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ABSTRACT: Nonequilibrium thermodynamics of the driven resonant-
level model is studied using numerical simulations based on the driven
Liouville von-Neumann formalism. The approach is first validated
against recently obtained analytical results for quasistatic level shifts and
the corresponding first-order corrections. The numerical approach is
then used to study far-from-equilibrium thermodynamic properties of
the system under finite level shift rates. The proposed methodology
allows the study of unexplored nonequilibrium thermodynamic regimes
in open quantum systems.

■ INTRODUCTION

The quantum technology revolution promises unprecedented
advances in our computation and technological capabilities
(see ref 1 and references therein). As machines are scaled-
down to the quantum regime, it is of prime importance to
understand how quantum effects are manifested in their
operation. Within this effort, an extension of the thermody-
namic description to nanoscale systems out of equilibrium,
where dynamic quantum effects dominate, constitutes an
important challenge.2,3

A generic problem of this kind is the thermodynamic
analysis of a small quantum system that is coupled to
multiple reservoirs, which are out of equilibrium with respect
to each other, possibly with an additional external time-
dependent force that performs work on the system.2−9 As in
standard macroscopic thermodynamics, such an analysis
requires the partitioning of energetic variations in the system
into heat and useful work components. However, the small
system size makes the characterization of its thermodynamic
properties uncertain because energy parameters associated
with the system are of the same order as those characterizing
the system−baths interactions. Furthermore, quantum
mechanics implies that energy transfer and relaxation are
associated with broadening of energy levels, so even energy
observables of the system alone are not well characterized.
Models constructed to consider these issues are often

studied in the weak system-bath coupling limit, where the
thermodynamic functions of the system are well defined and
it is possible to work with a standard quantum master
equation (see ref 2 and references therein). Studies that
consider the implications of strong system-bath coupling have
recently emerged.4−6,10−15 In the latter, the use of weak

system-reservoir(s) coupling is replaced by the assumption
that the dynamics imposed on the system is slow. “Slow”
here implies that the timescale on which the system
Hamiltonian is changed by external force(s) (as work is
done or extracted from the system) is long relative to the
characteristic timescales on which the system exchanges
energy and particles with its environment. We also note that
these treatments are usually limited to noninteracting systems
(e.g., free-electron or Harmonic bath models), although
extensions of such considerations to include electron−
electron interactions in the bath have recently been
published.15,16

While such studies provide fundamental insights into
dynamics and thermodynamics of small systems in these
specific limits, it is obviously of interest to explore less
restrictive conditions, for example, strong coupling under
arbitrary external driving. To this end, one may resort to
numerical simulations.15,17−28 A convenient numerical frame-
work, relevant to problems where a small electronic system is
coupled to one or more free electron reservoirs, each in its
own equilibrium but not necessarily in equilibrium with each
other, is the driven Liouville von Neumann (DLvN)
method.29−32,35 In this approach, the Liouville von-Neumann
(LvN) equation of motion (EOM) for an extended system
comprising the system of interest plus finite lead models is
solved with open boundary conditions imposed on the
leads.36 These boundary conditions are enforced by
augmenting the LvN equations with nonunitary source/sink
terms constructed to drive each lead toward its own
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equilibrium state. When the driving is done by imposing
different equilibrium states on different leads, the DLvN
method was shown to reproduce the results of explicit time-
dependent nonequilibrium Green’s function treatments,33

while avoiding violations of Pauli’s exclusion principle and
preserving density matrix positivitytwo issues that were
encountered in previous related implementations.25,34 This
was formally supported by a derivation of the DLvN EOM as
an approximation resulting from the nonequilibrium Green’s
function formalism33,35 and its recasting in Lindblad form for
noninteracting systems.33,37 We note that other related
numerical procedures can been implemented for the same
purpose, see, for example the Stochastic Surrogate Hamil-
tonian method of Kosloff and co-workers (see ref 38 and
references therein) that implements open boundary con-
ditions by coupling the extended system to an equilibrium
bath, employing dynamics in a stochastic wavefunction
representation rather than in Liouville space.
The purpose of the present work is to examine the

applicability of the DLvN methodology for nonequilibrium
thermodynamics simulations. For simplicity and clarity, we
limit ourselves to the driven resonant level model considered
in refs 4, 5, 7, 10, 13, 39, and 40 represented by a time-
dependent Hamiltonian comprising a single electronic level
(termed as “dot”) coupled to a single equilibrium reservoir
and driven by an external force that performs work on the
system or extracts work from it. Some technical consid-
erations relevant to the implementation of the DLvN method
for evaluating thermodynamic properties of this model system
were recently discussed.40 Here, we use the method to
calculate the dynamic evolution of this system numerically
and investigate the thermodynamic implications of the driving
without being limited to the weak coupling and/or slow
driving limits considered in previous studies.

■ METHODOLOGY

Resonant Level Model System. As mentioned above,
for our model system we choose the resonant level model
previously considered in refs 4, 5, 7, 10, 13, 39, and 40. The
model consists of a single spin-less electronic level that
represents a quantum dot, coupled to a spin-less free-electron
reservoir representing a metallic lead. The dot level is driven
(e.g., by an external gate voltage or an electromagnetic field)
such that its energy (and consequently its occupation) varies
with time at a finite rate (see Figure 1). The Hamiltonian
describing this system is

= + = + +H H V H H V0 d L (1)

where the dot and lead Hamiltonians, Hd and HL, and the
coupling V between them are given by:

ε= †H c ct( )d d dd (2)

∑ ε= †H c c
l

l l lL
(3)

and

∑= +†V c cv( h.c.)
l

l d l
(4)

In eqs 2−4 cd
† (cd) and cl

† (cl) are the creation
(annihilation) operators for an electron in the dot and lead
levels of energies εd and εl, respectively. For simplicity, the
lead level energies and the dot/lead coupling matrix elements,
vl, are kept real and constant during the dynamics.
Furthermore, the lead is assumed to be at (or sufficiently
close to) thermal equilibrium, characterized by electronic
temperature T and chemical potential μ. Without loss of
generality, the latter is set to be at the energy origin such that
μ = 0, as discussed below.
Before considering far-from-equilibrium scenarios, we first

demonstrate the performance of our numerical calculations at
near-equilibrium conditions, where analytical results can be
obtained from standard equilibrium quantum statistical
mechanics.4 As will become obvious below, the DLvN
numerical scheme is not limited to some approximations
invoked in analytical derivations, such as the wide band limit
(WBL) and slow driving rates with respect to typical
relaxation times in the system. On the other hand, our
numerical scheme can only address finite systems, which here
implies a free-electron lead modeled by a finite number of
levels spanned within a finite bandwidth. Still, to facilitate
comparison with the analytical results, we construct our
model to be a good representation of the WB approximation
by representing the lead by a single energy band of width W
and a finite number, NL, of equally spaced (spacing of Δεl =
W/NL and density of states ρ = Δεl−1) single-electron levels
and an energy independent lead-dot coupling, v. The spectral
function of the dot state is then given, to a good
approximation, by a Lorentzian centered around εd:

ε ε γ γ

ε ε
γ π ε= ℏ

− +
≡

ℏ
| | Δ

γℏ
−

( )
A v( ; , )

( )
;

2
d

d

l
2

2

2
2 1

(5)

provided that ℏγ ≫ Δεl, W ≫ ℏγ, and εd is far (relative to
the Lorentzian width, ℏγ) from the band edges. For brevity
of notation, we use below A(ε) to denote A(ε;εd,γ). When
these conditions are not fully satisfied, proper corrections can
be applied as described in ref 39. It should be emphasized
that deviations from the WB limit do not invalidate the
thermodynamic calculations described below, only their
comparison with the analytical WBL results.

Figure 1. Illustration of the model system. (a) The dot is initially placed well below the Fermi level and is (nearly) fully occupied. (b) As the
dot’s energy is shifted up, it empties into the lead. (c) When located well above the Fermi level, the dot is (nearly) unoccupied.
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Driven Liouville-von-Neuman Approach. In the realm
of the noninteracting spinless resonant level model described
above, all observables can be obtained from the 1-electron
density matrix σji(t) = ⟨ci

†(t)cj(t)⟩, where ci
†(t) and ci(t) are

the Heisenberg representations of the electron creation and
annihilation operators of state i, respectively, and the average
is taken over the initial many-electron wavefunction. For the
present treatment, σ may be conveniently expressed in the
basis of eigenstates of the isolated dot and lead sections:

σ
σ

σ σ
σ

=
d d,L

L,d L

i
k
jjjjj

y
{
zzzzz (6)

where σd is the dot population, σL is the density matrix block
of the lead, and σdL = σLd

† are the dot/lead coherences
vectors. Correspondingly, the system Hamiltonian matrix
representation is given in the same basis as

ε

ε
=

†
H

v

v

t( )d

L

i

k

jjjjjjj
y

{

zzzzzzz (7)

where εL is a diagonal block of lead level energies, εl, that, as
mentioned above, are taken to be uniformly distributed over
the bandwidth, and v is a row vector containing the identical
coupling matrix elements that are related to a given dot-level
broadening value of γ through Fermi’s golden rule of eq 5.
As discussed above, a numerical evaluation of the dynamics

described by the Hamiltonian 1−4 necessarily needs to
employ a finite lead model, comprising a finite number
of states spanned within a finite energy band, W. The
time evolution of the single-particle density matrix in
such a closed system is given by the standard single-particle

LvN EOM: σ=− [ ]σ
ℏ H ,

t
id

d
. In an out-of-equilibrium simu-

lation, this dynamics results in Poincare ́ recurrences
with a period determined by the energy spacing in the
lead, Δεl = W/NL.

16,17,22,26,40,41 Therefore, the closed system
model can mimic the behavior of its open counterpart only
for short periods limited by the typical reflection time of the
electronic wavepacket from the finite system boundaries.39,42

To overcome this problem we adopt the recently developed
DLvN approach for simulating time-dependent electronic
transport in open quantum systems.26,30−34 Within this
approach, open system boundary conditions are imposed by
augmenting the LvN evolution with additional rate processes
(see eq 9) that guide the lead section toward its equilibrium
form.43 The latter is represented by a diagonal matrix σL

eq

with populations given by the Fermi−Dirac distribution of
the corresponding bath, to which the lead is implicitly
coupled:

ε β μ = [ + ]β ε μ− −f ( ; , ) e 1( ) 1
(8)

where μ is the chemical potential of the implicit bath, β =
(kBT)

−1, kB is Boltzmann’s constant, and T is the bath’s
electronic temperature. For brevity of notation, we use below
f(ε) to denote f(ε;β,μ). The DLvN EOM for the resonant
level model considered herein is of the following form:

σ σ
σ

σ σ σ
= −

ℏ
[ ] − Γ

−
H

t
id

d
,

0
1
2

1
2

d,L

L,d L L
eq

i

k

jjjjjjjjjjjjj

y

{

zzzzzzzzzzzzz
(9)

where

σ δ ε=′ ′f( ) ( )ll ll lL
eq

(10)

The lead driving rate, Γ, represents the timescale on which
thermal relaxation takes place in the lead due to its coupling
to the implicit bath, which is generally assumed to be fast
relative to all other processes of interest. While a physically
motivated value for Γ can be extracted from the electronic
properties of the explicit bath,34 in the present study we set
ℏΓ, the lead levels broadening due to their coupling to the
implicit bath, to be uniform and of the order of the lead level
spacing, ℏΓ ≈ Δεl. We have verified that the results
presented below are fairly insensitive to the specific choice
of lead driving rate in this range (see Section S1 of the
Supporting Information and relevant discussion in refs 37 and
44), to the bandwidth of the finite lead model (see Section
S2 of the Supporting Information), and to the density of lead
states (see Section S3 of the Supporting Information).

■ THERMODYNAMIC FUNCTIONS AND FLUXES
We now turn to describe our approach for evaluating
thermodynamic functions and fluxes using the numerical
scheme detailed above. We distinguish between quasistatic or
sudden jump processes, where thermodynamic functions can
be obtained from equilibrium calculations, and finite-rate
processes, where kinetic equations are required.

Quasistatic Limit. In a quasistatic process, the driving
parameter(s) (here εd) is changed slowly (reversibly) relative
to system relaxation processes so that the system can be
assumed to remain at equilibrium, characterized by the
equilibrium density matrix σeq(εd) of the entire dot-lead
system, throughout the process. The equilibrium value of a
system observable that corresponds to an operator O is given
by

σε ε⟨ ⟩ =O O( ) Tr( ( ) )d d
(0) eq

(11)

and its time-dependence (used below for the evaluation of
thermodynamic quantities in the quasistatic limit) is derived
from the variation of εd, such that

ε ε
ε

⟨ ̇⟩ = ̇ ⟨ ⟩
O

O
( )

d
dd d

d

(1)

(12)

The superscripts in eqs 11 and 12 (and similarly below)
denote the order in εḋ of the calculated quantity. Specifically,
the WBL expressions for εd-dependent contributions to the
particle number, energy, and entropy are given by (see ref 4):

∫ε ε
π

ε ε=
−∞

∞
N A f( )

d
2

( ) ( )dd
(0),WBL

(13)

∫ε ε
π

ε ε ε=
−∞

∞
E A f( )

d
2

( ) ( )dd
(0),WBL

(14)

∫ε ε
π

ε ε ε ε

ε

= { [ ] + [ − ]

[ − ]}
−∞

∞
S k A f f f

f

( )
d
2

( ) ( ) ln ( ) 1 ( )

ln 1 ( )

dd
(0),WBL

B

(15)

The corresponding quasistatic fluxes of particles, energy,
work, heat, and entropy are given by4:

∫ε ε
π

ε
ε

ε̇ = ̇
−∞

∞
N

A
f

d
2

d ( )
d

( )d
d

(1),WBL

(16)
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∫

∫

ε ε
π

ε ε
ε

ε

ε ε ε ε
π

ε ε
ε
ε

̇ = ̇

= ̇ + ̇

−∞

∞

−∞

∞

E
A

f

N A
f

d
2

d ( )
d

( )

( )
d
2

( )
d ( )

d

d
d

d d d

(1),WBL

d
(0),WBL

(17)

ε ε̇ = ̇W N ( )d d
(1),WBL

d
(0)

(18)

∫ε ε
π

ε μ ε
ε
ε

̇ = − ̇ = ̇ −
−∞

∞
Q TS A

fd
2

( ) ( )
d ( )

dd
(1),WBL

d
(1)

(19)

In the numerical finite-bandwidth model calculation, the
equilibrium density matrix, σeq(εd), can be obtained using
two different approaches. In one, for any instantaneous εd the
Hamiltonian 7 is diagonalized and the equilibrium density
matrix of the dot-lead system in the eigenstate representation,
{|j⟩}, [σeq(εd)]j,j′ = δj,j′ f(εj), is used to calculate the
equilibrium expectation value of any single-electron operator.
For the thermodynamic functions of interest we get:

∑ε ε=N f( ) ( )d
j

j
(0)

(20)

∑ε ε ε=E f( ) ( )d
j

j j
(0)

(21)

∑ε ε ε ε

ε

= − { [ ] + [ − ]

[ − ]}

S k f f f

f

( ) ( ) ln ( ) 1 ( )

ln 1 ( )

d
j

j j j

j

(0)
B

(22)

To obtain εd-dependent expressions equivalent to eqs
13−15, these functions need to be projected onto the dot
section as follows:

∑ε ε= |⟨ | ⟩|N d j f( ) ( )d
j

jd
(0) 2

(23)

∑ε ε ε= |⟨ | ⟩|E d j f( ) ( )d
j

j jd
(0) 2

(24)

∑ε ε ε ε

ε

= − |⟨ | ⟩| { [ ] + [ − ]

[ − ]}

S k d j f f f

f

( ) ( ) ln ( ) 1 ( )

ln 1 ( )

d
j

j j j

j

d
(0)

B
2

(25)

The work done in the quasistatic process is obtained as an
integral over the population:

∫ ε ε=W Nd ( )d d
(0)

d
(0)

(26)

and the corresponding heat can be obtained from the first
law of thermodynamics:

μ= Δ − − ΔQ E W Nd
(0) (0) (0) (0)

(27)

Alternatively, an approximate equilibrium density matrix
may be calculated as the solution of a Sylvester equation26,40

obtained by setting σ̇ = 0 in eq 9 for any given value of εd.
This can then be used to evaluate all needed expectation
values of any single-electron observable ⟨A⟩ = Tr(σA). The
approximate nature of the latter stems from the fact that we
impose thermal equilibrium only on the lead states and not
on the eigenstates of the full dot-lead system. This would not
matter if the lead was infinite, but small differences are
expected when using finite lead models. Comparing the two

solutions provides a measure of the suitability of the chosen
finite lead model as an approximation for a wide-band lead40

and can guide our effort to balance between the required
accuracy and the computational cost. Within this approach,
the occupation of the dot, which can substitute Nd

(0) in
expressions 26 and 27, is calculated using:

σ=nd dd (28)

where σ is obtained from the Sylvester equation as described
above.
In either case, the corresponding quasistatic fluxes are

obtained as products of εḋ and the numerical derivatives with
respect to εd of the above functions.

Sudden Jump Limit. On the other extreme limit, the
system starts at equilibrium with εd = εd1 and at a given time,
marked as t = 0, the dot energy makes a sudden jump to εd =
εd2 without changing its population, after which the system is
let to relax to the new equilibrium associated with εd2 in
place. The work, which is performed only during the sudden
jump, is given by:

ε ε ε ε ε→ = −W N( ) ( )( )d d d d d
sudden

1 2 d
(0)

1 2 1 (29)

In the subsequent relaxation to equilibrium, the dot-lead
system exchanges heat and particles with the external bath
while no further work is done. The change in thermodynamic
state functions is given by ΔF = F(0)(εd2) − F(0)(εd1), (F = N,
E, S) and the heat exchanged with the bath during the
relaxation processes can be written in terms of the eigenstates
and eigenenergies, (|i⟩, εi) and (|j⟩, εj), of the initial (εd =
εd1) and final (εd = εd2) Hamiltonians of the dot-lead system,
respectively. This leads to:

∑ε ε ε ε μ→ = − − ΔQ n f N( ) ( ( ))d d
j

j j j
sudden

1 2
(30)

where nj = ∑i|⟨i|j⟩|
2f(εi) is the initial population of state j

after the jump and ΔN = ∑j(nj − f(εj)) is the total change in
particle number occurring during the relaxation stage. It is
easy to realize that the first law Qsudden = ΔE − Wsudden −
μΔN is satisfied by writing the energy flux, work per unit
time (power), and heat flux in the following forms:

σ σ̇ = ̇ + ̇H HE Tr( ) Tr( ) (31)

σ̇ = ḢW Tr( ) (32)

σ μ̇ = ̇ −H IQ Tr( ( )) (33)

where I is a unit matrix of appropriate dimensions. Clearly,
more heat is generated by the thermalization of electrons
following the sudden jump than in the quasistatic process,
hence Qsudden > TΔS.

Finite Dot-Level Driving Rate. When the dot energy is
shifted at a finite rate, the system goes out of equilibrium and
irreversibility effects are manifested. Analytical results for the
changes in thermodynamic functions and their fluxes can be
obtained by expansions with respect to the driving speed εḋ,
whereupon the lowest-order corrections in the WBL are
obtained in the forms4:

∫ε
ε ε

π
ε
ε

ε= −
ℏ ̇

−∞

−∞
N

f
A( )

2
d
2

d ( )
d

( )d
d

d
(1),WBL 2

(34)

∫ε
ε ε

π
ε

ε
ε

ε= −
ℏ ̇

−∞

−∞
E

f
A( )

2
d
2

d ( )
d

( )d
d

d
(1),WBL 2

(35)
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∫ε
ε ε

π
ε

ε
ε̇ = −

ℏ ̇
−∞

−∞
N

f
A( )

2
d
2

d ( )
d

( )d
d

d
(2),WBL

2 2

2
2

(36)

∫ε
ε ε

π
ε
ε

ε̇ = −
ℏ ̇

−∞

−∞
W

f
A( )

2
d
2

d ( )
d

( )d
d(2),WBL

2
2

(37)

∫ε
ε ε

π
ε μ

ε
ε

ε̇ = −
ℏ ̇

−
−∞

−∞
Q

f
A( )

2
d
2

( )
d ( )

d
( )d

d(2),WBL
2 2

2
2

(38)

and

∫ε ε
π

ε μ
ε
ε

ε
ε

̇ = ℏ ̇ −
−∞

−∞
S

T
f Ad

2
( )

d ( )
d

d ( )
d

(2)
2 2

(39)

These expressions are useful to describe processes
involving slow (with respect to the typical lead relaxation
rate) dot level shifts. Because obtaining higher-order
analytical expressions rapidly become intractable, for any
finite dot driving rate the particle and energy fluxes need to
be evaluated from the kinetic equations. In what follows, we
discuss the numerical evaluation of these functions via the
DLvN EOM (eq 9).
Particle Fluxes. Particle (electron) fluxes flowing between

different system segments can be readily evaluated using the
DLvN EOM. Given the 1-electron density matrix, σ, the
instantaneous total number of electrons in the entire (dot-
lead) system is given by Ntot(t) = Tr[σ(t)], which may vary
with time due to the electron exchange with the implicit
external bath. Ntot can be formally divided into contributions
from the two system sections as follows: Ntot(t) = Nd(t) +
NL(t), where, Nd/L(t) = Tr[σd/L(t)]. Because the dot is
coupled only to the lead section, the particle flux flowing
between the dot and the lead sections can be calculated using
eq 9 as:

∑ ∑
σ σ

σ σ σ

= ̇ = [ ̇ ] = ̇

= −
ℏ

[ − ] =
ℏ

[ ]

J t N t t t
i

v t t v v t

( ) ( ) Tr ( ) ( )

( ) ( )
2

Im ( )
l

l l l l
l

l l

d d d d

d d d

(40)

where the sum runs over all lead state indices, l. Similarly, the
total particle flux entering (if positive) the lead is given by:

∑ ∑
σ

σ σ ε

= ̇ = [ ̇ ]

= −
ℏ

− Γ [ − ]

= − −

J t N t t

v t t f

J t J t

( ) ( ) Tr ( )
2

Im( ( )) ( ) ( )

( ) ( )

l
l l

l
ll l

d B

L L L

d

(41)

As in eq 40, the first term on the right hand side of eq 41
is the particle flux flowing between the lead and the dot
sections, with the opposite sign resulting from the
directionality of the current. The second term can be
identified as the outgoing particle flux from the lead to the
implicit bath, to which it is coupled. Therefore, the particle
influx into the bath is given by

∑ σ ε= Γ [ − ]J t t f( ) ( ) ( )
l

ll lB
(42)

Equations 40−42 can also be used to identify the energy-
resolved particle fluxes38 that were used in ref 4 to evaluate
heat currents flowing between the dot and the lead. However,

due to technical considerations discussed in ref 38, we do not
follow this route in the present paper.

Energy and Energy Fluxes. Next, consider the energy
fluxes. We first consider the expectation value of the total
electronic energy of the entire (dot-lead) system, and express
it as a sum of the dot (Ed) and lead (EL) components:

σ σ σ σ σ

σ σ

= = + = +

+ + = +

H H H H H

H H

E

E E

tr( )
1
2

tr( )
1
2

tr ( )

1
2

tr ( )
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where we have used the cyclic property of the full trace
operator and defined:

∑
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Note that, because partial traces are used in the definitions
of Ed and EL, symmetrization is being employed to assure
that the obtained values are real. We also note in passing that
the contributions to these expressions from the coupling term
of eq 4, V, are equal (see Appendix B) such that

σ σ⟨ |{ }| ⟩ = ∑ ⟨ |{ }| ⟩V Vd d l l, ,l
1
2

1
2

. This demonstrates, in

agreement with ref 5, that the contribution of the coupling
to the total average energy is split evenly between the dot
and lead subsystems as was also assumed in several recent
papers.4,10

The time variation of the dot’s section contribution to the
total electronic energy can now be evaluated as

σ σ̇ = ⟨ |{ ̇ }| ⟩ + ⟨ |{ ̇ }| ⟩H HE d d d d
1
2

,
1
2

,d (45)

The first term on the right-hand-side of eq 45 represents
energy variations due to the flow of particles in- and out-of
the dot, as obtained by the time-derivative of the single-
particle density matrix. The second term, which depends on
the time-derivative of the Hamiltonian operator, corresponds
in the present model to energy variations due to the external
time-dependent perturbation acting on the dot section and is
related to the work performed on the system, as discussed
below. The former can thus be identified with the energy flux
entering (or leaving if negative) the dot:

σ

σ σ

= ⟨ |{ ̇ }| ⟩

= −
ℏ

⟨ |{[ ] }| ⟩ − Γ ⟨ |{ }| ⟩

H

H H
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i
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4
,

E
d
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(46)

where we have used eq 9 for σ̇ and defined (see eq 4):

≡ †

v

v
V

0

0

i
k
jjjjj

y
{
zzzzz (47)

Similarly, the energy flux entering the lead section is given
by:
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where we have used the fact that εL and σL
eq (whose elements

are given by eq 10) are diagonal matrices. We may now
define

∑

∑

σ σ
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ℏ

⟨ |{[ ] }| ⟩ =
ℏ

⟨ |{[ ] }| ⟩

= − + −

H H H HJ
i

d d
i

l l

i
t v v

2
, ,

2
, ,

2
( ( ) )( )

l

l
l l l l l

dL
(E)

d d d
(49)

∑σ σ≡ ⟨ |{ }| ⟩ = ⟨ |{ }| ⟩V d d l lV V, ,
l

d
(50)

and

∑ ε σ σ≡ −E ( )
l

l ll llLB
eq

(51)

where the second equality in eq 49 stems from the cyclic
property the full trace operation:

∑σ σ

σ σ

⟨ |{[ ] }| ⟩ + ⟨ |{[ ] }| ⟩

= {[ ] } = [ ] =

H H H H

H H H

d d l l, , , ,

Tr( , , ) Tr( , ) 0

l

2

The third equality in eq 49 can be obtained from the
definition of H (eq 7) and σ (eq 6) assuming that v is a real
coupling vector, and the last equality in the definition of Vd
results from the structure of σ and V (eq 47). With these
definitions, we can rewrite the energy fluxes as:

= − Γ
VJ J

4d
(E)

dL
(E)

d (52)

and

= − − Γ − ΓVJ J E
4L

(E)
dL
(E)

d LB (53)

Because the lead section is coupled to both the dot
(explicitly) and the bath (implicitly), energy conservation
requires that the total energy flux into the lead equals the
sum of energy fluxes out of the bath (−JB(E)) and the dot
sections: JL

(E) = −Jd(E) − JB
(E). Therefore, the energy flux into

the implicit bath is given by:

= − − = Γ + ΓVJ J J E
2B

(E)
d
(E)

L
(E)

d LB (54)

The structure of eqs 52 and 53 implies that JdL
(E) can be

identified as the direct energy flux between the dot and the
lead sections (from the dot to the lead, when negative). In
addition, in the local (d, {l}) basis employed here, the last
term in eq 52 and the last two terms in eq 53 may be viewed
as energy-transfer fluxes from the dot and lead sections into
the bath, respectively. Together they account for the overall
energy flux into the bath given by eq 54. We note that
identifying the last term in eq 52 as energy flux between the
dot and the external bath, which are not directly coupled, is a
matter of choice. We could alternatively assign this flux to an

additional energy exchange between the dot and the lead and
add and subtract the same term to the RHS of eq 53, where
they may be thought of as additional fluxes experienced by
the lead from the dot and into the bath. Here, it should be

emphasized that, regardless of the assignment of the Γ V
4 d

term to a given system section, there is no time-delay
between the associated flux leaving (if positive) the dot and
the similar flux entering the external bath.

Heat Fluxes. Turning to the consideration of heat
currents, we encounter the usual conceptual problem
associated with the fact that the distinction between energy
and heat fluxes involves some form of relaxation. In the
quasistatic limit discussed above, no ambiguity arises because
this relaxation is assumed to be instantaneous on the driving
timescale. When the driving is done at a finite rate, however,
the definition of the heat flux becomes ambiguous unless
some physical choices are made, as explained below.
Formally, the evolution of the system’s (dot-lead) energy,

Esys = Tr(σ(t)H(t)), when the system undergoes a non-
equilibrium process, may be cast in the form:

σ σ̇ = ̇ + ̇H HE t t t tTr( ( ) ( )) Tr( ( ) ( ))sys (55)

The first term on the right can be identified as the power
(work per unit time) done on the system by the agent that
makes the Hamiltonian time-dependent:

σ̇ = ḢW t tTr( ( ) ( )) (56)

In our model Ḣ(t) = εḋ(t)|d⟩⟨d|, so that

ε σ ε̇ = ̇ = ̇W t t t n t( ) ( ) ( ) ( )d ddd d (57)

Energy conservation implies that the second term in eq 55
represents the contribution of all other sources of energy
change. No such sources exist for a closed system, which in
our dot-lead model corresponds to Γ = 0. Indeed, Tr(σ̇(t)
H(t)) = −iTr([H,σ]H) = 0 in such case. Similarly, in a
closed system, Ṅ = Tr(σ̇) = −iTr([H,σ]) = 0 expresses
conservation of mass.
For an open system (Γ ≠ 0), the second term on the RHS

of eq 55 is determined by the processes that take place at the
interface between the lead and external bath and expresses
the effect of energy and particle exchange between the dot-
lead system and this bath. In such a grand-canonical
ensemble the total energy variation of the dot-lead system
satisfies Ėsys = Q̇ +Ẇ +μṄ, where we recall that μ is the
chemical potential of the bath. Using eqs 7, 9, 55 and 56 we
may write:
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or
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where I is the unit matrix in the single electron d−L space
and we have used again the fact that the trace of the
commutator vanishes.
While formally exact, expressions 58 and 59 may miss the

essence of the intended calculation. Because Γ was
introduced as a mathematical tool that depends on choices
made for the finite lead size and the corresponding density of
lead states, the heat flux calculated from eq 59 will depend on
these unphysical choices. Specifically, we note that in the
limit where the lead becomes infinite and its density of states
becomes continuous, the dynamics of interest can be
described by taking the limit Γ → 0. In this limit, the
calculated heat flux into the implicit bath vanishes (see eq
59), while the lead itself is assumed to remain in thermal
equilibrium. Indeed, this is the way the analytical calculation
is done, by imposing a thermally equilibrated wide-band lead
of uniform density-of-states and a coupling between the dot
state and the eigenstates of the free lead, while disregarding
any external bath that may be required to affect the lead
thermalization. While such a picture of a constantly
equilibrated lead may be valid when the dot level shift rate
is not too fast, it cannot be implemented for the calculation
of heat and particle exchange at finite shift rates within our
finite-size model that addresses the lead dynamics explicitly.
An alternative approach for evaluating the heat flux can be

devised based on the following two assumptions: (a) the
process of interest, namely, relaxation by transport of energy
and particles between the dot and the lead, is irreversible;
and (b) any change in the state of the lead resulting from
this transport is insignificant in the sense that it does not
affect the relaxation dynamics at the dot-lead interface. The
former can be satisfied by taking Γ > ρ−1, whereas the latter
is obtained by choosing a sufficiently large lead model. Under
these conditions, the actual relaxation of the lead to its
thermal equilibrium by exchange of particles and energy with
the external (implicit) bath can occur on a timescale much
slower than the timescale of interest, namely, the character-
istic relaxation time at the dot-lead interface, without affecting
the dynamics of interest. In these circumstances, all energy
and particle fluxes at the dot-lead interface, being irreversible,
are eventually expressed as heat and particle currents into the
external bath. It is therefore convenient to define a book-
keeping procedure associating Ṅ and Q̇ with the fluxes
exchanged between dot and the lead (from lead to dot when
positive), although their actual realization as fluxes in the
external bath might take place on a different, possibly much
longer, timescale. Within this picture, the heat current
(negative when out of the dot) is defined as

μ μ̇ = − = − Γ −Q J J J V J
4d

(E)
d dL

(E)
d d (60)

where Vd is given by eq 50 and Jd, Jd
(E), and JdL

(E) are defined in
eqs 40, 49, and 52, respectively. Notably, eq 60 differs from
eq 59 by the fact that it considers instantaneous particle and
energy fluxes at the dot-lead interface without explicitly
involving the bath, while at the same time takes into account
the fact that particles entering the lead will be eventually
equilibrated to the external chemical potential μ. The
difference between the energy carried by the particles as
they transfer between the dot and the lead (Jd

(E)) and their
energy at equilibrium (μJd) per unit time is then defined as
the rate of heat generation in the bath.

Both eqs 59 and 60 will be used below. It should, however,
be pointed out that neither corresponds exactly to what is
calculated in the analytical WBL model.4,7,10,42 Equation 59
represents the heat flux exchanged between the system (dot-
lead) and an equilibrium external bath rather than between
the dot and the equilibrated lead as in the analytical
treatment. Hence, the resulting value of the heat flux depends
on the value of Γ and will give a physically meaningful result
only when Γ is taken to represent the correct exchange rate
of outgoing and incoming thermal free electrons.34,45

Equation 60, on the other hand, is a meaningful
representation of a quantity that would eventually be
expressed as heat exchanged with the external thermal bath;
however, it does not represent the actual heat exchanged in
real-time. In this regard, it should be kept in mind that
augmenting the finite dot-lead system by coupling it to an
external thermal bath was primarily done in order to impose
irreversibility on the numerical procedure. It has no other
dynamical consequences provided that the lead is taken large
enough, namely, fluxes at the dot-lead interface should be
identical to what they would be if this lead was infinite once
the calculation is converged with regard to lead size. Still, we
find that the external bath is required for the conceptual
definition of the heat flux; however, once the bookkeeping
argument is adopted, the heat flux itself is calculated
independently of this bath.
Another pertinent numerical point should be mentioned. In

what follows we compare analytical results obtained at the
WBL with numerical results calculated with a finite-band
model. The latter is valid at any driving rate, εḋ, whereas the
former is obtained only for small εḋ with respect to the
relaxation processes that thermalize the lead. While the
numerical procedure described above is sufficiently accurate
for many applications,29−32,35 the small shift rate corrections
to the quasi-equilibrium behavior can be of the order of the
small difference between the finite- and infinite-band results.
Furthermore, these differences between the finite- and
infinite-band results converge slowly with the lead’s
bandwidth, in particular for the energy calculation (see eq
14). We have discussed these numerical issues in detail in ref
40 and have found that the following modification to the
straightforward numerical calculation provides good agree-
ment with the WBL analytical results. Let

ε ε εΔ ≡ −F F F( ) ( ) ( )d d d
(0)

WBL
(0)

num
(0)

(61)

and

ε ε ε ε
ε

ε
Δ ̇ ≡ ̇ − ̇ = ̇

Δ
F F F

F
( ) ( ) ( )

d ( )
dd d d d

d

d

(1)
WBL
(1)

num
(1)

(0)

(62)

be, respectively, the differences between the equilibrium
values and between the quasi-static change rates of a system
property F = N, E, calculated analytically in the wide-band
limit from eqs 13 and 14 and numerically for the
corresponding finite bandwidth model. Note that the latter
cannot be simply represented by truncating the integrals in
eqs 13 and 14 because the spectral function A(ε) of the
finite-band model is not simply a truncated version of the
infinite-band expression of eq 5. We assume that for any
driving speed εḋ, ΔḞ = ḞWBL − Ḟnum is well represented by its
quasistatic value of eq 62. This implies that a numerical
calculation aimed to evaluate the effect of finite driving at the
WBL can be obtained from:
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ε ε ε ε ε ε[ ̇ ̇ − ̇ ] ≃ ̇ ̇ − ̇F F F F( , ) ( ) ( , ) ( )d d d d d d
(1)

WBL num num
(1)

(63)

It should be noted that these flux expressions represent the
difference between the quasistatic currents and the instanta-
neous currents obtained under a finite driving rate. However,
care should be exercised when interpreting integrals of these
corrections between two values of the externally driven
parameter (here εd). The reason is that these instantaneous
currents do not contain information on the residual relaxation
that takes place after the final value of the driving parameter
is reached (note that in the sudden limit discussed above this
relaxation dominates the nonequilibrium process). At the
same time, it is obvious that the integral over the power, Ẇ,
accounts for the full work associated with the driven process.
Entropy and Entropy Fluxes. Finally, we consider

entropy generation and entropy fluxes associated with the
dot driving process. Two points should be made at the
outset: (i) in the quasistatic limit, the heat and entropy
currents are related by Ṡ(1)(εd) = Q̇(1)(εd)/T and are given in
the WBL by eq 19; (ii) because the equilibrium entropy is a
state-function, any driving protocol that carries the system
between two equilibrium states corresponding to εd1 and εd2
induces the same entropy change ΔSeq(εd1,εd2) =
Q(0)(εd1,εd2)/T, determined by the corresponding quasistatic
(reversible) process. Any excess heat generation resulting
from the finite driving rate will be eventually expressed in the
external bath, after the dot-lead system has reaches its final
equilibrium. The total thermodynamic entropy production,
expressed as entropy increase in the external bath, which is
taken to be at equilibrium throughout (i.e., the implicit bath
of the numerical model), is

ε ε ε ε ε ε ε εΔ | ̇ = − [ | ̇ − ]−S t T Q t Q( , ( )) ( , ( )) ( , )d d d d d d d d1 2
1

1 2
(0)

1 2
(64)

Here, Q(εd1,εd2|εḋ(t)) is the heat produced under a given dot
level shift protocol, εḋ(t), that drives the dot between εd1 and
εd2, (e.g., εḋ(t) = (εd2 − εd1)δ(t) for a sudden jump at t = 0),
and the negative sign indicates that this heat was transferred
to the external bath. The first law implies that this excess heat
is determined by the excess work, namely (setting μ = 0)

ε ε ε ε ε

ε ε ε ε ε

| ̇ −

= − | ̇ −

Q t Q

W t W

( , ( )) ( , )

( , ( )) ( , )
d d d d d

d d d d d

1 2
(0)

1 2

d 1 2 d
(0)

1 2 (65)

In departure from eqs 64 and 65, which explore
thermodynamic changes associated with driving protocols
that move a system between two equilibrium states, several
recent studies have considered the instantaneous rates of
variations in the particle number, work, heat, and entropy, to
lowest nontrivial order in the dot driving speed.4,7,10,45 While
such quantities can be calculated (eqs 36−39), their
interpretation needs a careful examination as demonstrated
by our discussion of the heat flux above. For the model under
discussion, there is no ambiguity concerning the power (work
done or produced per unit-time) and the energy of the dot-
lead system as well as its time-derivative is also well defined.
With regard to the heat, we saw that we need to distinguish
between the rate of heat escaping to the external (implicit)
bath in real-time, eq 59 and that part of the energy current
between the dot and lead that will eventually be realized as
heat in the external bath, eq 60.
We can use the bookkeeping argument discussed above for

the entropy as well by identifying the excess entropy

production as Q/T, Q being the excess heat transferred to
the external bath calculated from eq 60. Alternatively, we can
follow refs 4, 7, 10, and 42 in calculating the effect of driving
on the time-dependent entropy of the dot-lead system,
defined as:

ρ ρ= − { [ ]}S t k t t( ) tr ( )ln ( )dL B (66)

where ρ is the many electron density matrix. The following
interesting result was obtained for the lowest order excess
quantity:4,7,10,45

̇ = ̇ + ̇S
T

W Q
1

( )dL
(2)

d
(2) (2)

(67)

which serves to identify Ẇ
T
d

(2)

as the rate of entropy

production. Indeed, eq 67 expresses the fact that this entropy
production (positive if work is done on the system) is

expressed as a sum of a term − ̇Q
T

(2)

(positive when heat exits

the system) associated with the excess heat given to the
external bath plus the excess change in the system (dot-lead)
entropy, ṠdL

(2). With this interpretation, Q̇(2) has to be the heat
calculated from eq 59, which, as explained above, is model
dependent and not a physically meaningful quantity.
Furthermore, as was shown in ref 15, the result 67 cannot
be extended to higher orders in the driving speed; thus, our
finite rate calculation is not expected to rigorously show it.
In what follows, we examine our ability to numerically

evaluate quantities analogous to those appearing in eq 67,
namely, to use the time-dependent single-electron density
matrix obtained from the DLvN EOM to evaluate the
deviations of the work, heat, and system (dot-lead) entropy
rates from their quasistatic values obtained from eq 62.
Below, these deviations are referred to as the excess (with
respect to the reversible process) work, heat, and entropy
rates. The excess power is straightforward to obtain using eq
18 in the form:

ε σ σ ε̇ = ̇ [ − ]W t t t t( ) ( ) ( ) ( ( ))d dd
excess

d d
(eq)

(68)

σd
(eq)(εd(t)) being the equilibrium dot occupation at a given
dot position. For the heat flux, we need to calculate:

ε ε ε ε ε ε̇ = ̇ ̇ − ̇ ̇ ̇ ̇
ε ̇ →

−Q t Q Q( ) ( , ) lim ( , )d d d d d d
excess

0

1

d (69)

Note that in eq 69, ε ε ε̇ ̇ ̇
ε ̇ →

− Qlim ( , )d d d
0

1

d

is the first derivative

of the heat flux with respect to the driving rate that, when
multiplied by εḋ, provides the quasistatic contribution to the
heat flux.
To calculate the corresponding entropy of the dot-lead

system, we evaluate eq 66 for the many-body density matrix
ρ, which needs to be expressed it in terms of the single-
electron density matrix σ(t) of eq 9. In Appendix A, we show
that the resulting expression for noninteracting systems is
given by:

∑= − { [ ] + [ − ] [ − ]}S t k s t s t s t s t( ) ( )ln ( ) 1 ( ) ln 1 ( )
j

j j j jB

(70)

where {sj(t)} is the set of eigenvalues of σ(t). At equilibrium
sj → f(εj(εd);β,μ), where {εj(εd)} are the eigenvalues of the
Hamiltonian of the dot-lead system at a given value of εd. In
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this limit, eq 70 reduces to its equilibrium counterpart. Under
a finite dot-level shift rate, the excess entropy is given by

ε= −S t S t S t( ) ( ) ( ( ))d
excess eq

(71)

where Seq(εd(t)) is calculated via eq 70 by diagonalizing the
dot-lead Hamiltonian for any given value of εd.
To conclude this section, we note that other entropy

expressions, associated with the inner (dot) system only, can
be considered. One can adopt for the dot entropy, Sd, the
definition of Esposito et al.45:

ρ ρ= − [ ]S t k( ) Tr lnd B d d d (72)

where ρd = TrBρ and B is the total system without the dot.
However, properties derived for the evolution of this function
assume an uncorrelated initial state, ρ(0) = ρd(0) ⊗ ρB,eq.

45

Alternatively, one can follow Ingarden,46 in focusing on the
quantum mechanical operator entropy, SQ, associated with a
Hermitian operator Q̂. SQ quantifies the amount of missing
information about the observable Q in a given system state ψ.
Following Ben Naim47 (see also Lent48), for such an operator
written in its eigenbasis representation, Q̂ = ∑qq|ϕq⟩⟨ϕq|,
the operator entropy is defined in terms of the probability Pq
= |⟨ϕq|ψ⟩|

2 as Sq = −∑qPq log2 Pq.
49 For the operator Q̂ =

cd̂
†cd̂, the corresponding operator entropy is the binary entropy
associated with the dot:

= − [ ] − [ − ] [ − ]S t p t p t p t p t( ) ( )log ( ) 1 ( ) log 1 ( )d d 2 d d 2 d
(73)

where pd = σdd is the probability that the dot is occupied.

■ RESULTS
In this section, we present and discuss numerical results
calculated for the quasistatic, sudden jump, and finite driving
rate nonequilibrium processes. These results were obtained
from the model of eqs 2−4 and Figure 1, where the dot
energy, εd, is either shifted at a constant rate εḋ or moved
instantaneously between its initial and final values. Unless
otherwise specified, the following set of parameters were
used: energy is expressed in units of ℏγ so that ℏγ = 1, ℏΓ =
Δε = 0.1, kBT = 0.5, BW (bandwidth) = 10 (setting the
number of lead states to be NL = BW/Δε = 100). In what
follows, we also take ℏ = 1, hence γ = 1, the time unit is γ−1

= 1, and εḋ is given in units of ℏγ2 = 1.
Quasistatic and Sudden Jump Limits. We start by

considering the extreme limits of quasistatic driving and a
sudden jump. As discussed above, the calculation of these
equilibrium functions can be done by diagonalizing the
Hamiltonian and occupying the eigen-states according to the
Fermi−Dirac distribution or by calculating the 1-electron
equilibrium density matrix for the dot-lead system by solving
eq 9 for σ̇ = 0, which may be recast in a Sylvester-type
equation.25 Results of both procedures are shown in red and
blue lines, respectively, in Figures 2−4 below. Also shown are
results of the analytical wide band expressions (dashed-black
lines).4 Figure 2 shows the dot occupation nd (panel a), the
εd-dependent contribution to the energy, Ed (panel b), and
the entropy S (panel c), all displayed as deviations from their
values at a reference equilibrium state, here taken at εd1 = −3,
plotted against εd. Being state functions, the values presented
in Figure 2 do not depend on the process that leads from εd1
to εd. Figures 3 and 4 show, for a quasistatic driving and
sudden jump, respectively, the work (panels a) and the heat

(panels b) plotted as well as functions of εd. Note that in the
sudden jump case, work and heat are produced in different
parts of the dynamic evolution: work during the jump and
heat (as well as chemical energy) during the subsequent
relaxation.
These results generally show good agreement between the

different calculations, implying that our finite numerical
model provides a reasonable representation of the wide-band
limit and that the Sylvester solution provides a decent
approximation to the exact equilibrium density matrix. Note
that small deviations do exist and are more appreciable in the
heat and entropy difference calculations due to their smaller
numerical values. These discrepancies are expected to
diminish as the size of the numerical basis increases, that
is, when a larger lead model is used (see Supporting
Information). We note that Figures 2−4 show changes in
thermodynamic functions assigned to the dot subsystem. We
could alternatively show the changes in the corresponding
quantities associated with the full dot-lead system. For
noninteracting electrons and in the WBL, the results for these

Figure 2. Equilibrium dot occupation (panel (a), calculated using eq
23), energy (panel (b), calculated using eq 24) and dot-lead system
entropy (panel (c), calculated using eq 22), measured relative to
their values at εd1 = −3, plotted against the dot energy εd as
calculated by assigning Fermi−Dirac occupations to the eigenstates
of the dot-lead system Hamiltonian (red lines) or based on the 1-
electron equilibrium density matrix obtained by solving the Sylvester
equation (dashed blue lines).25 The analytical WBL results (eqs
13−15) are represented by the black dashed line.
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changes should be identical. However, small differences are
obtained for the present finite system model (see Section S4
of the Supporting Information) because the system’s spectral
function slightly depends in this case on the dot level energy.
Finite Dot-Level Driving Rate. Next, consider shifting

the dot’s energy at a finite rate. Some preliminary notes are
in place: (i) as mentioned above, recent analytical
studies4−7,10−15 have evaluated the lowest order (in the
driving rate) corrections to thermodynamic functions and
fluxes. To approach this limit in the numerical simulations we
need to use relatively slow shift rates, for which deviations
from the quasistatic limit are small, implying relatively large
numerical errors. Such numerical errors become smaller at
higher driving rates, where the numerical approach is
obviously most useful. Still, to facilitate comparison with

analytical results, we have chosen to display, for any
thermodynamic function F, the normalized excess flux:

ε ε
̇

̇
=

̇ − ̇

̇
F F F

d d

excess

2
eq

2
(74)

(note that for state functions Ḟeq/εḋ = ∂Feq/∂εd). (ii) Because
in nonequilibrium calculations we use eq 9 for the dynamical
evolution of the 1-electron density matrix, it makes sense to
use the Sylvester equation25 for the reference equilibrium
matrix, expecting errors due to the approximate nature of the
equilibrium state enforced via the thermal boundary
conditions to at least partially cancel. (iii) In contrast to
the results displayed above, which considered changes in
thermodynamic functions when the system evolves between
two equilibrium states, the results shown below correspond
to nonequilibrium thermodynamic fluxes obtained at a
constant driving rate.
Figures 5−9 show these normalized excess thermodynamic

fluxes, (eq 74), with F = N, E, W, Q, and S, plotted against εd
for two finite shift rates, εḋ. To obtain these results, we have
calculated numerical time-derivatives of the expressions for
the thermodynamic functions, eqs 28, 44 and 70, and
subtracted the numerical derivative of the corresponding
Sylvester equation-based equilibrium values. The rates of
work and heat production (or absorption) are directly given
by eqs 68 and 69.
Focusing first on the dot’s population, energy, and the

work performed to move its level, we find that for slow dot-
level shift velocities the corresponding excess thermodynamic
fluxes show good agreement with the analytical results. Small
differences can be attributed to contributions beyond first

Figure 3. Work (a) calculated using eq 26 and heat (b) calculated from eq 27 obtained for quasistatic driving of the dot energy from εd1 = −3
to εd. Color scheme is the same as in Figure 1.

Figure 4. (a) Work (calculated using eq 29) and (b) the heat (calculated using eq 30) obtained for a sudden jump of the dot level from εd1 =
−3 to εd. Red lines: results obtained by assigning Fermi−Dirac occupations to the eigenstates of the dot-lead system Hamiltonian. Blue lines:
results based on the 1-electron equilibrium density matrix obtained by solving the Sylvester equation.25

Figure 5. Normalized excess dot occupation variation rate,
calculated using eq 40, as a function of εd for εḋ = 0.5 (full blue
line) and εḋ = 0.1 (full red line) compared to the analytical solution
obtained from eqs 36-38 using the first law of thermodynamics;
dashed black line).
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order and to the difference between the dynamics of our
relatively small model system with a discrete lead level
spectrum and that of the analytical resonant level model in
the WBL. More important are the deviations associated with
increasing dot level shift rates, that reflect the fact that
relaxation to equilibrium lags behind the evolution of εd(t).
This demonstrates the capability of our numerical scheme to
explore dynamical regimes that are difficult to access using
analytical treatments.
For the heat flux, calculated using eqs 60 and 69 (Figure

8a), we also find qualitative agreement with the analytical
results at a slow driving rate and a similar lag behavior of the
excess heat flux with increasing dot energy shift rate. Here, as
well, the deviations between the numerical and analytical

results can be associated with higher order contributions in
the dynamical results and to the finite discrete nature of the
numerical model. Another source of deviation is the above-
mentioned approximate nature of the relaxation imposed on
the system, driving the zero-order lead levels rather than the
exact system eigenstates, to equilibrium. Naturally, the
resulting differences between the numerical and analytical
results are expressed more strongly in the heat calculation
due to its overall smaller absolute magnitude obtained under
the studied conditions. As discussed above, the results
obtained by using eq 59 instead of 60 for the heat flux
(Figure 8b) represent the actual heat exchanged instanta-
neously between the dot-lead system and the implicit bath in
the finite numerical model. These results do not correspond
to the heat exchanged between the dot subsystem and the
wide-band lead adopted in the analytical treatment and they
depend on the choice of the driving rate Γ, which in turn is
related to the discrete spectrum of the specific finite lead
model.34

Finally, in Figure 9 we present the excess entropy change
rate calculated via eqs 70 and 71 as a function of the dot
position for the two dot level shift rates considered. As can
be seen, even at the lower shift rate considered, the
agreement between the numerical and analytical results is
not satisfactory. While part of the deviation can still be
associated with the comparison between analytical wide band
approximation results and finite discrete band numerical
calculations and with contributions beyond first order in the
latter, one important point should be considered. The
analytical model focuses on the dot contribution to the
system’s entropy, whereas eq 70 evaluates the entropy from

Figure 6. Normalized excess dot energy variation rate, calculated via
eq 62, as a function of εd for εḋ = 0.5 (full blue line) and εḋ = 0.1
(full red line) compared to the analytical solution (obtained from
eqs 36−38 using the first law of thermodynamics; dashed black
line).

Figure 7. Normalized excess performed work rate, calculated using
eq 62, as a function of εd for εḋ = 0.5 (full blue line) and εḋ = 0.1
(full red line) compared to the analytical solution (37; dashed black
line).

Figure 8. (a) Normalized excess produced heat rate, calculated using eqs 60 and 69, plotted as a function of εd for εḋ = 0.5 (full blue line) and
εḋ = 0.1 (full red line), compared to the analytical solution (eq 38; dashed black line). (b) Similar results calculated using eqs 59 and 69 (note
the different y-axis scales such that the dashed line representing the analytical WBL result is identical in both figures).

Figure 9. Normalized excess total (dot-lead) entropy change rate,
calculated via eqs 70 and 71, as a function of εd for εḋ = 0.5 (full
blue line) and εḋ = 0.1 (full red line), compared to the analytical
solution (eq 39; dashed black line).
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the instantaneous occupation of the dot-lead system
eigenstates. To obtain better agreement between the two
results one can project the dot-lead entropy expression of eq
70 on the dot state

∑= − |⟨ | ⟩| { [ ] + [ − ]

[ − ]}

S t k d j s t s t s t

s t

( ) ( )ln ( ) 1 ( )

ln 1 ( )

j
j j j

j

d B
2

(75)

The results obtained using eq 75 are presented in Figure
10, showing better agreement between the low driving rate

numerical (full red line) and first-order analytical (dashed
black line) excess entropy and the expected lag at higher
driving rates (full blue line). For comparison purposes, we
also plot results obtained using the binary (information)
entropy expression associated with the dot state, given by eq
73. The obtained results (dashed red and blue lines in Figure
10) are found to be in good agreement with the dot-
projected results of eq 75. This indicates that the two local
entropy expressions of eqs 73 and 75 account for most of the
εd dependent entropy contribution evaluated by the analytical
treatment of ref 4.

■ CONCLUSIONS
The results presented above demonstrate the suitability of the
driven Liouville von-Neumann methodology for the study of
nonequilibrium thermodynamic properties of open quantum
systems, even in the regime of strong coupling between the
subsystem of interest and its environment. Specifically, we
have focused on the resonant level model subjected to a
time-dependent driving of the dot energy, but the same
numerical approach can obviously be applied to a variety of
other and more realistic models. Unlike recent analytical
treatments of this problems, which rely on expansions in
powers of the driving rate and are therefore limited to slow
driving scenarios, our numerical approach applies also to
systems subjected to high driving rates and, in fact, becomes
more efficient and accurate in this regime. Furthermore, the
numerical model is not limited to the WBL often used to
simplify analytical treatments and can be used with arbitrary
lead band structures. Here, however, we have deliberately
attempted to stay close to the wide band and slow driving
limits, at which the available analytical results are reliable, in
order to facilitate comparison.

Our numerical results for the dot occupation, energy, and
entropy as well as for the work and heat fluxes show excellent
agreement with the analytical theory in the quasi-static limit.
Furthermore, the DLvN predictions (with the exception of
entropy) correspond well to the analytical results also for the
case of finite slow dot level drivingthe most challenging
regime for our numerical simulations. We therefore conclude
that the DLvN approach can be used as a complementary
tool to analytical calculations, providing valuable information
in dynamic and thermodynamic regimes that are difficult to
explore by current analytical treatments.
One important aspect of applying thermodynamics to

nonequilibrium situations clearly comes to light in the
numerical analysis. In contrast to the energy, particle number,
and work, the definitions of heat and entropy in non-
equilibrium situations is subject to the usual uncertainty
encountered whenever the bath or part of it (here the lead)
is simulated explicitly as part of the system. In the present
calculation, while the heat exchanged with the external bath
and the entropy of the dot-lead system are readily evaluated,
their evolution is determined by the DLvN driving rate (Γ)
that is used as a tool to stabilize the numerical solution and
depends on the choice of lead model size. Because this
choice is somewhat arbitrary and depends on the
convergence of the results, the physical meaning of the Γ-
dependent heat and entropy expressions becomes model
dependent. More generally, the numerical calculation sheds
light on the ambiguity associated with the fact that particle
and energy fluxes exchanged by a system of interest and the
realization of these fluxes as thermodynamic variations in an
equilibrated external bath occur on different timescales.
Alternative local estimates that focus on changes that take
place at the dot-lead interface were explored. For example,
the reasonable assumption that all the dot outgoing energy
eventually translates into heat at the equilibrated bath was
used to define, as a bookkeeping tool, an instantaneous heat
flux out of the dot. For the entropy, local quantities such as
the system entropy projected on the dot and the dot
information entropy appear to be useful. It should be
emphasized that these aspects of our numerical results reflect
not any difficulty in evaluating the time evolution of the
driven system but only the ambiguity in interpreting these
results in a thermodynamic framework.
Finally, the present numerical work has focused on a

noninteracting particle (here Fermionic) model. General-
ization of the numerical procedure to better descriptions of
the system, for example, interacting electrons, will be
explored in future studies.

■ APPENDIX A

Entropy in Terms of the Single-Particle Density Matrix
In terms of its many-electron density matrix operator, ρ, the
entropy of a system is given by:

ρ ρ= − [ ]S k Tr ln( )B (A.1)

For a system of noninteracting electrons, Wick’s theorem
implies that ρ can be written as an exponential of a free
Fermion operator50:

ρ = β− ̂Ke A (A.2)

Figure 10. Normalized “dot entropy” change rate plotted against εd
for εḋ = 0.5 (blue) and εḋ = 0.1 (red). Solid lines represent the
normalized dot-projected entropy of eq 75. Dashed lines correspond
to the information (binary) entropy associated with the dot state,
calculated via eq 73. The analytical WBL expression (eq 39) is
displayed by the dashed black line, and is the same as in Figure 9.
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where K is a scalar, β = (kBT)
−1, kB is Boltzmann’s constant,

T is the temperature, and the many-electron operator Â is
given by:

∑̂ = †A c cA
i j

ij i j
, (A.3)

Here, ci
† and ci are the single-electron creation and

annihilation operators in a general (not necessarily diagonal)
representation of the matrix A formed from the coefficients
Aij, where it should be noted that the matrix A is not the
matrix representation of the operator Â in the basis of its
eigenstates.
Using eqs A.1−A.3, the entropy can thus be written as:

ρβ= − [ − ̂ ]AS k Kln( ) Tr( )B (A.4)

where we have used the fact that tr(ρ) = 1. In order to write
eq A.4 in terms of the single-electron density matrix, σ one
needs to find an expression for the prefactor K and a relation
between the matrices A and σ.
We start by finding an explicit expression for the pre-factor

K. To this end, we consider the unitary transformation matrix
T that diagonalizes A. T is constructed from the column
eigenvectors of the matrix A, which we denote by {ϕk}.
Given T, we can transform the Fermion operators according
to:

̃ = ̃ =† † −c a T a T c; 1 (A.5)

where c†̃ denotes a row vector of creation operators, ci
†, given

in the general representation of the matrix A, ã† denotes a
row vector of creation operators, ai

†, given in its eigenbasis
representation, and c and a are column vectors of the
corresponding annihilation operators. The elements of the
matrix A itself can be written in terms of its eigenvalues, εk,
and eigenvectors as follows:

∑ ε ϕ ϕ= *Aij
k

k ik jk
(A.6)

where ϕik is the ith element of the column vector ϕk.
We can write eq A.2 in the diagonal representation as

follows:

∏ρ = =β ε βε− ∑

=

−† †
K Ke ea a a a

k

M

1

k k k k k k k

(A.7)

where M is the number of states and we have used the fact
that all of the operators in the exponents are commutable to
write the corresponding Kronecker product.
The prefactor K can now be found from the condition

Tr(ρ) = 1 by using the fact that the trace of a Kronecker
product of two matrices is the multiplication of the traces of
the individual matrices and that for spinless Fermionic

systems = +βε βε− −†
Tr(e ) 1 ea ak k k k, where the two terms on

the right-hand-side stand for the unoccupied and occupied
kth eigenstate, respectively. The resulting expression is:

∏= + βε

=

− −K (1 e )
k

M

1

1k

(A.8)

Next, to find a relation between A and σ we show that the
two matrices share the same eigenbasis. The elements of the
single-electron density matrix are given by the expectation
value of the correlation function of the Fermionic operators.

This relates the single- and many-electron density matrices as
follows:

ρσ = ⟨ ⟩ =† †c c c cTr( )ji i j i j (A.9)

Substituting eqs A.7−A.9 yields:
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Using eq A.8 for K and writing the exponent as a
Kronecker product we get:
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where we have used the fact that the trace over the product
an
†am vanishes unless n = m. Taking explicitly the trace over
all elements k ≠ n gives:
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The remaining trace yields [ ] = +βε βε− † −†
a aTr e 0 ea a

n n
n n n n,

where the null and exponent on the right-hand-side stand for
the unoccupied and occupied n states, respectively. The
resulting expression for the elements of the single-electron
density matrix therefore is:

∑ ∑σ ϕ ϕ ϕ ϕ= *
+

=
+

*
βε

βε βε

−

−
e

1 e
1

e 1ji
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Comparing eqs A.6 and A.13 we find that σ and A share
the same eigenbasis, where their diagonal representations are:

δ ε σ δ= =
+βεA ;

1
e 1ij ij i ij ij

i (A.14)

These can be used to obtain an expression for the
remaining trace appearing in eq A.4 for the entropy:
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Calculating the last trace in the diagonal basis of A and σ
yields:

∑ ∑ρ δ ε δ
ε̂ =

+
=

+βε βεATr( ) ( )
1

e 1 e 1i j
ij i ij

i

i

,
i i

i
k
jjjj

y
{
zzzz

(A.16)
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Substituting A.8 and A.16 into A.4 gives:

∑ βε
= + +
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Finally, writing eq A.17 in terms of the eigenvalues of the
single-electron density matrix (eq A.14), sk = (eβεk + 1)−1,
yields eq 70 of the main text:

∑= − − − +S k s s s s(1 )ln(1 ) ln( )
k

k k k kB
(A.18)

The same procedure can be repeated for the non-
equilibrium situation, leading to the observation that as
long as ρ has the functional form of eq A.2, the entropy will
be given by the form A.18, where sk are the instantaneous
eigenvalues of the (generally time-dependent) single-electron
density matrix.

■ APPENDIX B

Proof That ⟨d|{σ,V}|d⟩ = ∑l⟨l|{σ,V}|l⟩
The expectation value of the total electronic energy of the
entire (dot-lead) system is given by

σ= HE tr( )sys (B.1)

We symmetrize this expression to ensure that all partial
traces remain real-valued and write is as a sum of the dot
(Ed) and lead (EL) components

σ σ σ σ
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where we have used the cyclic property of the full trace

operator and defined:

∑

σ σ

σ σ

≡ ⟨ | + | ⟩

≡ ⟨ | + | ⟩

H H

H H

E d d

E l l

1
2
1
2 l

d

L

l

m

ooooooo

n

ooooooo (B.3)

We can divide the Hamiltonian into its diagonal H0 and

off-diagonal V components:
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where the former represents the isolated dot and lead

eigenstates, and the latter represents their mutual coupling,

whose matrix elements are assumed to be real for simplicity.
We may now write Ed as:
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Using the orthogonality of the different states, the first

term on the right-hand-side of eq B.5 yields eq B.6 and the

second yields eq B.7:
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Therefore, we may write:
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Similarly, EL can be written as:
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Using, again, the orthogonality of the different states, the

first term on the right hand side of eq B.9 yields eq B.10 and

the second yields eq B.11:
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Therefore, we may write:
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Comparing eqs B.7 and B.11, we can see that trL(σV + Vσ)
= trd(σV + Vσ). Furthermore, from eqs B.8 and B.12, it
becomes clear that the coupling contribution equally splits
between the dot and lead energy terms.
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Approach to Strongly Coupled Quantum Thermodynamics: Inside-
Outside Duality of Entropy Evolution. Phys. Rev. Lett. 2018, 120,
107701.
(46) Esposito, M.; Lindenberg, K.; Van den Broeck, C. Entropy
Production as Correlation between System and Reservoir. New J.
Phys. 2010, 12, 013013.
(47) Ingarden, R. S. Quantum Information Theory. Rep. Math.
Phys. 1976, 10, 43−72.
(48) Ben-Naim, A. A Farewell to Entropy; World Scientific, 2008.
(49) Lent, C. S. Quantum Operator Entropies under Unitary
Evolution. Phys. Rev. E. 2019, 100, 012101.
(50) Peschel, I. Calculation of Reduced Density Matrices from
Correlation Functions. J. Phys. A: Math. Gen. 2003, 36, L205−L208.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.9b00999
J. Chem. Theory Comput. 2020, 16, 1232−1248

1248

http://dx.doi.org/10.1021/acs.jctc.9b00999

