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎

) = −2ℏ𝛾 (

𝑰𝑇
𝑒 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎

) − 2ℏ𝛾 (

𝟎 𝟎 𝟎 𝟎
𝟎 𝑰𝑇

𝑏 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎

) ≡ 𝜞𝑇
𝑒 + 𝜞𝑇

𝑏  (15) 

 𝜞𝐵 = −2ℏ𝛾 (

𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝐵

𝑒 𝟎

𝟎 𝟎 𝟎 𝑰𝐵
𝑏

) = −2ℏ𝛾 (

𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝐵

𝑒 𝟎
𝟎 𝟎 𝟎 𝟎

) − 2ℏ𝛾 (

𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝑰𝐵

𝑏

) ≡ 𝜞𝐵
𝑒 + 𝜞𝐵

𝑏  (16) 

Substituting these definitions into the transmittance probability expression of Supplementary Eq. (10) we 

obtain: 
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𝑇(𝐸) = Tr{�̃�𝑑
𝑟 [𝑼−1(𝜞𝐵

𝑒 + 𝜞𝐵
𝑏)(𝑼−1)†]�̃�𝑑

𝑎[𝑼†(𝜞𝑇
𝑒 + 𝜞𝑇

𝑏)𝑼]} = Tr[�̃�𝑑
𝑟(�̃�𝐵

𝑒 + �̃�𝐵
𝑏)�̃�𝑑

𝑎(�̃�𝑇
𝑒 + �̃�𝑇

𝑏)] =

Tr[�̃�𝑑
𝑟 �̃�𝐵

𝑒 �̃�𝑑
𝑎�̃�𝑇

𝑒 ]⏟          
≡𝑇𝑒→𝑒(𝐸)

+ Tr[�̃�𝑑
𝑟 �̃�𝐵

𝑒 �̃�𝑑
𝑎�̃�𝑇

𝑏]⏟          
≡𝑇𝑒→𝑏(𝐸)

+ Tr[�̃�𝑑
𝑟 �̃�𝐵

𝑏 �̃�𝑑
𝑎�̃�𝑇

𝑒 ]⏟          
≡𝑇𝑏→𝑒(𝐸)

+ Tr[�̃�𝑑
𝑟 �̃�𝐵

𝑏 �̃�𝑑
𝑎�̃�𝑇

𝑏]⏟          
≡𝑇𝑏→𝑏(𝐸)

, (17) 

where we defined �̃�𝐵
𝑒/𝑏

≡ 𝑼−1𝜞𝐵
𝑒/𝑏(𝑼−1)† = 𝑼T𝜞𝐵

𝑒/𝑏
𝑼∗ and �̃�𝑇

𝑒/𝑏
≡ 𝑼†𝜞𝑇

𝑒/𝑏
𝑼. 

The various terms contributing to the transmittance probability in Supplementary Eq. (17) can be interpreted 

as follows: 𝑇𝑒→𝑒 describes the probability of electrons entering the junction at the edge region of the bottom 

layer to exit at the edge region of the top layer; 𝑇𝑒→𝑏 describes the probability of electrons entering the 

junction at the edge region of the bottom layer to exit at the bulk region of the top layer; 𝑇𝑏→𝑒 describes the 

probability of electrons entering the junction at the bulk region of the bottom layer to exit at the edge region 

of the top layer; and 𝑇𝑏→𝑏 describes the probability of electrons entering the junction at the bulk region of 

the bottom layer to exit at the bulk region of the top layer. Finally, the different current contributions are 

obtained using the Landauer expression (Supplementary Eq. (1)), where the edge current is evaluated using 

𝑇𝑒→𝑒(𝐸),the bulk current is evaluated using 𝑇𝑏→𝑏(𝐸), and the cross contributions are obtained by using 

𝑇𝑒→𝑏(𝐸) and 𝑇𝑏→𝑒(𝐸). 

It is important to note that the four transmittance probability contributions presented above (𝑇𝑒→𝑒, 𝑇𝑒→𝑏, 

𝑇𝑏→𝑒, and 𝑇𝑏→𝑏) only specify where electrons enter and exit the bilayer structure regardless of the specific 

route that they take when crossing the interface itself. This latter information is embedded in the Green’s 

functions appearing in the trace formula (Supplementary Eq. (3)) and cannot be rigorously separated into 

bulk and edge contributions when there is coupling between the two regions that leads to delocalization of 

the wave functions over the entire flake surface. 

We comment that the experimental values are analyzed under the assumption that the edge and the bulk 

contributions can be treated as parallel resistors. In practice, this means that the coupling between the edge 

and bulk regions can be neglected or that the wave packet of the transmitting electrons is sufficiently 

localized to pass through a specific surface region. These assumptions become valid with increasing junction 

lateral dimensions. 
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5. Validity Test for the Value of the Broadening Factors 

Within our approximate treatment of the electronic transport problem the coupling of the modeled interface 

to implicit particle reservoirs is done by introducing broadening factors, ℏ𝛾, which mimic the imaginary 

part of the implicit bath self-energy within the wide-band approximation. This introduces a finite lifetime 

to the atomic states of the graphene flakes to which the broadening factors are applied. In energy space this 

translates to broadening of the 𝛿-function eigenstates of the isolated flake into Lorentzian functions of width 

ℏ𝛾. To avoid artefacts resulting from the discreteness of the spectrum of the finite model flake, the value of 

the broadening factors should be sufficiently large to result in a continuous density of states (DOS). Care 

should be taken also not to use too large broadenings to allow for the characteristic electronic structure of 

the flakes to be manifested in the calculation. 

To validate that our choice of broadening factors fulfils these requirements we plot the density of states of 

one of the flakes constructing the interface while assigning each eigenvalue, 𝜀𝑛, a Lorentzian function of 

width ℏ𝛾 such that the total DOS is calculated as follows: 

 𝐷𝑂𝑆(𝜀) =
1

2𝜋
∑

ℏ𝛾

(𝜀−𝜀𝑛)2+(ℏ𝛾 2⁄ )2𝑛 . (18) 

In Supplementary Figure (4) we illustrate the DOS of the two zigzag hexagonal graphene flakes considered 

herein (side lengths of (a) 6.2 and (b) 7.6 nm), calculated using broadening factors of ℏ𝛾 = 0.01 (blue), 0.05 

(red), and 0.1 (orange) eV. For both systems, at a value of ℏ𝛾 = 0.05 eV, the discrete nature of the flake 

levels is sufficiently smeared to provide a relatively smooth DOS curve without washing-out the unique 

features of the electronic structure of the system. Since all other systems considered in this study are of 

similar or larger dimensions and nature, we adopted this value of the broadening factor throughout. 



12 
 

 

Supplementary Figure 4: Illustration of the broadened DOS. (a) 6.2 nm and (b) 7.6 nm zigzag 

hexagonal graphene flakes calculated using Lorentzian broadening with width factors of ℏ𝛾 = 0.01 (blue), 

0.05 (red), and 0.1 (orange) eV. 

 

To further validate our choice of broadening factors we plot in Supplementary Fig. 4 the transmittance 

probability, 𝑇(𝐸), of the two-layer zigzag hexagonal graphene junction with flake side-length of 6.2 nm and 

a misfit angle of 15∘ for several values of the broadening factors. We note that the broadening in these 

calculations are applied directly to the interfacing flakes, hence the transmittance curves are relatively broad 

(see Supplementary Information section 6 for a discussion of the consequences of applying the broadening 

directly to the coupled flakes). While for the smallest broadening factor depicted herein (ℏ𝛾 = 0.025 eV) 

the 𝑇(𝐸) curve differs from that obtained with the value used in the main text (ℏ𝛾 = 0.05 eV), increasing 

the broadening factor to ℏ𝛾 = 0.075 and 0.1 eV has a small effect on the transmittance curve thus indicating 

that our calculations are performed within the stability range of this parameter. 
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Supplementary Figure 5: Transmittance probability of zigzag terminated bilayer graphene. 

Calculated for the two-layer zigzag hexagonal graphene junction with flake side-length of 6.2 nm and a 

misfit angle of 15∘ for several values of the broadening factors: ℏ𝛾 = 0.025 eV (green line), 0.05 eV (red 

line), 0.075 eV (blue line), and 0.1 eV (gray line). 
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6. Convergence Test with respect to the Number of Modeled Layers 

The results presented in the main text were obtained using a bilayer model system with broadening factors 

applied directly to the atoms of the contacting layers. This allowed us to perform calculations on large-scale 

junctions with reasonable computational burden. However, contacting the interfacing layers directly to the 

implicit leads has the effect of exaggerated broadening of the transmittance probability curves. Therefore, 

to confirm the validity of our qualitative conclusions, we repeated some of the calculations using a four-

layer model system. 

The Hamiltonian of the device can be written in block form as follows: 

 𝑯𝑑 = (

𝑯𝑇 𝑯𝑇𝐶 𝑯𝑇𝐵
𝑯𝐶𝑇 𝑯𝐶 𝑯𝐶𝐵
𝑯𝐵𝑇 𝑯𝐵𝐶 𝑯𝐵

), (19) 

where 𝑯𝑇, 𝑯𝐶 and 𝑯𝐵 are the Hamiltonian blocks of the top graphene flake, central two flakes, and bottom 

flake, respectively, and the broadening factors are applied only to the top and the bottom flake atoms in the 

following manner: 

 𝜮𝑇
𝑟 = 𝑖ℏ𝛾 (

𝑰𝑇 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

) , 𝜮𝐵
𝑟 = 𝑖ℏ𝛾 (

𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝐵

). (20) 

Supplementary Figures 6-8 compare the total transmittance probability curves, as well as their division into 

bulk and edge contributions, for the 6.53 nm side-length armchair hexagonal (Supplementary Fig. 6), 6.15 

nm side-length zigzag hexagonal (Supplementary Fig. 7), and 10 nm diameter circular (Supplementary Fig. 

8) flakes with two (panels (a)) and four (panels (b)) layers. While the four-layer model system provides 

narrower transmittance features than the two-layer model, where the contacting layers are directly coupled 

to the corresponding implicit lead, the qualitative nature of the results remains the same. Namely, for both 

zigzag hexagonal and circular junctions the edge-to-edge transport contribution dominates, whereas for the 

armchair hexagonal contact bulk-to-bulk transmittance governs the transport properties of the junction. 

Furthermore, the relative importance of all other contributions remains intact thus justifying our usage of 

the two-layer model systems to perform the demanding large-scale interlayer transport calculations. 
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Supplementary Figure 6: Calculated transmittance probability for armchair terminated bilayer 

graphene. Total transmittance probability (blue line) and its edge and bulk contributions (red, orange, 

purple, and dashed green lines) calculated for (a) two-layer and (b) four-layer armchair hexagonal graphene 

junctions of side length of 6.53 nm and a misfit angle of 15∘ (see insets). 

 

Supplementary Figure 7: Calculated transmittance probability for zigzag terminated bilayer 

graphene. Total transmittance probability (blue line) and its edge and bulk contributions (red, orange, 

purple, and dashed green lines) calculated for (a) two-layer and (b) four-layer zigzag hexagonal graphene 

junctions of side length of 6.15 nm and a misfit angle of 15∘ (see insets). 
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Supplementary Figure 8: Calculated transmittance probability for circular bilayer graphene 

structures. Total transmittance probability (blue line) and its edge and bulk contributions (red, orange, 

purple, and dashed green lines) calculated for (a) two-layer and (b) four-layer 10 nm diameter circular 

graphene junctions and a misfit angle of 15∘ (see insets). 

  



17 
 

7. Illustration of the Wave Functions of Eight Eigenstates Within the Fermi Window 

of Circular Junctions 

To obtain the molecular orbital plots of the edge states presented in Fig. 3a-c of the main text we 

diagonalized the tight-binding Hamiltonian6 of the relevant junction models and plotted the absolute squared 

molecular orbital expansion coefficients over the different atomic sites. In Fig. 3d of the main text we 

presented the angularly averaged molecular orbital weights as a function of distance from the flake edge 

averaged over eight molecular orbitals residing within the Fermi window. For completeness, we present in 

Supplementary Fig. 9 the individual eight molecular orbital absolute squared weights of the 20 nm circular 

bilayer system all showing pronounced edge character. The corresponding angularly averaged molecular 

orbitals weights as a function of distance from the flake edge are presented to the right of each molecular 

orbital for the 10 nm (blue circles), 15 nm (red circles) and 20 nm (grey circles) junctions. 
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Supplementary Figure 9: Illustrations of the eight molecular orbitals considered in the main text for 

a bilayer 𝟐𝟎 nm diameter circular junction with a misfit angle of 𝟏𝟓∘. For clarity of the presentation, 

the weights over the lower and upper flakes are represented in blue and red colors, respectively. Angularly 

averaged molecular orbital weights as function of distance from the flake edge (calculated by summing 

absolute squared expansion coefficients over concentric rings) for bilayer junctions of diameters of 10 nm 

(blue circles), 15 nm (red circles) and 20 nm (grey circles) and a misfit angle of 15∘ are presented to the 

right of the corresponding molecular orbital illustration. 
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