
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tmph20

Molecular Physics
An International Journal at the Interface Between Chemistry and
Physics

ISSN: 0026-8976 (Print) 1362-3028 (Online) Journal homepage: https://www.tandfonline.com/loi/tmph20

Evaluation of dynamical properties of open
quantum systems using the driven Liouville-
von Neumann approach: methodological
considerations

Inbal Oz, Oded Hod & Abraham Nitzan

To cite this article: Inbal Oz, Oded Hod & Abraham Nitzan (2019) Evaluation of
dynamical properties of open quantum systems using the driven Liouville-von Neumann
approach: methodological considerations, Molecular Physics, 117:15-16, 2083-2096, DOI:
10.1080/00268976.2019.1584338

To link to this article:  https://doi.org/10.1080/00268976.2019.1584338

Published online: 29 Mar 2019.

Submit your article to this journal 

Article views: 80

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tmph20
https://www.tandfonline.com/loi/tmph20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00268976.2019.1584338
https://doi.org/10.1080/00268976.2019.1584338
https://www.tandfonline.com/action/authorSubmission?journalCode=tmph20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tmph20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2019.1584338&domain=pdf&date_stamp=2019-03-29
http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2019.1584338&domain=pdf&date_stamp=2019-03-29


MOLECULAR PHYSICS
2019, VOL. 117, NOS. 15–16, 2083–2096
https://doi.org/10.1080/00268976.2019.1584338

NIMRODMOISEYEV

Evaluation of dynamical properties of open quantum systems using the driven
Liouville-von Neumann approach: methodological considerations

Inbal Oza,b, Oded Hoda,b and Abraham Nitzana,b,c

aDepartment of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel
Aviv, IL, Israel; bThe Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, IL, Israel; cDepartment of
Chemistry, University of Pennsylvania, Philadelphia, PA, USA

ABSTRACT
Methodological aspects of using the driven Liouville-von Neumann (DLvN) approach for simulating
dynamical properties of molecular junctions are discussed. As a model system we consider a non-
interacting resonant level uniformly coupled to a single Fermionic bath.Wedemonstrate howa finite
system can mimic the depopulation dynamics of the dot into an infinite band bath of continuous
and uniform density of states. We further show how the effects of spurious energy resolved currents,
appearing due to the approximate nature of the equilibrium state obtained in DLvN calculations,
can be avoided. Several ways to approach the wide band limit, which is often adopted in analytical
treatments, using a finite numerical model system are discussed including brute-force increase of
the lead model bandwidth as well as efficient cancellation or direct subtraction of finite-bandwidth
effect. These methodological considerations may be relevant also for other numerical schemes that
aim to study non-equilibrium thermodynamics via simulations of open quantum systems.
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1. Introduction

The study of electron dynamics and conductance in small
electronic systems coupled to one or more free-electron
reservoirs (each in its own equilibrium but not necessar-
ily at equilibrium with each other) has attracted much
attention over the past decade due to its importance
for studies in the fields of molecular electronics [1–3],
spectroscopy [4], and quantum thermodynamics [5–12].
Although substantial advances in observing and describ-
ing such processes were made in the past three decades,
the study of particle and energy transfer in processes
dominated by resonance transmission between non-
equilibrium environments remains a major experimental
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and theoretical challenge. As in other dynamical prob-
lems, computer simulations may offer a complementary
approach to purely theoretical analysis in this field.

A major challenge for modelling electronic transport
through such nanometric structures is the ability to pro-
vide an appropriate non-equilibrium description of the
entire (infinite in principle) system. This problem is often
solved by replacing the full system by a finite system with
proper account of the non-equilibrium open boundaries.
One of the most widely used approaches to address this
challenge is the extension of the Landauer formalism to
address dynamical effects by using the non-equilibrium
Green’s function method [13]. This method can provide
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analytical solutions for non-interacting models [14–16]
but it becomes computationally demanding for steady-
states of more realistic model systems as well as for
systems affected by time-dependent driving.

An alternative approach to describing electronic trans-
port in such systems is the use of numerical simula-
tions. Since simulated models are necessarily of finite
size, ways of imposing the infinite (in principle) nature
of the real system need to be devised. In vacuum scat-
tering problems this is usually achieved by using absorb-
ing boundary conditions [17]. When the environment
of the simulated system consists of metallic leads with
occupied electronic states, the numerical boundary has
to account for both electron absorption and injection.
A variety of methods, too extensive to detail herein,
have been developed for this purpose considering both
model Hamiltonians [18–29] and realistic model sys-
tems [15–16,30–41]. Among the latter, the recently pro-
posed Driven Liouville-von Neumann (DLvN) approach
[42–45], imposes the required boundary conditions by
augmenting the Liouville-von Neumann (LvN) equation
of motion with non-unitary source and sink terms. The
latter drive each lead towards an equilibrium state deter-
mined by the chemical potential and electronic temper-
ature of the implicit bath to which it is coupled [42–45].
When the driving enforces different equilibrium states on
different leads, the DLvN method was shown to provide
a reliable representation of the electronic transport prob-
lem, closely reproducing the Landauer formalism results
at steady-state [42,44]. Furthermore, it was shown that,
for non-interacting systems [46–48], the DLvN equation
of motion can be recast into Lindblad form, thus it
inherently preserves density matrix positivity [24,44,48].
Notably, within this approach, external dynamic pertur-
bations such as alternating bias voltages, varying gate
potentials, and time-dependent external fields may be
readily imposed. These can drive the system out of its
equilibrium or steady states [14] and invoke intriguing
physical phenomena that are manifested in the dynam-
ical properties of the system, beyond the scope of the
well-established equilibrium thermodynamic theory.

A simplistic model that can demonstrate such effects
is a resonant level model, where a single non-interacting
spinless state (often referred to as a quantum dot) is cou-
pled to a manifold of non-interacting spinless lead states.
Here, shifting the position of the dot level with respect
to the chemical potential of the lead states mimics the
application of an external time-dependent gate potential
on the dot. Recent analytical analysis of this model at
the wide band limit (WBL) [49–51] enabled the calcu-
lation of thermodynamic functions to first order beyond
the quasistatic (QS) limit. These were shown to fulfil the
first and second laws of thermodynamics and reproduce

the equilibrium and weak coupling results in the appro-
priate limits [5]. Such treatments, however, often rely on
perturbation theory and hence are limited to cases where
a small parameter can be identified. Specifically, in the
treatmentmentioned above, the dot level driving rate was
taken to be considerably smaller than the typical inter-
nal relaxation rate of the lead. Hence, to gain access to
dynamical regions that are beyond the reach of current
analytical treatments of this (and more complex) mod-
els, one can harness the numerical flexibility of the DLvN
approach. Nevertheless, care should be taken with the
practical implementation of the numerical simulation to
ensure that the results, necessarily obtained for a finite
leadmodel, faithfully represent the desired physical prop-
erties of an infinite environment at equilibrium. As gen-
eral guidance, some rules of thumb have been introduced
to assess the finite lead model size required to verify the
validity of the Markovian approximation adopted in the
DLvN approach [24,48]. When numerical convergence
with respect to the finite lead model size is achieved its
discrete spectrum mimics well the continuous density
of state of the corresponding (semi-)infinite bath. How-
ever, when using numerical simulations to extend analyt-
ical models towards new dynamical regimes, one should
also keep in mind that simplifying assumptions, such as
the wide band approximation (WBA), which are often
invoked in approximate analytical treatments, are not
always readily transferable to the numerical calcula-
tion. The present manuscript addresses these and related
methodological aspects of using numerical simulations
in general and, in particular, the DLvN approach to com-
plement analytical treatments in the study of particle and
heat fluxes through molecular interfaces.

2. Relaxation dynamics

To set the stage for demonstrating important method-
ological aspects of using numerical schemes to sim-
ulate non-equilibrium scenarios, we consider first the
simple relaxation dynamics of an initially occupied dot
level coupled to an empty manifold of lead levels. The
non-interacting Hamiltonian of the entire system is
given by

Ĥ(t) = Ĥd(t)+ ĤL + ĤV , (1)

where Ĥd(t) = εd(t)c
†
dcd is the Hamiltonain of the dot,

ĤL = ∑
l
εlc

†
l cl represents the lead section, and ĤV =

V̂dL + V̂Ld is the dot/lead coupling term, where V̂dL =∑
l
(Vld†cl) and V̂Ld = V̂†

dL. Here, εd(t) and εl are the

energies of the dot and lead level l, respectively, and c†
i

and ci are the creation and annihilation operators for an



MOLECULAR PHYSICS 2085

electron in level i = d, l. Note that, for the sake of sim-
plicity, we have assumed that the only time-dependence
in the Hamiltonian stems from shifts in the position of
the dot level, with no effect on the lead levels and the
lead-dot coupling terms. Naturally, within the numerical
treatment discussed below, this simplifying assumption
can be readily lifted.

2.1. Analytical solution

Under the WBA, where the manifold of lead states is
assumed to be of infinite width with a uniform and con-
tinuous density of states, ρ, this model has a fully ana-
lytical solution. Upon uniformly coupling the isolated
dot level to the manifold of lead states, its original delta-
function shape, δ(ε − εd), broadens into a Lorentzian
function of the form:

A(ε − εd;�, γ ) = 1
π

�γ /2
(ε − εd −�)2 + (�γ /2)2

. (2)

Here, � = h/(2π) is the reduced Plank’s constant,� rep-
resents the shift in the dot’s level position due to the
coupling to the lead, and�γ is the level broadening due to
its finite lifetime. The latter corresponds the leakage rate
of particles from the dot to the lead manifold as given by
Fermi’s golden rule [52]:

γ (ε) = 2π
�

∑
l

|Vl|2δ(ε − εl), (3)

which at theWBL, assuming an infinite lead band of con-
stant density of states, ρ, and uniform coupling to the dot,
Vl = V = const., can be evaluated as:

γWBA = 2π
�

∫ ∞

−∞
|Vl|2ρ(εl)δ(ε − εl)dεl

= 2π
�

|V|2ρ
∫ ∞

−∞
δ(ε − εl)dεl = 2π

�
|V|2ρ. (4)

By virtue of the Fourier transform of its Lorentzian
spectral function, the population of an initially occu-
pied dot level (ψ(t = 0) = d†|0〉) decays exponentially
with time into the empty manifold of lead levels

(Pd(t) =
∣∣∣〈ψ(t = 0)|e− i

�
Ĥt|ψ(t = 0)〉

∣∣∣2 = e−γ t) with a
characteristic decay time of 1/γ as indicated by the
dashed black line in Figure 1.

2.2. Closed system numerical treatment

The most straightforward numerical approach to simu-
late this temporal behaviour of the dot’s population is the
microcanonical scheme [16]. Here, the infinite (in princi-
ple) system is represented by a finite model consisting of

Figure 1. Dot depopulation dynamics as calculated using (i) the
analytical WBA treatment (dashed black line); (ii) microcanonical
simulations (full red line); (iii) DLvN simulations with an empty
(green) and half filled (blue) lead. System parameters are pro-
vided in the main text. Inset: Driving rate sensitivity test of
the DLvN dynamics calculated with 	= 0.2�ε/� (dashed gray),
	= 2�ε/� (green), and 	= 20�ε/� (dashed magenta).

the dot level uniformly coupled to a finite set of lead lev-
els. Two important differences between this model and
the one used for the analytical treatment above should
be noted: (i) the density of lead states is discrete, and
(ii) the band of lead states is of finite width. Neverthe-
less, we expect that when the lead manifold is sufficiently
dense and the position of the dot is far enough from
the band edges, the numerical simulation will reproduce
the short time dynamics of the analytical treatment. To
demonstrate this, we choose a finite lead model consist-
ing ofNL = 100 equispaced levels that span a bandwidth
ofW = 10�γ . The corresponding level spacing and den-
sity of states are thus given by�ε = ρ−1 = W

N = 0.1�γ ,
respectively. The dot energy, εd, is positioned at the cen-
tre of the lead’s band and is uniformly coupled to all
lead levels via a coupling constant ofV =

√
�

2π
γ
ρ

= �γ√
20π

(see Equation (4)). We note that, the choice of the spe-
cific value of γ (chosen herein such that �γ = 0.1 eV)
is arbitrary as the results presented below are scalable
with respect to it. Hence, we set all other parameters in
terms of γ and present the results in unitless format. The
dynamics of the system is simulated via the LvN equation
of motion for the single-particle density matrix of the
system, σ̂ (t):

d
dt
σ̂ (t) = − i

�
[Ĥ(t), σ̂ (t)]. (5)

In the basis of eigenstates of the dot and the lead
sections of the system the density matrix obtains the
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following block representation:

σ̂ (t) =
(
σd(t) σ̂dL(t)
σ̂Ld(t) σ̂L(t)

)
, (6)

whose elements are given by σij(t) = 〈ci(t)c†
j (t)〉. The

corresponding blockmatrix representation of the Hamil-
tonian of Equation (1) is given by:

Ĥ(t) =
(
εd(t) V̂dL
V̂Ld ĤL

)
. (7)

The initial diagonal density matrix represents a
fully populated dot (σd(t = 0) = 1) and an empty lead
(σ̂L(t = 0) = 0̂); In practice, we initially populate the
lead levels according to a Fermi–Dirac distribution,
whose chemical potential and temperature are set toμ =
−50�γ and kBT = 0.25γ , respectively). By monitoring
the diagonal element of the density matrix that corre-
sponds to the dot level we can follow its depopulation
into the lead levels. The resulting dynamics, which is rep-
resented by the red curve in Figure 1, captures well the
short-time (γ t < γ (h�ε−1) = 20π , reflecting the high-
est frequency of the lead dynamics) exponential decay
predicted by the analytical treatment. However, at longer
timescales, characteristic Poincaré recurrences occur,
reflecting the discrete nature of the quasi-continuum rep-
resentation of the lead or, equivalently, the reflection of
the scattered electron wavefunction from the far edge
of the finite lead model [39,45–46,53–55]. Therefore,
similar to previous multi-lead microcanonical transport
calculations [16,36,42], it becomes evident that, while
microcanonical simulations are not limited to the WBA,
the finite closed system model can mimic the behaviour
of its open counterpart only for times shorter than the
typical reflection time-scale.

2.3. Driven Liouville-von Neumann simulations

As mentioned above, the recently developed DLvN
approach can eliminate this limitation by expanding
the capabilities of the microcanonical approach to sim-
ulate truly open quantum systems. Similar to previ-
ous multi-lead implementations of the DLvN approach
[14,42–46,56], the LvN equation of motion for the
single-lead setup considered herein is augmented by
sink and source terms that absorb outgoing elec-
trons (thus avoiding reflections) and inject thermalised
electrons near the system boundaries, respectively, as
follows:

d
dt
σ̂ (t) = − i

�
[Ĥ(t), σ̂ (t)]

− 	

(
0 1

2 σ̂dL(t)
1
2 σ̂Ld(t) σ̂L(t)− σ̂ 0

L

)
. (8)

The last term in Equation (8) serves to drive the
lead section towards a target equilibrium state of
the form σ 0

ll′ = δll′ fFD(εl;μ,T), where fFD(εl;μ,T) =
[exp((εl − μ)/(kBT))+ 1]−1 is the Fermi–Dirac equi-
librium distribution with the chemical potential, μ, and
electronic temperature, T, of the electronic reservoir, to
which the lead section is implicitly coupled, and kB is
Boltzmann’s constant. The density matrix obtained from
Equation (8) is Hermitian, positive definite [44,48], and
normalised such that tr[σ̂ (t)] = Ntot(t), where Ntot(t) is
the instantaneous total number of electrons in the system.

The driving rate, 	, which can be extracted from
the electronic properties of the implicit reservoir [45],
represents the timescale on which thermal relaxation
takes place in the lead, and is generally assumed to
be fast relative to all other processes of interest. If,
however, the lead’s driving rate is treated as a phe-
nomenological parameter, one should make sure that
the relaxation dynamics (i.e. the rate γ ) of the dot
itself is insensitive to the choice of 	. Since the lat-
ter broadens the lead levels, the δ-functions appearing
in Equation (3) for the dot’s relaxation rate should be
replaced by the corresponding Lorentzian functions of
the form Ll(ε − εl) = 1

π
�	/2

(ε−εl)2+(�	/2)2 , such that γ (ε) =
2π/�

∑
l

|Vl|2Ll(ε − εl). If �	 � �ε the summand is a

smooth function of εl, which can be approximated by the
following integral:

γ (ε) ≈ 2π
�

∫ W/2

−W/2
|V(εl)|2ρ(εl)Ll(ε − εl)dεl. (9)

Moreover, if |V(εl)|2 and ρ(εl) do not (or only weakly)
depend on εl (in practice, a softer requirement that
|V(εl)|2ρ(εl) is independent of εl is sufficient), they may
be taken out of the integral, and if furthermore �	 	
W, the limits of the remaining integral over Ll(ε − εl)

can be safely taken to infinity yielding a value of 1 to
a good approximation. Hence, the wide band result of
Equation (4) stating that γ ≈ (2π/�)|V|2ρ is recovered
and the dynamics becomes independent of 	. Thus, the
lead model should be chosen sufficiently large and its
energy band should bemade sufficiently wide to allow for
the value of 	 to fulfil the requirement �ε 	 �	 	 W
[24,47,48], which assures that the finite lead model lev-
els are sufficiently (but not over-)broadened tomimic the
continuous density-of-state within the finite bandwidth
of the corresponding bulk lead. We note in passing that
the above considerations are not just technical, and have
been repeatedly used to explain observations of molec-
ular relaxation processes involving isolated (on relevant
timescales) large molecules [57], where a discrete molec-
ular spectrum appears (again on relevant timescales) to
act as a continuum [5–8,58].
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To demonstrate the performance of this approach
for the case of a single-lead setup, we repeat the
dot depopulation simulations of the previous section
with the same model Hamiltonian using the DLvN
equation of motion (8) with a driving rate of �	 =
2�ε = 0.2�γ , within the region spanned between�ε =
0.1�γ and W = 100�ε = 10�γ . The green curve in
Figure 1 presents the dot population as a func-
tion of time obtained with the same initial condi-
tions as those used in the microcanonical simulation
described above and a target equilibrium lead density
matrix of σ 0

ll′ = δll′ fFD(εl,μ = −50�γ ,T = 0.25�γ /kB).
Clearly, the DLvN dynamics is able to reproduce both
the short- and the long-term analytical exponential decay
of the dot population, while eliminating the recur-
rences appearing in the microcanonical simulations.
Thus, it is shown that the DLvN effectively couples
the closed system to an external implicit bath result-
ing in a characteristic open quantum system dynamics.
Furthermore, when setting the implicit bath’s chemi-
cal potential at the centre of the lead band and equal
to the dot’s energy (both in the initial conditions and
via the target lead equilibrium density matrix, σ 0

ll′ =
δll′ fFD(εl,μ = 0,T = 0.25�γ /kB)), the dot equilibrates
to the expected half-filled state (see blue line in Figure 1).
In order to verify that our results are insensitive to the
choice of driving rate we have repeated the empty lead
calculations for �	 = 0.2�ε and �	 = 20�ε. The com-
parison, presented in the inset of Figure 1, clearly demon-
strate the weak dependence of the simulated dynamics
on the value of 	. Notably, this holds true also for
the lower value chosen, which is outside the validity
range discussed above. This further demonstrates that,
with appropriate choice of model parameters, the DLvN
approach can effectively mimic different environmen-
tal conditions and may constitute an effective numerical
scheme to complement analytical treatments in parame-
ter regimes beyond their limiting assumptions.

3. Equilibrium currents

The simple single-lead model system discussed above
demonstrated how the DLvN approach can capture the
total current flowing between the dot level and the lead
manifold which, according to the analytical treatment, is
given by J(t) = −dPd(t)/dt = γ e−γ t . However, in many
applications, especially when evaluating thermodynam-
ics properties, it is useful to consider not only overall
currents of given observables but also their resolution
with respect to other observables. For example, the total
current can be written in terms of its energy resolved
components as J = ∫

j(ε)dε, where j(ε) is the net par-
ticle flux per unit energy interval leaving the dot at a

given energy ε. The latter can be then used to evalu-
ate thermodynamic quantities, such as the energy flux,
JE = ∫

j(ε)dε, carried by the particles from the dot to the
lead and the total heat flux that they will produce in the
environment when they eventually get equilibrated in the
lead, JQ = ∫

dε(ε − μ)j(ε).
Such energy resolved currents can be evaluated via the

numerical solution of Equation (8), where the temporal
variation of the occupation of lead level l is given by (see
Appendix A):

dσll(t)
dt

= 2
�


(Vldσdl(t))− 	(σll(t)− σ 0
ll ). (10)

Wemay now identify the first term on the right-hand-
side of Equation (10) as the incoming particle flux from
the dot into lead level l and the second term as the corre-
sponding outgoing flux into the implicit bath. Neglecting
the broadening of the lead levels due to their coupling to
the bath and to the dot, the former can be used to eval-
uate the energy resolved particle currents leaving the dot
towards the lead at energy εl:

JdL(εl, t) = 2
�


(Vldσdl(t)), (11)

and the latter approximates the particle flux leaving the
lead into the implicit bath at the same energy:

JLB(εl, t) = 	(σll(t)− σ 0
ll ). (12)

At equilibrium, we expect the total current and all of
its energy resolved components to vanish. Nevertheless,
within the DLvN approach, only the lead sections are
directly equilibrated with their respective implicit baths.
This is essential for simulating non-equilibrium scenar-
ios. Therefore, since equilibration is not performed in the
diagonal basis of the entire finite model system and the
dot section is not explicitly equilibrated, for any finite lead
model equilibriumcan only be reached approximately. As
a result, when setting dσ̂ /dt = 0 in Equation (8) for the
single-lead setup considered herein (this can be readily
done by solving a Sylvester equation [24] as detailed in
Appendix B), non-zero dot-lead coherences σd,l appear
in the density matrix that lead to spurious non-vanishing
energy resolved equilibrium currents. This, is clearly
manifested by the red curve in Figure 2 showing the
equilibrium energy resolved currents obtained for a
lead model consisting of 50 equispaced levels that are
spanning a bandwidth of W = 10�γ . The lead levels,
which are coupled to the dot via V =

√
�

2π
γ
ρ

= �γ√
10π

,
are driven at a rate of 	 = 0.4γ towards an equilibrium
Fermi Dirac population with chemical potential of μ =
0 and electronic temperature of T = 0.25�γ

kB . The high-
est absolute current value appears at the dot position of
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Figure 2. Spurious energy resolved equilibrium particle currents
flowing between the dot and the various levels of a driven lead of
NL = 50 (full red line) andNL = 100 (full blue line) levels, towhich
it is directly coupled. For a system composed of a dot, a lead of
NL = 50 levels, and a driven-lead of NK = 50 levels the equilib-
rium energy resolved currents at the interface between the dot
and the lead vanish (dashed black line), while those at the inter-
face between the lead and the driven lead remain (dashed green
line).

εd = −�γ . Notably, the total dot-lead current at equilib-
rium, obtained by summing over all its energy resolved
equilibrium components, JdL = �lJ

eq
dL(εl), vanishes as

expected. Nevertheless, the appearance of spurious non-
vanishing energy resolved equilibrium currents jeopar-
dises their validity for calculating non-equilibrium ther-
modynamic properties, such as energy and heat fluxes.

One remedy for this problem can be found by increas-
ing the finite lead model size. At the limit of an

infinite lead, its spectrum mimics well that of the entire
dot+ lead system and the effect of not directly equilibrat-
ing the single dot level with the implicit bath becomes
negligible. This is demonstrated in Figure 2, where dou-
bling the number of lead levels from 50 (red) to 100
(blue), while keeping the bandwidth atW = 10�γ (yield-
ing �ε = ρ−1 = 0.1�γ , V = �γ√

20π
, and 	 = 2�ε/� =

0.2γ ), reduces the magnitude of the energy-resolved
equilibrium currents. The effects of any residual artificial
currents on the calculation of non-equilibrium ther-
modynamic properties can be eliminated by subtract-
ing their equilibrium contribution from the calculated
dynamic properties.

Alternatively, an ‘extended-molecule’ strategy can be
adopted. Here, the system is divided into three (rather
than two as before) sections including (see left panel
of Figure 3): (i) the dot (d); (ii) the lead section adja-
cent to the dot that is directly coupled to it (L); and
(iii) a driven lead section (K). The first two constitute
the extended-dot section that is not directly coupled to
the implicit bath. This buffers the dot from the effects
of the open boundary conditions that are imposed only
on the remote driven lead section. All physical quanti-
ties of interest can now be evaluated from the dynam-
ics of the dot section and the dot/lead interface, where
energy-resolved equilibrium currents vanish. To demon-
strate this, we consider a tight-binding chain consisting
of Ntot = 101 sites, where the leftmost site serves as the
dot, the NL = 50 sites adjacent to the dot form the lead
section, and the remaining NK = 50 sites constitute the
driven lead section. The onsite energies of the dot, the
lead, and the driven lead sites are taken to be αd = αl =
αk = 0 eV, respectively. The hopping integrals between
the various lead sites (βl), between the rightmost lead

Figure 3. Site-to-state transformation. Left: Schematic site representation of the tight-bindingmodel for a one dimensional chain com-
posed of a dot (red), a lead (silver), and a driven-lead section (black). βl and βk denote the hopping integrals within the lead and the
driven-lead sections, respectively. βdl and βlk are the coupling matrix elements between the dot and the leftmost site of the lead and
between the rightmost site of the lead and the leftmost site of the driven-lead section, respectively. Right: Scheme of the single-particle
state representation, where the dot level is uniformly coupled to the eigenstates of the lead section that are separately coupled to the
manifold of eigenstates of the driven-lead section that, in turn, are equilibrated at a rate 	 with the implicit external bath.
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site and leftmost driven lead site (βlk), and between the
various driven lead sites (βk), are set to βl = βlk = βk =
0.2 eV, respectively. A weaker coupling of βld = 0.08 eV
is chosen between the dot and the leftmost site of the
lead section and all other hopping integrals are nullified.
This yields a (driven-)lead bandwidth ofW(driven−)lead =
4β(k)l = 0.8 eV. The real-space tight-binding Hamilto-
nian matrix representation of the system can be written
in block matrix form as follows:

Ĥ(t) =
⎛⎝εd(t) V̂dL 0̂

V̂Ld ĤL V̂LK
0̂ V̂KL ĤK

⎞⎠ . (13)

Here, the non-zero blocks are

εd(t) = αd; V̂dL = V̂†
Ld = (

βld 0 · · ·) ;
ĤL(K) =

⎛⎜⎜⎝
αl(k) βl(k) 0

βl(k) αl(k)
. . .

0
. . .

. . .

⎞⎟⎟⎠ ;

V̂LK = V̂†
KL =

⎛⎜⎝ ...
... . .

.

0 0 · · ·
βlk 0 · · ·

⎞⎟⎠ . (14)

Giving dimensions of 1 × NL for V̂dL = V̂†
Ld, NL(K) ×

NL(K) for ĤL(K), andNL × NK for V̂LK = V̂†
KL. In order to

impose theDLvNboundary conditions on the eigenstates
of the driven lead the following unitary ‘site-to-state’
transformation is performed (see Figure 3) [42]:

Û =
⎛⎝1 0̂ 0̂
0̂ ÛL 0̂
0̂ 0̂ ÛK

⎞⎠ , (15)

where ÛL and ÛK are the unitary matrices that diag-
onalise ĤL and ĤK , respectively, such that ˆ̃HL/K =
Û†
L/KĤL/KÛL/K = diag{εL/K}. The transformed Hamil-

tonian matrix has the same block structure as its real-
space counterpart:

ˆ̃H(t) = Û†Ĥ(t)Û =

⎛⎜⎜⎝εd(t)
ˆ̃VdL 0̂

ˆ̃VLd
ˆ̃HL

ˆ̃VLK

0̂ ˆ̃VKL
ˆ̃HK

⎞⎟⎟⎠ (16)

where ̂̃VdL = ̂̃V†

Ld hold the couplings between the dot

and the various lead levels and ̂̃VLK = ̂̃V†

KL store the
couplings between the latter and the different driven
lead levels (see right panel of Figure 3). In order to
mimic the simulation conditions used above, where the

dot is uniformly coupled to all lead levels, we replace

all elements in ̂̃VdL (and ̂̃V†

Ld) by their highest value of
V � 0.0158 eV constituting the maximum of the corre-
sponding Newns Anderson coupling band [43]. Given
the density of lead states, ρ = 50/(4βl) = 62.5 eV −1,
this yields �γ = 0.0985 eV (see Equation (4) above),
which is comparable to the value of 0.1 eV used above.

The resulting DLvN equation of motion, written in
the basis of eigenstates of the dot, lead, and driven lead
sections, has the form:

d
dt
σ̂ (t) = − i

�
[ ˆ̃H(t), σ̂ (t)]

− 	

⎛⎜⎝ 0 0̂ 1
2 σ̂dK(t)

0̂ 0̂ 1
2 σ̂LK(t)

1
2 σ̂Kd(t)

1
2 σ̂KL(t) σ̂K(t)− σ̂ 0

K

⎞⎟⎠ ,

(17)

where σ̂ 0
K is the target equilibrium density matrix

imposed by the implicit bath on the driven-lead section
with μ = 0 and kBT = 0.25�γ and the driving rate is
chosen as 	 = 2/(�ρ) = 0.0486 fs −1. When setting
dσ̂ /dt = 0 (see Appendix B), the energy resolved cur-
rents between the dot and the lead section now vanish
(see dashed black curve in Figure 2) as required. Nev-
ertheless, the equilibrium state of the entire finite sys-
tem remains approximate and the spurious currents have
been just driven away toward the (less physically rele-
vant) interface between the lead and the driven lead sec-
tions. This is demonstrated by the dashed green curve in
Figure 2, where we plot the total current flowing from the
lead section to the various driven lead levels, k, calculated
via

JLK(εk) = 2
�

NL∑
l


(Hklσlk(t)). (18)

This, therefore, clearly demonstrates that care should
be exercised when utilising numerical schemes using
finite models to simulate (thermo)dynamic properties of
open quantum systems. Brute force application of such
schemes may lead to unphysical results that are strongly
influenced by the applied boundary conditions.

4. Finite bandwidth effects

The numerical examples provided above considered a
static dot level placed sufficiently far from the lead’s
band-edges and situated symmetrically between them. In
non-equilibrium thermodynamic calculations, however,
we will often be interested in simulating time-dependent
perturbations applied to the system. These may include
time-dependent external fields or varying gate potentials
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that dynamically shift the dot’s level energy. In such cases,
it may become inevitable to position the dot level in
the vicinity of the lead’s band edges. Hence, it is impor-
tant to understand both the physical and the numeri-
cal implications of approaching the band-edges of the
modelled environment. This is especially true in the con-
text of comparisons with, and extensions of, analytical
treatments that, as stated above, often make simplify-
ing assumptions, such as the WBA (see Sec. 3 above)
that treats the environment as an infinite energy band of
uniform and continuous density-of-states.

To demonstrate this, we study the changes in equilib-
rium total number of particles and electronic energy of
the finite system upon shifting the dot away from the
band center towards the upper band edge. Comparing
the results for increasing band-widths to the predictions
of the analytical WBA treatment allows us to assess the
importance of band-edge effects and the convergence of
the numerical model to the WBL. To this end, we con-
sider the isolated system consisting of the dot level and
a finite lead manifold of Nl states. We choose a uni-
form density of lead levels of ρ = 10(�γ )−1 that are
uniformly coupled to the dot level via V =

√
�γ
2πρ =

�γ√
20π

(see Equation (3)). The dot level is first positioned
at the center of the lead levels band, εd = 0, and the
Hamiltonian matrix of the entire closed system is diag-
onalised. The eigenstates are then occupied according to
the Fermi–Dirac distribution and the equilibrium num-
ber of particles and total electronic energy are calcu-
lated as:

N(εd = 0,W) =
Nl+1∑
j=0

fFD(εj;μ = 0,T = 0.25�γ /kB)

(19)

and

E(εd = 0,W) =
Nl+1∑
j=0

fFD(εj;μ = 0,T = 0.25�γ /kB)εj,

(20)

respectively, where W = Nl/ρ. Similarly, we obtain
N(εd = 2�γ ,W) and E(εd = 2�γ ,W) by positioning
the dot level 2�γ above the lead’s band center, and cal-
culate the variations �Nnum(W) = N(εd = 2�γ ,W)−
N(εd = 0,W) and �Enum(W) = E(εd = 2�γ ,W)−
E(εd = 0,W). To assess the correspondence between the
numerical calculation and the analytical WBA results we
repeat this procedure for increasing lead’s bandwidth by
increasing the number of lead states while keeping their
density fixed. At the limit of infinite bandwidth we expect
the numerical results to converge to the analytical WBA

values of:

�Nanalytic

=
∞∫

−∞
[A(ε − 2�γ ;� = 0; γ )− A(ε − 0;� = 0; γ )]

× fFD(ε;μ = 0,T = 0.25�γ /kB)dε (21)

and

�Eanalytic

=
∞∫

−∞
[A(ε − 2�γ ;� = 0; γ )− A(ε − 0;� = 0; γ )]

× fFD(ε;μ = 0,T = 0.25�γ /kB)εdε. (22)

In practice, we calculate these integrals numerically
with integration bounds of W = 3000�γ , such that
increasing the bounds to W = 3500�γ gives a differ-
ence of 0.02% for the energy and 9 × 10−6% for the
particle number. Note that when comparing the numeri-
cal results to the analytical values, the lead levels occu-
pations are assumed to be insensitive to the dot level
position such that �Nnum and �Enum reflect only the
change in dot occupation and energy contribution, like
their analytical counterparts. Figure 4 shows the rela-
tive deviation of the change of number of particles (full
blue line) with respect to the analytical WBA result
��N(W) = [�Nnum(W)−�Nanalytic]/�Nanalytic and
the corresponding relative energy deviation (full red line)

Figure 4. Convergence of the calculated equilibrium occupation,
��N (blue), and electronic energy, ��E (red), variations of the
finite lead model system towards the wide band limit. The results
are obtained for a density of lead states of ρ = 10(�γ )−1 (full
lines) and ρ = 20(�γ )−1 (dashed lines).
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��E(W) = [�Enum(W)−�Eanalytic]/�Eanalytic as a
function of bandwidth, W. We find that, for a finite
band model, the change in number of particles upon
the upshift of the dot level from the band center is
larger than the analytical WBA result, whereas the corre-
sponding change in electronic energy is smaller than its
WBA counterpart. As expected, both�Nnum and�Enum
converge to the corresponding analytical WBL values
with increasing finite lead model bandwidth. Notably,
the particle number change converges faster than the
electronic energy change, such that at a bandwidth of
200�γ the deviation of �Nnum from �Nanalytic reduces
to 0.02%, while the corresponding deviation in the elec-
tronic energy is still larger than 0.5%. To rationalise
this observation we note that the integrand of �Eanalytic
includes ε itself, which diverges at the integration lim-
its, and hence slows the convergence of the integrand
at any finite integration range. This exemplifies a gen-
eral behaviour that different observables converge at a
different rate with system parameters, thus care should
be taken to separately converge them. To further ver-
ify that these result are converged with respect to the
choice of density of lead levels we have repeated the cal-
culations for a density of ρ = 20(�γ )−1 obtaining only
minor deviations for the particle number and energy
variations (see dashed blue and red lines in Figure 4,
respectively). The analysis presented above thus demon-
strates that numerical treatments can simulate various
environment models ranging from simplistic wide-band
baths to more complex finite-band baths that are not
restricted to uniform density-of-states and/or system
bath couplings.

The same holds true not only for simulating complex
bath models but also for studying dynamical processes of
the system itself. In the resonant level model discussed
herein the latter may translate to dynamical shifts of the
dot’s level energy across the lead’s band. Nevertheless,
prior to performing dynamical simulations one should
first verify that the numerical approach can reproduce
quasi-static results. To this end, we repeated the proce-
dure detailed above using a finite lead model consisting
of 500 levels spanning a bandwidth ofW = 10�γ , which,
according to Figure 4, reproduces WBA occupations and
energetics down to∼ 0.4% and∼ 9.5%, respectively. The
dot level is then uniformly coupled to all lead states with
V = �γ√

100π
and its energy is varied around the chem-

ical potential of the lead. For each dot level position,
εd, the Hamiltonian of the entire finite model system
is diagonalised and its eigenstates, {|j >}, are occupied
according to the equilibrium Fermi–Dirac distribution.
As our observable we choose the dot section contribu-
tion to the total electronic energy of the system. In the
above treatment we have assumed that the lead section

Figure 5. Comparison between the numerical evaluation (full
blue and red lines) of the contribution to the total equilibrium
electronic energy of a dot that is uniformly coupled to a dis-
crete set of lead levels of finite bandwidth and the corresponding
analytical WBA result (dashed black line). The numerical eval-
uation is performed either by shifting the dot’s position while
keeping the chemical potential fixed at the lead band center
(blue) or vice versa (red). In all graphs, the Y-axis origin is set
to the dot’s contribution to the total energy when placed, along
with the chemical potential, at the center of the lead’s band.
Inset: The differences between the numerical and the analytical
evaluations of the dot’s energy contribution to the total equi-
librium electronic energy as a function of its position along the
leads band. The line colours correspond to those in the main
panel.

populations are insensitive to the dot level position, such
that any change in total energy of the system reflects
only the dot’s contribution. Alternatively, we can evalu-
ate it in the eigenbasis of the entire system viaEnumd (εd) =∑
j
εjf (εj)|〈d|j〉|2, where the sum runs over all eigenstates,

and their individual contributions to the total electronic
energy εjf (εj) (εj and f (εj) being the orbital energy and
equilibrium occupation, respectively) are scaled by their
projection on the dot section, |〈d|j〉|2. In Figure 5 we
compare the numerical value (full blue line) obtained for
�Enumd (εd) = Enumd (εd)− Enumd (μ = 0) at various dot
level positions in a range of ±2�γ around the chemical
potential (which is kept fix at μ = 0) and an electronic
temperature of T = 0.25�γ /kB, to the analytical WBA
results (dashed black line) obtained, as above, from:

�Eanalyticd (εd)

=
∞∫

−∞
[A(ε − εd;� = 0; γ )− A(ε − μ;� = 0; γ )]

× fFD(ε;μ = 0,T = 0.25�γ /kB)εdε. (23)
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As noted above, in practice we calculate these integrals
numerically with integration bounds of W = 3000�γ .
In the vicinity of the lead’s Fermi energy the agree-
ment between the two calculations is seen to be excel-
lent. Minor deviations between the two develop as the
dot position approaches the band edges of the finite
lead model (see inset of Figure 5). To avoid such finite-
bandwidth effects and achieve better agreement between
the numerical results and the analytical wide band
approximationwe suggest an alternative approach, where
the dot level is kept fixed at the lead’s band center
(symmetrically between the two band edges) and the
chemical potential of the lead is varied around it. The
results of this practice are presented by the full red line
in Figure 5 showing better agreement with the ana-
lytical WBA results as is clearly demonstrated in the
inset.

Having established that our method can reproduce
quasi-static results we can now turn to discuss dynamic
variations of the dot’s level position. Simulating such
processes with the closed system treatment presented
above will require extremely large lead models to pre-
vent backscattering from the finite-model boundaries
during the relevant simulation time-scales. As demon-
strated above, this can be readily avoided by using the
DLvN approach, where broadening of the discrete man-
ifold of levels of a relatively small finite lead model
allows to mimic the continuous density-of-state of a
(semi-)infinite bath. Results of such simulations can
provide valuable dynamical information for finite band
bath models. One might also wish to study, in the
wide band limit, dynamical processes that cannot be
accessed by current analytical treatments. Here, as well,
we could increase the finite leadmodel until convergence
with respect to its bandwidth is obtained. Within the
context of dynamical simulations, however, this would
considerably increase the computational burden and
defeat the main purpose of the DLvN approach. Hence,
again, we offer an alternative by assuming that the dif-
ference between the numerical finite-lead-band result
and the analytical WBA results depend weakly on the
rate of dot level shift. If this assumption is valid, we
can extract this difference from a quasi-static calcula-
tion, where both numerical and analytical results are
available:

δEd(εd) = Enum,QS
d (εd)− Eanalytic,QSd (εd). (24)

By subtracting this difference from the dynamic finite-
bandwidth model numerical results we obtain an esti-
mate of the corresponding WBL results. To demonstrate
this, we use a relatively small lead model consisting of
NL = 100 lead states spanning a bandwidth of W =
10�γ . Notably, the latter is taken deliberately insufficient

to achieve convergence to the WBL (see Figure 4). We
solve the DLvN equation of motion using a driving rate
of 	 = 0.2�γ , and a target density that provides a chem-
ical potential of μ = 0 and an electronic temperature
of T = 0.25γ

kB , starting at equilibrium with the dot level
positioned at εd = μ− 3�γ and shifting it at a constant
rate of ε̇d/(�γ 2) = 0.6582 up to εd = μ+ 3�γ . Having
the density matrix of the entire system at hand we can
evaluate the temporal evolution of the dot’s contribu-
tion to the total electronic energy using the following
projection:

Enumd (t) = 1
2
〈d|Ĥ(t)σ̂ (t)+ σ̂ (t)Ĥ(t)|d〉, (25)

which is symmetrised to be real valued.
The results of this calculation (full blue line in

Figure 6) differ from the quasi-static analytical WBA
results (full red line in Figure 6) over the entire range
of dot positions studied. This can be attributed to two
main factors: (i) the finite lead bandwidth of the numer-
ical model compared to the infinite bath band assumed
in the analytical case; and (ii) the finite dot level shift
rate used in the numerical simulation, which pushes the
system out of its equilibrium state that is assumed by
the quasi-static analytical treatment. Under the assump-
tion mentioned above, we can eliminate the effect of
the former by adding δEd(εd(t)) = δEd(μ− 3�γ + ε̇dt)
to the calculated Enumd (t). This allows us to estimate
effects of dynamical dot level shifts at the wide-band

Figure 6. Dynamic contribution (full blue line) to the total elec-
tronic energy of a dot that is up-shifted at a finite rate across a
discrete set of lead levels of finite bandwidth, to which it is uni-
formly coupled. Estimation of the corresponding WBL behaviour,
obtained by subtracting δEd(εd(t)) from the simulation results, is
presented in red. The quasi-static analytical WBA results are given
as reference by the dashed black line.
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bath limit. Comparing the red line in Figure 6 for
Enum,WBA
d (t) = Enumd (t)− δEd(εd(t)) to the dashed black

line for Eanalytic,QSd (εd) we see that, up to the lead’s Fermi
energy the dynamical result resemble the quasi-static
behaviour, exhibiting a linear increase. This reflects the
fact that in this region the dot remains fully occupied
and the variation of the dot’s contribution to the total
electronic energy stems only from changing its posi-
tion. When approaching the Fermi level, the dot grad-
ually empties into the lead. Hence the energy rise of
Enum,WBA
d (t) due to the upshift of εd is countered by

the dot’s depopulation and its slope reduces. Notice-
ably, when the rate of the dot level up-shift becomes
comparable or larger than γ , its emptying into the lead
lags behind that of the quasi-static case. This results
in the rate-dependent hysteresis evident in Figure 6,
where Enum,WBA

d (t) overshoots Eanalytic,QSd (εd) in the
vicinity of the lead Fermi energy. The analysis pre-
sented above thus demonstrates how DLvN based sim-
ulations can be used to study dynamical effects in open
quantum systems in a wide range of system and bath
parameters and extract important information relevant
for evaluating their non-equilibrium thermodynamic
properties.

5. Summary and Conclusions

The study of non-equilibrium dynamics and thermody-
namics of open quantum systems is currently gaining
increasing theoretical and experimental interest. Simple
analytical treatments provide valuable insights regard-
ing the extension of thermodynamic quantities towards
non-equilibrium conditions. These, however, are often
based on simplifying assumptions regarding the struc-
ture of the system, the environment, and their inter-
coupling, thus limiting their validity to specific param-
eter ranges. Numerical approaches, such as the Driven
Liouville-von Neumann methodology, can help bridge
the gap between phenomenological analytical treatments
and realistic experimental scenarios. In this paper, we
presented a brief outline of the DLvN approach and dis-
cussed some importantmethodological aspects of its util-
isation for studying non-equilibrium (thermo)dynamic
properties. Specifically, we have demonstrated that DLvN
simulations using finite model systems can capture the
depopulation dynamics of an impurity electronic state
uniformly coupled to an infinite bath of continuous
and constant density of states. We have shown that
when evaluating energy resolved quantities based on
DLvN simulations, care should be taken to avoid the
effects of spurious equilibrium currents resulting from
the inherently approximate equilibrium state imposed

on the system. We have further studied the conver-
gence of DLvN numerical simulations towards the wide
band bath limit upon increasing the bandwidth of the
finite lead model. Finally, we have shown how one can
obtain reliable static and dynamicwide band results using
relatively small model systems either via efficient can-
cellation of finite-bandwidth effect or by their direct
subtraction from the simulated properties. Importantly,
these methodological considerations may be relevant
to other numerical techniques for simulating electron
dynamics in open quantum systems. Hence, with the
understanding gained herein, numerical approaches,
such as the DLvN methodology, may become efficient
tools for simulating non-equilibrium quantum thermo-
dynamics in experimentally relevant regimes that are out
of the reach of current analytical treatments.

Acknowledgement

IO gratefully acknowledges the support of the Adams Fel-
lowship Program of the Israel Academy of Sciences and
Humanities, and the Naomi Foundation through the Tel-
Aviv University GRTF Program. The research of AN is sup-
ported by the U.S. National Science Foundation [grant number
CHE1665291],the Israel-U.S. Binational Science Foundation,
the German Research Foundation (DFG TH 820/11-1), and
the University of Pennsylvania. OH is grateful for the gener-
ous financial support of the Israel Science Foundation under
[grant number 1740/13] and the Center for Nanoscience and
Nanotechnology of Tel-Aviv University.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The research of AN is supported by the U.S. National Sci-
ence Foundation (grant number CHE1665291), the Israel-U.S.
Binational Science Foundation (grant number 2014113), the
German Research Foundation (DFG TH 820/11-1), and the
University of Pennsylvania. OH is grateful for the generous
financial support of the Israel Science Foundation under grant
number 1740/13 and the Center for Nanoscience and Nan-
otechnology of Tel-AvivUniversity. IO gratefully acknowledges
the support of the Adams Fellowship Program of the Israel Ac
ademy of Sciences andHumanities, and the Naomi Foundation
through the Tel-Aviv University GRTF Program.

References

[1] A.Nitzan andM.A.Ratner, Science. 300 (5624), 1384–1389
(2003).

[2] J.C. Cuevas and E. Scheer, Molecular Electronics: An
Introduction to Theory and Experiment (World Scientific,
2010).

[3] A. Ghosh, Nanoelectronics A Molecular View (World Sci-
entific, 2016).

[4] M. Galperin and A. Nitzan, Phys. Chem. Chem. Phys. 14
(26), 9421–9438 (2012).



2094 I. OZ ET AL.

[5] A. Bruch, M. Thomas, S. Viola Kusminskiy, F. von Oppen
and A. Nitzan, Phys. Rev. B. 93 (11), 115318 (2016).

[6] M.F. Ludovico, J.S. Lim,M.Moskalets, L. Arrachea andD.
Sánchez, Phys. Rev. B. 89 (16), 161306(R) (2014).

[7] M.F. Ludovico,M.Moskalets, D. Sánchez andL.Arrachea,
Phys. Rev. B. 94 (3), 035436 (2016).

[8] M. Esposito, M. A. Ochoa, and M. Galperin, Phys.Rev.
Lett. 114 (8), 080602 (2015).

[9] R. Tuovinen, N. Säkkinen, D. Karlsson, G. Stefanucci, and
R. van Leeuwen, Phys. Rev. B. 93 (21), 214301 (2016).

[10] D. Gelbwaser-Klimovsky,W.Niedenzu, andG. Kurizki, in
Atomic, Molecular, and Optical Physics (Elsevier, 2015).

[11] L. Arrachea, E.R. Mucciolo, C. Chamon and R.B. Capaz,
Phys. Rev. B. 86 (12), 125424 (2012).

[12] R. Kosloff and A. Levy, Annu. Rev. Phys. Chem. 65 (1),
365–393 (2014).

[13] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport
and Optics of Semiconductors, 2nd ed., vol. 123 (Springer-
Verlag Berlin Heidelberg, 2008).

[14] L. Chen, T. Hansen and I. Franco, J. Phys. Chem. C. 118
(34), 20009–20017 (2014).

[15] C.-L. Cheng, J.S. Evans and T. Van Voorhis, Phys. Rev. B.
74 (15), 155112 (2006).

[16] M. Di Ventra and T.N. Todorov, J. Phys. Condens. Matter.
16 (45), 8025–8034 (2004).

[17] T. Seideman and W.H. Miller, J. Chem. Phys. 96 (6),
4412–4422 (1992).

[18] R. Baer andR.Kosloff, J. Chem. Phys. 106 (21), 8862–8875
(1997).

[19] C.P. Koch, T. Klüner, H.-J. Freund and R. Kosloff, Phys.
Rev. Lett. 90 (11), 117601 (2003).

[20] M. Galperin and A. Nitzan, Phys. Rev. Lett. 95 (20),
206802 (2005).

[21] U. Kleinekathöfer, G. Li, S. Welack and M. Schreiber,
Europhys. Lett. EPL. 75 (1), 139–145 (2006).

[22] B.D. Fainberg, M. Jouravlev and A. Nitzan, Phys. Rev. B.
76 (24), 245329 (2007).

[23] G. Katz, D. Gelman, M.A. Ratner and R. Kosloff, J. Chem.
Phys. 129 (3), 034108 (2008).

[24] J.E. Subotnik, T. Hansen, M.A. Ratner and A. Nitzan, J.
Chem. Phys. 130 (14), 144105 (2009).

[25] A.E. Rothman and D.A. Mazziotti, J. Chem. Phys. 132
(10), 104112 (2010).

[26] R. Volkovich and U. Peskin, Phys. Rev. B. 83 (3), 033403
(2011).

[27] N. Renaud, M.A. Ratner and C. Joachim, J. Phys. Chem.
B 115 (18), 5582–5592 (2011).

[28] U. Peskin andM.Galperin, J. Chem. Phys. 136 (4), 044107
(2012).

[29] T.S. Nguyen, R. Nanguneri and J. Parkhill, J. Chem. Phys.
142 (13), 134113 (2015).

[30] R. Baer and D. Neuhauser, Int. J. Quantum Chem. 91 (3),
524–532 (2003).

[31] R. Baer, T. Seideman, S. Ilani and D. Neuhauser, J. Chem.
Phys. 120 (7), 3387–3396 (2004).

[32] N. Bushong, N. Sai and M. Di Ventra, Nano Lett. 5 (12),
2569–2572 (2005).

[33] C. G. Sánchez, M. Stamenova, S. Sanvito, D. R. Bowler, A.
P. Horsfield and T. N. Todorov. J. Chem. Phys. 124 (21),
214708 (2006).

[34] X. Zheng, F. Wang, C.Y. Yam, Y. Mo and G. Chen, Phys.
Rev. B. 75 (19), 195127 (2007).

[35] J. S. Evans and T. Van Voorhis, Nano Lett. 9 (7),
2671–2675 (2009).

[36] I. Ercan and N.G. Anderson, J. Appl. Phys. 107 (12),
124318 (2010).

[37] X. Zheng, G. Chen, Y. Mo, S. Koo, H. Tian, C. Yam and Y.
Yan, J. Chem. Phys. 133 (11), 114101 (2010).

[38] Y. Xing, B. Wang and J. Wang, Phys. Rev. B. 82 (20),
205112 (2010).

[39] S.-H. Ke, R. Liu, W. Yang and H.U. Baranger, J. Chem.
Phys. 132 (23), 234105 (2010).

[40] R. Wang, D. Hou and X. Zheng, Phys. Rev. B. 88 (20),
205126 (2013).

[41] P. Schaffhauser and S. Kümmel, Phys. Rev. B. 93 (3),
035115 (2016).

[42] T. Zelovich, L. Kronik and O. Hod, J. Chem, Theory
Comput. 10 (8), 2927–2941 (2014).

[43] T. Zelovich, L. Kronik and O. Hod, J. Chem, Theory
Comput. 11 (10), 4861–4869 (2015).

[44] T. Zelovich, L. Kronik and O. Hod, J. Phys. Chem. C. 120
(28), 15052–15062 (2016).

[45] T. Zelovich, T. Hansen, Z.-F. Liu, J.B. Neaton, L. Kronik
and O. Hod, J. Chem. Phys. 146 (9), 092331 (2017).

[46] O. Hod, C.A. Rodriguez-Rosario, T. Zelovich and T.
Frauenheim, J. Phys. Chem. A. 120 (19), 3278–3285
(2016).

[47] D. Gruss, K.A. Velizhanin and M. Zwolak, Sci. Rep. 6 (1),
24514 (2016).

[48] J.E. Elenewski, D. Gruss and M. Zwolak, J. Chem. Phys.
147 (15), 151101 (2017).

[49] C.J.O. Verzijl, J.S. Seldenthuis and J.M. Thijssen, J. Chem.
Phys. 138 (9), 094102 (2013).

[50] I. Bâldea, Beilstein J. Nanotechnol. 7, 418–431 (2016).
[51] F. Covito, F.G. Eich, R. Tuovinen, M.A. Sentef and A.

Rubio, J. Chem. Theory Comput. 14 (5), 2495–2504
(2018).

[52] A. Nitzan, Chemical Dynamics in Condensed Phases:
Relaxation, Transfer and Reactions in Condensed Molec-
ular Systems (OUP Oxford, 2006).

[53] M. Koentopp, C. Chang, K. Burke and R. Car, J. Phys.
Condens. Matter. 20 (8), 083203 (2008).

[54] S. Kurth, G. Stefanucci, C.-O. Almbladh, A. Rubio and
E.K.U. Gross, Phys. Rev. B. 72 (3), 035308 (2005).

[55] M.A. Ochoa, A. Bruch and A. Nitzan, Phys. Rev. B. 94 (3),
035420 (2016).

[56] U.N. Morzan, F.F. Ramírez, M.C. González Lebrero
and D.A. Scherlis, J. Chem. Phys. 146 (4), 044110
(2017).

[57] M. Bixon and J. Jortner, J. Chem. Phys. 48 (2), 715–726
(1968).

[58] B. Carmeli, R. Tulman, A. Nitzan andM.H. Kalos, Chem.
Phys. 72 (3), 363–369 (1982).

Appendix

A. Energy resolved currents calculation

Energy resolved currents can be evaluated via the time deriva-
tives of the various lead levels populations. Here, we show how
the corresponding expression (Equation (11)) is obtained for
the resonant level system discussed in the main text. For a sys-
tem composed of a single dot level and amanifold of lead states
that are directly coupled to an implicit bath (Equation (7)), the
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DLvN equation of motion is given by the following matrix rep-
resentation written in the basis of eigenstates of the isolated dot
and lead sections (Equation (8)):

d
dt

(
σd(t) σ̂dL(t)
σ̂Ld(t) σ̂L(t)

)
= − i

�

[(
εd(t) V̂dL
V̂Ld ĤL

)
,
(
σd(t) σ̂dL(t)
σ̂Ld(t) σ̂L(t)

)]
− 	

(
0 1

2 σ̂dL(t)1
2 σ̂Ld(t) σ̂L(t)− σ̂ 0

L

)
. (A1)

Evaluating the commutator on the right hand side of equation
(A1), while taking into consideration that there is a single dot
level, gives:

d
dt

(
σd(t) σ̂dL(t)
σ̂Ld(t) σ̂L(t)

)
= −	

(
0 1

2 σ̂dL(t)1
2 σ̂Ld(t) σ̂L(t)− σ̂ 0

L

)
− i

�

(
V̂dLσ̂Ld(t)− σ̂dL(t)V̂Ld

V̂Ldσd(t)+ ĤLσ̂Ld(t)− σ̂Ld(t)εd(t)− σ̂L(t)V̂Ld

εd(t)σ̂dL(t)+ V̂dLσ̂L(t)− σd(t)V̂dL − σ̂dL(t)ĤL
V̂Ldσ̂dL(t)+ ĤLσ̂L(t)− σ̂Ld(t)V̂dL − σ̂L(t)ĤL

)
(A2)

Hence, the dynamics of the lead section is given by:

d
dt
σ̂L(t) = − i

�
[ĤL, σ̂L(t)]

− i
�
[V̂Ldσ̂dL(t)− σ̂Ld(t)V̂dL] − 	(σ̂L(t)− σ̂ 0

L ).

(A3)

From this we can calculate the rate of population variation
in a given lead level l as:

d
dt
σll(t) = − i

�

Nl∑
l′=0

[Hll′σl′l(t)− σll′(t)Hl′l]

− i
�
[Vldσdl(t)− σld(t)Vdl] − 	(σll(t)− σ 0

ll ).

(A4)

In the representation of the eigenbasis of the isolated dot
and lead states, ĤL is diagonal and thus the first term on the
right hand side of equation (A4) vanishes. The remaining two
terms can be identified as the particle current flowing between
lead state l and the dot or the implicit bath, respectively. Focus-
ing on the second term and taking into account the fact that Ĥ
and σ̂ areHermitianmatrices, such thatVdl = V∗

ld and σld(t) =
σ ∗
dl(t), we arrive at the expression for the current flowing from

dot to lead level l (Equation (11) in the main text):

JdL(εl, t) = − i
�
[Vldσdl(t)− σ ∗

dl(t)V
∗
ld] = 2

�

(Vldσdl(t)).

(A5)
If we neglect the lead level width due to its coupling to

the bath and the dot, JdL(εl, t) represents the energy resolved
current flowing from the dot to the lead at energy εl. Corre-
spondingly, the particle current flowing at energy εl from the

lead to the implicit bath is given by (Equation (12) in the main
text):

JLB(εl, t) = 	(σll(t)− σ 0
ll ). (A6)

The same holds true when the model system is decomposed
into the dot, lead, and driven lead sections (Equation (13) in
the main text), where equation (A1) remains valid for the cur-
rent flowing between the dot and lead level l, and a similar
expression is obtained for the current flowing from the lead into
driven lead level k:

JLK(εk, t) = 2
�

Nl∑
l=0


(Vklσlk(t)). (A7)

B. Sylvester equation for the equilibrium
density matrix

Within the DLvN approach, the equilibrium state of a single
lead setup and the steady-state of a multi-lead setup can be
obtained by setting dσ̂ (t)

dt = 0. As mentioned in the main text,
for the former the obtained equilibrium is appoximate as the
equation of motion drives only the lead section, rather than the
entire system (dot+ lead) towards equilibrium. In principle,
equilibrium can be reached by running the dynamics until all
transient effects relax. This, however,may prove to be computa-
tionally quite inefficient, especially when the initial conditions
are far from equilibrium. An alternative can be to formulate an
equation that directly solves for dσ̂ (t)

dt = 0 [24]. To this end, in
the case of a single lead setup, we define projection operators
on the dot and on the lead section as

P̂ =
(
1 0̂
0̂ 0̂

)
, Q̂ =

(
0 0̂
0̂ 1̂

)
, (B1)

corresponding to the matrix representation in the basis of the
isolated dot and lead eigenfunctions. With these, the driving
term in Equation (8) in the main text can be decomposed as
follows:

− 	

(
0 1

2 σ̂d,L(t)1
2 σ̂L,d(t) σ̂L(t)− σ̂ 0

L

)
= −1

2
	

(
0 σ̂d,L(t)
0̂ 0̂

)
︸ ︷︷ ︸

P̂σ̂ (t)Q̂

−1
2
	

(
0 0̂

σ̂L,d(t) 0̂

)
︸ ︷︷ ︸

Q̂σ̂ (t)P̂

− 	

(
0 0̂
0̂ σ̂L(t)

)
︸ ︷︷ ︸

Q̂σ̂ (t)Q̂

+	
(
0 0̂
0̂ σ̂ 0

L

)
︸ ︷︷ ︸

Q̂σ̂ 0Q̂

, (B2)

where in the last term

σ̂ 0 =
(
σ 0
d 0̂
0̂ σ̂ 0

L

)
, (B3)

and the target equilibrium occupation of the dot, σ 0
d , does not

(and should not) appear in the final expression for the driv-
ing term. Nullifying the left hand side of the DLvN equation of
motion (Equation (8)) with a time-independent Hamiltonian
thus gives the following equation for the equilibrium density
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matrix of the system, σ̂ eq:

d
dt
σ̂ eq = − i

�
Ĥσ̂ eq + i

�
σ̂ eqĤ − 1

2
	P̂σ̂ eqQ̂ − 1

2
	Q̂σ̂ eqP̂

− 	Q̂σ̂ eqQ̂ + 	Q̂σ̂ 0Q̂ = 0̂, (B4)

which can be rearranged as:

− i
�
Ĥσ̂ eq + i

�
σ̂ eqĤ − 1

2
	(P̂ + Q̂)σ̂ eqQ̂

− 1
2
	Q̂σ̂ eq(P̂ + Q̂)+ 	Q̂σ̂ 0Q̂ = 0̂. (B5)

Since the sum of P̂ and Q̂ gives the unity matrix, 1̂, this
results in:(

i
�
Ĥ + 1

2
	Q̂

)
σ̂ eq − σ̂ eq

(
i
�
Ĥ − 1

2
	Q̂

)
= 	Q̂σ̂ 0Q̂. (B6)

Defining

Â ≡ i
�
Ĥ + 1

2
	Q̂ = i

�

(
εd V̂dL
V̂Ld ĤL − i�

2 	

)
, (B7)

B̂ ≡ i
�
Ĥ − 1

2
	Q̂ = i

�

(
εd V̂dL
V̂Ld ĤL + i�

2 	

)
, (B8)

and

Ĉ ≡ 	Q̂σ̂ 0Q̂ =
(
0 0̂
0̂ 	σ̂ 0

L

)
, (B9)

the following Sylvester equation for the equilibrium density
matrix is obtained [24]:

Âσ̂ eq − σ̂ eqB̂ = Ĉ. (B10)

A similar Sylvester equation can be derived when the sys-
tem is decomposed into the dot, lead, and driven lead sections.
In the basis of eigenfunctions of these isolated sections the
corresponding projection operators are written as:

P̂ =
⎛⎝1 0̂ 0̂
0̂ 0̂ 0̂
0̂ 0̂ 0̂

⎞⎠ , Q̂ =
⎛⎝0 0̂ 0̂
0̂ 1̂ 0̂
0̂ 0̂ 0̂

⎞⎠ , R̂ =
⎛⎝0 0̂ 0̂
0̂ 0̂ 0̂
0̂ 0̂ 1̂

⎞⎠ .

(B11)
The driving term (see Equation (17)) can be decomposed in
terms of these projection operators as follows:

− 	

⎛⎜⎝ 0 0̂ 1
2 σ̂dK(t)

0̂ 0̂ 1
2 σ̂LK(t)

1
2 σ̂Kd(t)

1
2 σ̂KL(t) σ̂K(t)− σ̂ 0

K

⎞⎟⎠
= −1

2
	

⎛⎝ 0 0̂ 0̂
0̂ 0̂ 0̂

σ̂Kd(t) 0̂ 0̂

⎞⎠
︸ ︷︷ ︸

R̂σ̂ (t)P̂

−1
2
	

⎛⎝0 0̂ 0̂
0̂ 0̂ 0̂
0̂ σ̂KL(t) 0̂

⎞⎠
︸ ︷︷ ︸

R̂σ̂ (t)Q̂

− 1
2
	

⎛⎝0 0̂ σ̂dK(t)
0̂ 0̂ 0̂
0̂ 0̂ 0̂

⎞⎠
︸ ︷︷ ︸

P̂σ̂ (t)R̂

−1
2
	

⎛⎝0 0̂ 0̂
0̂ 0̂ σ̂LK(t)
0̂ 0̂ 0̂

⎞⎠
︸ ︷︷ ︸

Q̂σ̂ (t)R̂

− 	

⎛⎝0 0̂ 0̂
0̂ 0̂ 0̂
0̂ 0̂ σ̂K(t)

⎞⎠
︸ ︷︷ ︸

R̂σ̂ (t)R̂

+	
⎛⎝0 0̂ 0̂
0̂ 0̂ 0̂
0̂ 0̂ σ̂ 0

K

⎞⎠
︸ ︷︷ ︸

R̂σ̂ 0R̂

, (B12)

where, in the last term,

σ̂ 0 =

⎛⎜⎝σ
0
d 0̂ 0̂
0̂ σ̂ 0

L 0̂
0̂ 0̂ σ̂ 0

K

⎞⎟⎠ , (B13)

and the target equilibrium occupation of the dot (σ 0
d ) and

the lead (σ 0
L ) do not (and should not) appear in the final

expression for the driving term. Nullifying the left hand side
of the DLvN equation of motion (Equation (17)) with a time-
independent Hamiltonian thus gives the following equation for
the equilibrium density matrix of the system, σ̂ eq:

d
dt
σ̂ eq = − i

�

˜̂Hσ̂ eq + i
�
σ̂ eq˜̂H − 1

2
	R̂σ̂ eqP̂ − 1

2
	R̂σ̂ eqQ̂

− 1
2
	P̂σ̂ eqR̂ − 1

2
	Q̂σ̂ eqR̂ − 	R̂σ̂ eqR̂ + 	R̂σ̂ 0R̂ = 0̂

(B14)

which can be rearranged as:

− i
�

˜̂Hσ̂ eq + i
�
σ̂ eq˜̂H − 1

2
	R̂σ̂ eq(P̂ + Q̂ + R̂)

− 1
2
	(P̂ + Q̂ + R̂)σ̂ eqR̂ + 	R̂σ̂ 0R̂ = 0̂. (B15)

Since the sum of P̂ + Q̂ + R̂ = 1̂ this results in:(
i
�

˜̂H + 1
2
	R̂
)
σ̂ eq − σ̂ eq

(
i
�

˜̂H − 1
2
	R̂
)

= 	R̂σ̂ 0R̂. (B16)

Defining

Â ≡ i
�

˜̂H + 1
2
	R̂ = i

�

⎛⎜⎜⎜⎝
εd

˜̂VdL 0̂
˜̂VLd

˜̂HL
˜̂VLK

0̂ ˜̂VKL
˜̂HK − i�

2 	

⎞⎟⎟⎟⎠ , (B17)

B̂ ≡ i
�

˜̂H − 1
2
	R̂ = i

�

⎛⎜⎜⎜⎝
εd

˜̂VdL 0̂
˜̂VLd

˜̂HL
˜̂VLK

0̂ ˜̂VKL
˜̂HK + i�

2 	

⎞⎟⎟⎟⎠ , (B18)

and

Ĉ ≡ 	R̂σ̂ 0R̂ =
⎛⎝0 0̂ 0̂
0̂ 0̂ 0̂
0̂ 0̂ 	σ̂ 0

K

⎞⎠ , (B19)

we arrive at a Sylvester equation of the same structure as
Equation (B10) above.
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