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ABSTRACT: A method for simulating electronic transport through molecular
junctions subjected to time-dependent external magnetic fields is developed.
The method constitutes a merge of the magnetic extended Hückel theory and
the driven Liouville von Neumann approach. The former accounts for orbital
magnetic effects in molecular systems whereas the latter enables simulating
electron dynamics in open quantum systems within single-particle treatments.
The method is demonstrated on simplistic model systems of Aharonov−Bohm
molecular interferometers consisting of hydrogen rings connected to two
hydrogen chain leads. Depending on the angular separation between the leads
and the value of the magnetic flux, the current flowing through the system can
be switched-on or -off by the application of the external field. During the
transient dynamics period, whose extent depends on the nature and strength of
the coupling between the ring and the leads, the system exhibits oscillatory
currents before reaching the new steady-state. Visualizing the electron density
variations in the transient period reveals that dynamic interference effects dictate the transport characteristics of the system. These
results demonstrate the capabilities of the developed methodology to study fundamental transport mechanisms of complex
molecular junctions subjected to time-dependent external magnetic fields. This, in turn, may lead to the rational design of molecular
switches with controllable operational frequencies.

■ INTRODUCTION
The field of molecular electronics1−6 provides important
fundamental insights on the physics of low-dimensional systems
embedded in complex environments and subjected to external
perturbations. Furthermore, it holds great promise for the
miniaturization of electronic devices, beyond the classical limits
of silicon technology.7 Typical realizations of molecular
electronics devices include a single molecule (or a molecular
monolayer) coupled to particle and heat reservoirs via metallic
leads. The system can then be driven out of equilibrium by
applying a voltage and/or thermal bias between the reservoirs.
To control the electronic transport through the molecule,
various schemes have been suggested, including: (i) modifying
the chemical structure of the active molecule;8−14 (ii) varying its
coupling to the leads;15−18 (iii) applying gate potentials;19−22

and (iv) introducing electromagnetic fields.23−25 These may
lead to diverse functionalities, such as conductance switch-
ing,26−29 current routing,30 rectification,31−34 heat pump-
ing,35−37 and single-molecule magnetoresistance.38

One of the intriguing aspects of molecular junctions is that
their dimensions are typically comparable or smaller than the
coherence length of the transporting electrons. This allows the
utilization of interference effects for the design and control of
unique behaviors.23,39−49 A natural platform to realize such
effects are molecular rings, where current can flow through
multiple paths and interfere (constructively or destructively)

before exiting the system. Such rings are prone to the effect of
magnetic fields via the Aharonov−Bohm (AB) effect,50−55

where the phase of clockwise and counterclockwise propagating
electrons is oppositely affected. In this respect, much work has
been done to study the conditions required to achieve magnetic
control over molecular junctions. In particular, it was shown
that, despite the unfeasibly large magnetic fields required to
achieve a full AB interference cycle in molecular rings, in the
weak molecule−lead coupling regime conductance can be
switched with experimentally accessible field intensities.40,55−59

Notably, these studies focused on steady-state conditions,
where the current flowing through the system is time-
independent. Nevertheless, in recent years much attention has
been given to dynamical effects in molecular junctions.60−65

Such temporal effects are important as they dictate the transient
dynamics of the proposed devices, their response time to
external control parameters, and their behavior under time-
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varying perturbations such as alternating current and/or
electromagnetic pulses that can lead to novel functionalities.
The purpose of the present paper is to present a methodology

for the simulation of electron dynamics in molecular junctions
subject to (generally time-dependent) magnetic fields. To this
end, we merge the recently developed driven Liouville von
Neumann (DLvN)17,66−69 approach for simulating electron
dynamics in open quantum systems with the magnetic extended
Hückel theory (MEHT)57,59 for studying the AB effect in
molecular rings. This allows us to investigate dynamical aspects
of coherence and interference effects and to demonstrate
switching functionality inmolecular junctions subject to external
magnetic fields. We further investigate the leads−ring coupling
effect on the response of the current flowing through the system
to the switch-on of the magnetic field. When the distance
between the ring and the leads is increased, a resonant tunneling
junction is formed, where a nearly degenerate pair of sharp ring
levels participate in the transport process.17,70 This allows us to
achieve dynamical current switching at feasible magnetic flux
values.56,59

■ METHODOLOGY
System Partitioning. As mentioned above, our tool-of-

choice for performing time-dependent simulations of electron
dynamics in open quantum systems is the driven Liouville von
Neumann approach.17,66−69 Within this approach, nonequili-
brium boundary conditions are imposed at the edges of
noninteracting fully atomistic finite molecular junction models,
effectively coupling them to implicit Fermionic reservoirs of
different chemical potentials and electronic temperatures. To
this end, the system is artificially partitioned into three sections
(for a two-lead setup) including the left lead (L), the right lead
(R), and an (extended-) molecule (EM). The latter includes the
active molecule dressed by its adjacent lead parts, chosen to be
sufficiently large to converge the electronic properties of the
whole section with respect to their size to within a required
accuracy. This buffers the molecule from the direct effect of the
applied boundary conditions, as described below. The resulting
single-particle Hamiltonian and overlap matrices, given in a
localized basis-set representation, have the following general
block form:
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where HL, HEM, HR and SL, SEM, SR are the left lead, extended
molecule, and right lead Hamiltonian and overlap matrix
representations, respectively. Vn,m, Sn,m (n ≠ m; n,m = L, EM,
R) are the inter-section coupling and overlapmatrices, where the
direct coupling and overlap between the two leads are neglected.
Magnetic Extended Hückel Theory. For our Hamiltonian

operator we use the MEHT57,59 that incorporates magnetic
terms within the extended Hückel (EH) Hamiltonian. In the
latter a Slater-type orbitals (STO) basis-set is used for the
construction of the overlap matrix and the Hamiltonian off

diagonal elements are given by =
+

H K Sij
H H

ij2
ii jj , whereK = 1.75

is a fitting parameter, Sij is the overlap between atomic centers i
and j and Hii are the Hamiltonian diagonal elements
approximated as the ionization potential of atomic center i.
We note that the overlap matrix elements between basis

functions residing on different atomic sites decays with
increasing interatomic distance. Hence, the coupling between
the ring and the leads can be controlled by varying the relative
position of the leads and the ring. HEH is then augmented by
linear and quadratic magnetic terms as follows:
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Here, Bx is a uniform magnetic field applied (without loss of
generality) along the x direction, q = |e| and me are the electron
charge and mass, respectively, μB = qℏ/2me is the Bohr
magneton, and ℏ = h/2π is the reduced Plank constant (for a full
derivation of this expression, see ref 59).We note that within this
model, only orbital magnetic interactions are taken into account
and Zeeman spin splitting, as well as spin−orbit coupling effects,
are neglected. Each of the STOs is multiplied by an appropriate

gauge factor of the form =α
− ℏ −α α)G e iq B z y y z( /2 ( )x , with yα and zα

being the y and z coordinates of nucleus α, around which the
STO basis-function is centered.59 This forms a gauge invariant
(GI) STO basis-set32,33 such that the effect of the finite size of
the basis-set on the calculated magnetic phase is compensated.
To simplify the Hamiltonian and overlap matrix elements
calculation, we adopt the London approximation,71,72 where for
each pair of STO centers Rα and Rβ, the gauge factors are taken
outside the real-space integration and are evaluated at their
midpoint, +α βR R( )1

2
(for details see ref 59). The resulting

matrix elements are given by:

̅ ≈ [ ̃ + ̃ ] ̅ ≈ ̃α β α β αβ β α βα α β α β αβH H G H G S S G
1
2

;1 ,2 1 ,2 1 ,2 1 ,2 1 ,2

(3)

where H1α,2β and S1α,2β are the gauge variant EH Hamiltonian
and overlap matrix elements, respectively, of basis functions 1
and 2 centered around atomic positions α and β, and

̃ =αβ
ℏ −α β α βG e iq B z y y z( /2 ) ( )x .

Driven Liouville von Neumann Approach. Since the
MEHT utilizes a nonorthogonal basis-set, a primary block-
diagonalization procedure is required to ensure that the DLvN
boundary conditions are applied at the far edges of the systems
and do not directly interfere with the dynamics of the extended
molecule region.68,73 To this end, the localized STO basis-
functions of the EM section are recast in a form that is mutually
orthogonal to those of the lead sections. The transformation
matrix to the block diagonal basis has the following form:
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where IL, IR, and IEM are the unit matrices of the dimensions of
the left and right leads and the EM, respectively. The
corresponding Hamiltonian and overlap matrices in the block
diagonal basis are then given by ̃ = †H U HUb b and ̃ = †S U SUb b.

74

In order to apply appropriate boundary conditions, a site-to-
state transformation is further invoked, moving to a
representation, where the leads eigenstates are coupled to the
eigenstates of the EM section. The corresponding unitary
transformation matrix has the following block form:66,68
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where Un (n = L, EM, R) are the unitary diagonalizing
transformation matrices of the individual sections with

appropriate dimensions, such that
≈ = ̃†H U H Un n n n are diagonal

matrices, holding the nth section eigenvalues on their main

diagonal, and
≈

= ̃ =†S U S U In n n n n.
In this so-called “state representation”, the DLvN equation of

motion has the following form:66,68
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where ρ≈ is the state-representation of the single-particle density
matrix. The first term on the right-hand side of eq 6 represents
the unitary dynamics of the closed system, whereas the second
term imposes the boundary conditions on the lead sections. This
is done by constantly driving their occupations toward the
equilibrium Fermi−Dirac distribution (appearing on the main

diagonal of the diagonal target density matrix blocks, ρ≈L R/

0
) of

the particle reservoir to which they are implicitly coupled.68

Correspondingly, their coherences are dampened at the same
rate, Γ, which can be extracted from the electronic properties of
the implicit reservoirs.69

Driving Rate. For simplicity, in the present study we set the
value of ℏΓ to be in the order of the largest lead interlevel
spacing within the Fermi transport window (explicit values are
provided in the Results andDiscussion section below).75−81 The
validity of this choice is tested by verifying that the density of
states of the semi-infinite lead is well represented (within the
transport window) by the density of states of the corresponding
finite lead model calculated with Lorentzian level broadening of
width ℏΓ (see Supporting Information, section 1). We further
verify that our transport results are sufficiently insensitive to the
specific choice of the driving rate in this regime (see Supporting
Information, section 1).

Initial Conditions. In the simulations presented below, we
start at steady-state in the absence of a magnetic field and follow
the transient response of the studied systems upon an abrupt
switch-on of the field. The initial steady-state density matrix can

be obtained by setting =ρ≈ 0
t

d
d

in eq 6, resulting in the following

Sylvester equation (see Appendix A for a detailed deriva-
tion):75,79,81
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are the projection matrices onto the left and right lead states,
respectively, the target density matrix is given by

Figure 1. Steady-state current (obtained under a bias voltage of 1 V) vs the normalizedmagnetic flux threading an extendedHückel 52 hydrogen ring of
diameter of 1.66 nm that is strongly coupled to 300 hydrogen atom chain leads arranged at angular separations of 180° and 104° calculated within the
DLvN (green and black curves, respectively) and NEGF (blue and red curves, respectively) approaches. The geometries of the EM sections of the two
configurations at the vicinity of the ring are presented in the insets.
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and ρ≈
sts
is the desired steady-state density matrix given in the

state-representation.
Current Calculation. Both the steady-state current and the

time-dependent current are calculated via the following
expression (for a detailed derivation see Appendix B):

∑ ∑

∑

ρ

ρ

= | |
ℏ

{[≈ ]* [≈ ] }

+ {[≈ ]* [≈ ] }

l
m
ooo
n
ooo

|
}
ooo
~
ooo

V

V

J t
e

t

t

( ) Im ( )

Im ( )

i

N

j

N

L EM j i L EM j i

j

N

EM R i j EM R i j

, , , ,

, , , ,

EM L

R

(10)

Here, the first term on the right-hand side represent the
current flowing into the extended molecule section from the left
lead and the second term represent the corresponding current
exiting the extended molecule section into the right lead. Their
average is defined as the total current flowing through the
extended molecule section. To evaluate the steady state current,

the density matrix obtained from the solution of eq 7, ρ≈
sts
, is

inserted in eq 10, whereas for the time-dependent currents the
instantaneous density matrix obtained from propagating eq 6 is
used.

■ RESULTS AND DISCUSSION
To demonstrate the performance of the developedmethodology
we consider a simplistic model of a molecular ring of diameter
1.66 nm consisting of 52 hydrogen atoms (see the insets of
Figure 1). The ring, along with two 300 atoms long linear
hydrogen chains, constitutes the extended molecule section.
The interatomic separation within the ring and within the chains
are taken to be 1 Å. The extended molecule is coupled at the far
edge of the two atomic chains to 2500 atoms hydrogen chain
lead sections (see Supporting Information, section 2 for
convergence tests with respect to this parameter), where the
last atom in the EM chain is 1 Å distant from the first atom in the
corresponding lead. In all calculations the electronic temper-
ature was set to 300 K, a 1 V bias voltage was applied, and a
driving rate of Γ = 0.05 fs−1 was used (see Supporting
Information, section 1). The EH parameters that were used in
the construction of the Hamiltonian and overlap matrices of the
Hydrogen systems are IP =−13.6 eV for the ionization potential
and ζ = 1.3 au for the STO exponent.82 The propagation of eq 6
has been performed using a fifth order Runge−Kutta adaptive
time-step scheme,83 where the initial time-step was set to 0.01 fs.
For computational efficiency, a bandwidth cutoff has been
employed in all calculations, where only a subset of the system’s
energy levels is considered. Within this procedure, energy levels
that reside well beyond the Fermi-transport window are being
excluded, with cutoff size of |Vb + 2W| around the Fermi energy
of the entire finite model system. We use a value of W = 5 eV,
which provides reasonably converged currents (convergence
tests are provided in Supporting Information section 3).
We first consider two configurations in the strong coupling

regime, where all interatomic distances are uniformly taken to be
1 Å, with two lead angular separations of 180° and 104° as

shown in Figure 1. The full AB transport periods of the two
systems are presented in Figure 1, where the steady-state
currents are plotted against the normalized magnetic flux
threading the rings’ cross sections. For the circle radius
considered herein, a full AB cycle is obtained at a magnetic
field of

ϕ
= =B

S
T19220

where

ϕ = ≈ × −h
q

4.1357 10 Wb0
15

is the magnetic flux quantum of the electrons. For the 180°
connected system (green curve), the zero magnetic field current
is high, due to constructive interference.56 Upon the application
of a magnetic field, the current reduces such that at half the AB
period it is completely suppressed. Further increase of the
magnetic field intensity results in current increase until full
recovery is obtained at the full AB period. As for the 104° system
(black curve), the steady-state current behavior with increasing
magnetic fields is also periodic with ϕ0 and symmetric around
ϕ/ϕ0 = 0.5. However, the steady state current in the absence of
an external magnetic field is lower than the corresponding
steady-state current of its 180° counterpart due to destructive
interference that occurs in this configuration.23,39,40 Applying a
magnetic field results in an initial increase of the current until a
maximum is reached at ϕ/ϕ0 ≈ 0.25. Further increase of the
magnetic flux leads to a local minimum in the current obtained at
ϕ/ϕ0 = 0.5 and the half-cycle repeats symmetrically up to the full
AB period of ϕ = ϕ0.
To verify the validity of our DLvN steady-state calculations,

we compare the obtained results to the corresponding Landauer
currents calculated within the nonequilibrium Green’s function
(NEGF) formalism with the MEHT Hamiltonian (see
Appendix C for further details regarding the NEGF
calculations). As can be seen, the NEGF results match well
the DLvN calculations for both the 104° (red curve) and 180°
(blue curve) connected systems with less than 5% maximal
deviation at the peak regions.
As previously demonstrated, the behavior described above for

the AB periods of the two model systems can be used to design
molecular switching devices, where the external magnetic field
threading the rings controls the current flowing through
them.23,30,40,55−59 These studies, however, focused on inves-
tigating the steady-state properties of such AB switches using
Landauer’s transport formalism combined with NEGF techni-
ques to evaluate the transmittance probability of electrons
through the system, as shown above. Notably, one of the most
important properties of any switching device is its response time
to the external control, which will dictate its operation
frequency. The developed MEHT-DLvN methodology de-
scribed herein allows the study of the intrinsic dynamical
response of the system to the magnetic field control.
To demonstrate this, we performed electron dynamics

simulations, where the system is initially prepared in a steady-
state with no magnetic field, and analyze the transient dynamics
of the system following an abrupt application of the magnetic
field. This allows us to assess not only the response time required
for the adjustment of the system to the new external conditions,
but also the unique features appearing in the transient dynamics
prior to settling into the new steady-state. In Figure 2a, we
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present the current dynamics for the 180° strongly coupled
system. As discussed above, with our specific choice of MEHT
parameters82 in the absence of a magnetic field, a steady-state
on-current of 4.9 × 10−2 mA (red × mark) flows through the
hydrogen ring. Upon the application of a magnetic flux of ϕ =
0.5ϕ0 at time t = 0 fs strong current oscillations occur that can
surpass the original steady-state current. These oscillations
gradually decay toward the new steady-state ∼50 fs after the
application of the magnetic field, yielding an off-current of 2.0 ×
10−5 mA (blue × mark). This exemplifies a ∼50 fs switch-off
time of the AB device with an on−off ratio of ∼2460. We note
here that the typical response time of the system (ring) to the
application of the magnetic field is ∼2.5 times that of the leads
driving time toward their respective equilibrium states (Γ−1 = 20
fs) that is set by the density of lead states. In section 1 of the
Supporting Information, we demonstrate that this ratio provides
sufficiently converged dynamics.76−78

When plotting the electron density variations during the
switch dynamics, we observe an immediate increase in the
electron density on the ring. This persists throughout the
dynamics until the new steady-state is achieved. At steady-state,
we also observe electron density accumulation (depletion) at the
lead section coupled to the source (drain). The fact that most of
the density variations occur immediately after switching-on the
field with minor variations throughout the rest of the dynamics
toward the new steady-state indicates that the destructive
interference responsible for the current suppression results only
from the electron phase-shift between the two ring arms and is
not reflected in the overall density variations.
The corresponding results for the 104° strongly coupled ring

are presented in Figure 2b. Starting from a steady-state current
of 4.7 × 10−3 mA (red × mark) in the absence of the magnetic
field, when the field is switched on to provide a magnetic flux of
ϕ ≈ 0.2ϕ0, strong current oscillations occur that are similar in
nature to those observed for the 180° strongly coupled ring.
Here, as well, the oscillations almost completely dampen after
∼70 fs (see section 1 of the Supporting Information for a
discussion on the relation between the system relaxation time-
scales and the leads driving time-scales toward their respective
equilibrium states) when the system reaches a new steady-state

with an increased current of 5.3 × 10−2 mA (blue ×mark). This
demonstrates a 70 fs switch-on time of the AB device with an
on−off ratio of ∼11. The electron density variations on the ring
upon field switch-on in this case are negligible compared to
those obtained for the 180° connected ring. As mentioned
above, this indicates that interference effects, rather than density
variations, are responsible for the current increase.
In the context of Aharonov−Bohm molecular interferom-

eters, the illustrative model systems introduced thus far require
unrealistically high magnetic fields (of the order of hundreds of
Tesla) to achieve substantial current switching. Higher device
sensitivity can, however, be accomplished by increasing the
cross-section of the molecular ring and/or by decreasing its
coupling to the metallic leads.23,30,40,55−59 To that end, we
repeat the calculations presented above for the 52 atoms ring,
now weakly coupled to two 2500 hydrogen atoms lead chains
(see Supporting Information section 2 for convergence tests
with respect to the lead model size) arranged at the 104°
configuration (see the inset of Figure 3). To achieve weak ring-
leads coupling we set the shortest distance between the ring and
the lead atom closest to it to be 2.25 Å and leave all other
interatomic distances at 1 Å. We note that contrary to the case of
strongly coupled systems, where direct coupling of the ring to
the driven lead sections should be avoided, in the weak-coupling
limit the bare ring can be connected directly to the driven lead
sections (without EM lead buffer regions). This allows us to
eliminate unphysical features associated with the discrete nature
of the extended molecule lead sections spectrum with minor
effect on the calculated current profiles (see Supporting
Information, section 4 for a detailed discussion of this issue).
Figure 3 shows the resulting steady-state currents flowing

through the ring as a function of the normalized magnetic flux
threading its cross section (black line). A sharp increase of the
current from 2.0 × 10−5 to 1.2 × 10−3 mA followed by a plateau

characterizes the low-field region of the AB period <ϕ
ϕ( )0.25

0
.

Further increasing the magnetic flux threading the ring results in

a significant current drop nearly to its field-free value at =ϕ
ϕ

0.5
0

.

The sharp increase at low fields can be attributed to the narrow

Figure 2. Current switching dynamics (obtained under a bias voltage of 1 V) in the (a) 180° and (b) 104° strongly coupled AB hydrogen rings due to
the application of magnetic fluxes corresponding to ϕ = 0.5ϕ0 and ϕ ≈ 0.2ϕ0, respectively. Snapshots of the variations in the electron density (with
respect to the field-free steady-state density) during the transient dynamics region are shown in the insets of panel (a) at time frames of 0.01, 13, and 52
fs after switching on the magnetic-field. The isovalue used for the density differences plots is ±4.72 × 10−3 au. Steady-state current values obtained
using the Sylvester equation in the absence and presence of the magnetic field are marked by the red and blue × marks, respectively.
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resonances formed on the ring at the weak coupling limit that are
shifted into the Fermi transport window by the magnetic-
field.55−57,59 Once inside the window, further increase of the
magnetic field merely varies the resonance position within the
window with little effect on the overall current until the level is
shifted outside the Fermi window and the current drops. To
further substantiate our DLvN results for the weakly coupled
104° connected ring, we repeated the steady-state calculations
using NEGF (see red line in Figure 3). Overall, the agreement
between the two calculations is quite good, with excellent
correspondence at the low flux regime and somewhat narrower
features in the NEGF calculation at the current drop region
around ϕ/ϕ0 = 0.3. Even better agreement can be obtained
when increasing the size of the lead models in the DLvN
calculations (see Supporting Information, section 1). Since in
the present study we focus on the low-field switch-on region, we
opt to use the 2500 hydrogen atom leads.
These results suggest that at the low coupling limit we should

be able to switch the current of the weakly coupled 104° ring
using a very low magnetic flux. To demonstrate the
corresponding switching dynamics we prepared the system at
steady-state in the absence of a magnetic field and followed the
current dynamics after switching-on of a magnetic flux of ϕ =
0.005ϕ0. As shown in Figure 4, in the absence of a magnetic field,
a steady-state current of 1.7 × 10−5 mA (red × mark) flows
through the hydrogen ring for an applied bias voltage of 1 V.
Upon the application of the magnetic flux (time t = 0 fs) strong
short-lasting (∼14 fs) current oscillations occur, followed by
milder oscillations that slowly relax toward the new steady-state
current of 1.1 × 10−3 mA (blue × mark) over a time-scale of
∼500 fs (see section 1 in the Supporting Information for a
discussion on the relation between the system relaxation time-
scales and the leads driving time scales toward their respective
equilibrium states). The corresponding on−off ratio is ∼65.
Notably, for the diameter of the considered hydrogen ring, the
magnetic flux used herein corresponds to a switch-on magnetic
field of 9.61 T for the weekly coupled system, which is
considerably lower than the value of 384 T required to switch
the current in the corresponding strongly coupled system.

■ SUMMARY AND CONCLUSIONS

The results presented above demonstrate the capabilities of the
MEHT-DLvN methodology for simulating nonequilibrium
electron dynamics in open quantum systems subjected to
external varying magnetic fields. For strongly coupled molecular
interferometers, unrealistically high magnetic fields are required
to induce noticeable dynamics in the system. Increasing the
sensitivity of the molecular device can be achieved by
considering weakly coupled molecular rings. This allows us to
develop molecular switches operating at feasible magnetic fields
with dynamic time scales of the order of 500 fs. Since standard
available technologies for magnetic field switching are typically
slower than this value, our results indicate that the limiting factor
of such a device would be the magnetic field control rather than
the intrinsic response time of the system.84 The developed
method is not limited to the spinless extended Hückel electronic
structure treatment used above and can be generalized to treat
spin magnetic moment effects90 and applied with any single-
particle electronic structure treatment, such as time-dependent
density functional theory.85 Furthermore, the simplistic model
systems considered herein were chosen to provide proof-of-
concept demonstrations of the switching dynamics. Calculations
on more realistic systems such as carbon nanotube junctions,
which may exhibit different switching times and dynamics, the
inclusion of a gate electrode, and implementations based on
first-principles electronic structure treatments are currently
being pursued.

■ APPENDIX A: DERIVATION OF THE SYLVESTER
EQUATION FOR THE STEADY-STATE DENSITY
MATRIX

The driven Liouville von Neumann equation of motion for a
system consisting of an extended molecule section (EM), a left
lead (L), and a right lead (R) that are not necessarily identical is
given by the following block form:66

Figure 3. Steady-state current (obtained under a bias voltage of 1 V) vs
the normalized magnetic flux threading an extended Hückel 52
hydrogen ring of diameter 1.66 nm that is weakly coupled to 2500
hydrogen atom chain leads arranged at angular separations of 104°
calculated within the DLvN (black) andNEGF (red) models. Inset: the
geometry of the molecular ring with the adjacent edges of the two lead
models coupled to it. In the DLvN calculations a value of Γ = 0.05 fs−1

was used.

Figure 4.Current switching dynamics (obtained under a bias voltage of
1 V) in the 104° weakly coupled AB hydrogen rings due to the
application of a magnetic flux corresponding to ϕ = 0.005ϕ0. Steady-
state current values obtained using the Sylvester equation in the absence
and presence of the magnetic field are marked by the red and blue ×
marks, respectively.
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where
≈
H and ρ≈ are the single particle Hamiltonian and density

matrices of the entire system, respectively, given in the state

representation,66 ρ≈n m, (n,m = L, EM, R) are the corresponding

density matrix blocks, and γL and γR are the rates, at which the
left and right leads are driven toward the equilibrium states of the
baths to which they are implicitly coupled, respectively. By
expanding the right-hand side of eq A1 we obtain the following
equation:
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We may now define three projection matrices as
follows:75,79,81
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and rewrite eq A2 as
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where Γ = γL + γR and
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relation L +M + R = I, I being the identity matrix of dimensions
of the entire model system, eq A4 yields
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When the left and right lead models are identical, their driving

rates are taken to be identical, such that γ γ= = Γ
L R 2

and eq A5

becomes
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Defining
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, eq A6 can be rewritten as
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At steady-state the density matrix remains constant. There-

fore, =ρ≈ 0
t

d
d

and we obtain

ρ ρ≈ + ≈ =A B C
sts sts

(A8)

which is the Sylvester equation (eq 7 in the main text), whose

solution gives the steady-state density matrix, ρ≈
sts
.

■ APPENDIX B. CURRENT EXPRESSION DERIVATION

To obtain an expression for the total current flowing through the
systemwe start from eq 6 of themain text for the driven Liouville
von Neumann equation of motion in the state-representation:66
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The propagation of the extended molecule block can be
extracted from eq B1 to yield:

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://dx.doi.org/10.1021/acs.jpcc.0c01706
J. Phys. Chem. C 2020, 124, 8652−8662

8658

pubs.acs.org/JPCC?ref=pdf
https://dx.doi.org/10.1021/acs.jpcc.0c01706?ref=pdf


ρ ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ

≈ = −
ℏ

[ ≈ ≈ + ≈ ≈ + ≈ ≈

− ≈ ≈ + ≈ ≈ + ≈ ≈ ]

= −
ℏ

[≈ ≈ ] −
ℏ

≈ ≈ − ≈ ≈

−
ℏ

≈ ≈ − ≈ ≈

V H V

V H V

H V V

V V

t
i

i i

i

d
d

( )

( )

, ( )

( )

EM EM L L EM EM EM EM R R EM

EM L L EM EM EM EM R R EM

EM EM EM L L EM EM L L EM

EM R R EM EM R R EM

, , , ,

, , , ,

, , , ,

, , , , (B2)

The instantaneous number of electrons in the EM section is

given by the trace of ρ≈EM , and its temporal variation is given by
the corresponding time-derivative of the trace:
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The first term on the right-hand-side of eq B3 vanishes due to
the cyclic property of the trace operator. The second and third
terms can be simplified as follows:
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Here, the third transition is based on the Hermiticity of
≈
Vn m, and ρ≈n m, , where their matrix elements satisfy the relations

[≈ ] = [≈ ]*V Vn m i j m n j i, , , , and ρ ρ[≈ ] = [≈ ]*n m i j m n j i, , , , . Substituting eq B4 in

eq B3 we obtain:
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The term ρ≡ ∑ ∑ {[≈ ]* [≈ ] }ℏ VJ t t( ) Im ( )L i
N

j
N

L EM j i L EM j i
2

, , , ,
EM L can

be identified as the particle influx from the left lead into the
extended molecule section, whereas the term

∑ ∑ ρ≡
ℏ
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is the particles out-flux from the extended molecule section into
the right lead. The total electronic current flowing through the
system can be defined as the average of JL and JR times the
electron charge. Adopting the standard definition of the current
direction this gives eq 10 of the main text:
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■ APPENDIX C: DESCRIPTION OF THE LANDAUER
CURRENT CALCULATIONS USING THE NEGF
FORMALISM

In order to validate the MEHT-DLvN model, the steady-state
results calculated by solving eq 7 (derived in Appendix A) were
benchmarked against the standard Landauer current evalua-
tion86 within the non-equilibrium Green function (NEGF)
framework that has been previously used to calculate transport
properties of Aharonov−Bohm molecular interferometers
subjected to external magnetic fields.57,59 The Landauer current
is given by

∫ μ μ= [ − ]J
e

h
N E f E T f E T E

2
( ) ( ; , ) ( ; , ) dL L R R (C1)

where f(E; μ, T) is the Fermi−Dirac distribution given as a
function of the leads’ electronic temperature T, chemical
potential μ, and energy E, and N(E) is the transmittance
probability of an electron to go through the system, which in the
NEGF formalism has the following trace form:

ε ε ε ε εΓ Γ= [ ]N G G( ) Tr ( ) ( ) ( ) ( )L EM
r

R EM
a

(C2)

Here, εG ( )EM
r a( ) is the retarded (advanced) Green function

matrix representations of the device (extended molecule), and
εΓ̂ ( )L R/ are the broadening matrices due to the coupling of the

device to the leads. To avoid numerical singularities in the
calculation of the various GFs, we augment the real energy with a
small imaginary part, E → ε ≡ E + iη, such that the
corresponding GF poles are shifted away from the real axis.
Both the device GF and the broadening matrices depend on

the retarded (advanced) self-energy matrix εΣ ( )L R
r a

/
( ) in the

following manner:
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and:

ε ε εΓ Σ Σ= [ − ]i( ) ( ) ( )L R L R
r

L R
a

/ / / (C4)
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where ε ε= [ − ]−G S H( )EM
r

EM EM
0 1 is the bare device’s retarded

GF given by its overlap S( )EM and Hamiltonian H( )EM matrices.
The self-energy operators are given by

ε ε

ε

ε

Σ Σ= [ ]

= −

−

†

ES V G

S V

( ) ( )

( ) ( )

( )

L R
r

L R
a

EM L R EM L R L R
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L R EM L R EM

/ /

, / , / /
0

/ , / , (C5)

where VL R EM/ , and SL R EM/ , are the coupling and overlap
matrices between the EM and the leads, respectively, and

ε ε= [ − ]−G S H( )L R
r

L R L R/
0

/ /
1 is the bare leads’ retarded GF.

The evaluation of the latter invokes a computational challenge as
the leads are treated as (semi)infinite. To that end, we adopt the
iterative principal layer scheme originally developed by Sancho
et al.87−89 Here, a finite lead section, serving as a principle layer,
is repeatedly duplicated in the direction pointing away from the
device such as to extend the lead model until convergence of its
electronic properties is achieved. Since each principle layer is
identical to the rest, its appropriate intralayer (H S,L R L R/

00
/

00 ) and

interlayer ( = [ ] = [ ]† †V V S S,L R L R L R L R/
01

/
10

/
01

/
10 ) Hamiltonian and

overlapmatrices can be calculated only once, where one assumes
that the next-nearest-principal-layer coupling and overlap can be
neglected. With this the surface GF are given by

ε ε ε= [ − + − ]−G S V T S H( ) ( ) ( )L R
r

L R L R L R L R/
0

/
01

/
01

/
00

/
00 1
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where T is the transfer matrix built iteratively in the following
manner:

= + ̃ + ̃ ̃ + + ̃ ̃ ̃ ̃ −t t t t t t t t t t tT ... ... n n0 0 1 0 1 2 0 1 2 1 (C7)

Here ti, tĩ are a converging series defined recursively:
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where {A,B} =AB +BA is the anticommutator of matricesA and
B and IL/R is a unit matrix of the corresponding lead dimension. n
is determined by the expansion convergence criterion.
Upon convergence, the resulting transfer matrix can be

plugged in eq C6, which gives the semi-infinite lead’s surface GF.
Next, the self-energies, broadening matrices, and device GF are
computed according to eqs C5, C4, and C3, respectively, and the
transmittance matrix is evaluated accordingly (eq C2). The
various Hamiltonian matrix blocks used in these calculations are
representations of the Hamiltonian operator given in eq 2 of the
main text, such that the Landauer current computed via eq C1
depends on the value of the external magnetic field applied.
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