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 Table S1: BNNT torsional mechanical characterization.  

BNNT # d (nm) L (nm) κ (10-14 N.m) Gs (GPa) Gh (GPa) τΒΝΝΤ (GPa) 

A 10.5 ± 0.3 100 ± 10 0.17 ± 0.07 130 ± 60 530 ± 220  

B 10.7 ± 0.9 100 ± 20 0.25 ± 0.07 190 ± 80 770 ± 290  

C 13.4 ± 1.1 170 ± 30 0.9 ± 0.3 460 ± 180 2300 ± 800  

D 17.6 ± 0.7 320 ± 10 1.2 ± 0.2 420 ± 80 2600 ± 500  

E 17.8 ± 1.5 380 ± 10 0.6 ± 0.2 210 ± 90 1400 ± 600  

F 18.5 ± 1.0 420 ± 10 0.8 ± 0.2 300 ± 70 2100 ± 500  

G 21.6 ± 1.4 290 ± 30 1.3 ± 0.3 180 ± 50 1400 ± 400 > 0.8 

H 22.4 ± 0.8 210 ± 10 3.1 ± 0.5 260 ± 50 2200 ± 400 > 2.0 

I 22.8 ± 0.6 350 ± 10 1.6 ± 0.2 210 ± 40 1800 ± 300  

J 25.4 ± 1.2 320 ± 10 4.3 ± 0.7 340 ± 80 3200 ± 700  

K 26.0 ± 2.2 330 ± 10 3.3 ± 0.8 240 ± 80 2300 ± 800 > 1.3 

L 27.7 ± 1.0 370 ± 10 2.3 ± 0.3 150 ± 30 1500 ± 300  

M 29.6 ± 2.6 180 ± 20 3.5 ± 0.2 82 ± 20 910 ± 180  

N 30.2 ± 2.4 280 ± 10 1.7 ± 0.3 58 ± 14 660 ± 150  

O 32.6 ± 0.7 360 ± 20 1.1 ± 0.2 36 ± 9 440 ± 110  

P 39.2 ± 2.0 290 ± 30 6 ± 2 63 ± 27 920 ± 390  

Q 42.8 ± 3.6 280 ± 20 4.9 ± 0.7 41 ± 10 660 ± 150  

d: BNNT diameter; L: BNNT suspended length (obtained both from AFM topography); 

κ: torsional spring constant; Gs and Gh: effective shear moduli according to solid rod and 

hollow cylinder model, respectively; τΒΝΝΤ: torsional strength (calculated for the whole 

nanotube). The experimental error (EE) for d is the standard deviation of several 

measurements performed along the BNNT length. The EE for L is derived from the resolution 

of the AFM topography image. The EE for κ is the damped least-squares fitting error 

obtained by fitting linear stiffness versus lever arm plots (Figure 1d and Figure S1) to 

equation (1) (see text and Methods below). The EE for Gh and Gs is obtained by combining 

the EE for d, L and κ. 
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Figure S1: Additional plots of linear stiffness against lever arm, for nanotubes B 

(a), D (b), H (c) and O (d). x represents the position along the pedal (the first 

measurement point is set to zero by definition). The data were fitted to equation (1) 

(see text). 
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Figure S2: BNNTs of different diameters and cross-section geometry. TEM 

images of BNNTs of diameters 7 nm (a), 9 nm (b), 16 nm (c), 22 nm (d), 25 nm (e), 

and 37 nm (f). Whereas nanotubes (a) and (b) have circular cross-sections, the black 

areas visible in nanotubes (c), (e) and (f) are a known indication of faceting. The 

faceted nature of nanotube (d) can be demonstrated by a direct observation of its 

polygonal cross-section. All scale bars: 10 nm.   
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Methods 

 

Synthesis: BNNT were synthesized by chemical vapor deposition as described in [S1] 

(nanotubes A to C) and [S2] (nanotubes D to Q). 

Nanofabrication: The torsional BNNT-based NEMS were produced by methods 

similar to those reported for previous torsional devices.S3-S5 Alignment marks were 

created on thermally oxidized silicon wafers (Si<100>, oxide thickness: 1µm) by 

electron-beam lithography, metal evaporation and lift-off. BNNTs were dispersed in 

1,2-dichloroethane by brief sonication prior to deposition. BNNTs tend to 

agglomerate as bundles and could not be fully separated by sonication. To produce 

individual nanotubes, BNNT aggregates were deposited on the Si wafer, which was 

then flushed with acetone and isopropanol, leaving behind several well separated 

nanotubes suitable for device production. The nanotubes were mapped and their 

diameter was measured by AFM imaging. Pads and pedals were laid down 

respectively onto the ends and middle part of the selected BNNTs by electron beam 

lithography, electron beam evaporation of Cr (5 nm) and Au (80 nm), and lift-off in 

acetone. The SiO2 layer was then etched in aqueous HF/NH4F (1:6) for 7 minutes. 

Then, without drying the samples, the etching solution was consecutively replaced by 

water, ethanol and pressurized CO2, from which they were critical-point dried. 

Devices A, B and C (Supplementary Table 1) were grounded during the torsion 

experiment, which required additional fabrication steps. Large electrodes were written 
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by electron-beam lithography together with pads and pedals. Then, before etching the 

SiO2 layer, the sample was mounted into a chip carrier and wire-bonded.  

BNNT torsion measurements: AFM imaging and mechanical measurements were 

performed on a Veeco Multimode/Nanoscope V equipped with a closed-loop scanner. 

The device on which we wish to perform the torsion experiment is first imaged in 

tapping mode (TM) AFM. We then zoom at the desired position and press on the 

pedal with the AFM tip, which twists the nanotube. During each press cycle, we 

acquire measurements of both the oscillation amplitude of the cantilever and its TM 

deflection as a function of its z-position ("force-distance measurement"). The TM 

deflection plot records the deformation of the cantilever as it presses on the pedal, 

whereas the amplitude plot is used as a control: when the tip touches the pedal, the 

oscillation amplitude of the cantilever is supposed to reach zero. Before the 

experiment itself, we always perform a force-distance measurement on a hard Au 

surface as a calibration (Figure S3). In order to get meaningful data, we need the 

spring constant of the cantilever to be of the same order of magnitude as the apparent 

spring constant of the nanotube. In most cases, 70 kHz silicon tips (Olympus) with a 

spring constant of ~ 2 N/m were successfully used; for devices A, B and C, we used 

low-frequency cantilevers (Micromasch, ν = 20 kHz, kc = 0.3 N/m). All spring 

constants were recalibrated by thermal tuning method. Additionally, the whole 

experiment is conducted under dry N2 flow in order to reduce humidity and thermal 

fluctuations. For thin BNNT devices (devices A, B and C), both the tip and the device 

were grounded during the experiment, in order to avoid static charging, which could 

break the device through electrostatic forces. 
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 . 

Figure S3: Force-distance measurements recorded upon pressing on a hard 

surface (left) and on the pedal (right). In both cases, when the tip touches the 

surface, the tapping amplitude reaches zero. The tapping mode deflection then 

increases linearly, corresponding to cantilever deformation. Because the pedal twists, 

the deformation undergone by the cantilever is less significant than if pressing on a 

hard surface, hence the smaller slope. In blue: trace; in red: retrace. 

 

The torsional stiffness was measured by pressing at a series of points along the 

pedal as described in the text, in Figure 1d, and in Supplementary Figure 1.  Since kc, 

zp and zc (see text) can all be determined with accuracy < 2%, the major source of 

uncertainty on κ comes from the experimental fit. Additionally, we were cautious to 

reach only low torsion angles (< 20°), in order to avoid any non-linear response, or 

plastic transition, which could arise at higher torsion angles. In most cases, the 

measurements were repeated either immediately, or a few weeks after the first 
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experiment. The values measured for κ  were found to be identical within the margin 

of experimental error. This indicates that no plastic irreversible transition has 

occurred, and that the true elastic torsional spring constant of each BNNT device is 

obtained.  

We were concerned that the metallic pedal might undergo deformation upon 

pressing, thus leading to an underestimation of the torsional spring constant. To test 

this possible effect, we built several "diving boards" (cantilevers extending from the 

metallic pads) and pressed along the board at regular intervals while acquiring force-

distance measurements. We then plotted the stiffness as a function of the distance 

from the edge (Figure S4). It is visible that while the stiffness indeed decreases along 

the board, thus indicating that it undergoes deformation, the board always remains 

much stiffer than the "pedal + nanotube" system. We could measure the apparent 

torsional spring constant of the board to be κAu = 1.9 ± 0.1 · 10-12
 N·m, which is one to 

two orders of magnitude larger than the typical spring constant of a multiwall BNNT. 

Therefore, in most cases, the elasticity of the Au pedal was negligible. When deemed 

necessary, we corrected the nanotube torsional spring constants accordingly.  
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Figure S4: Pedal deformation. (a) AFM tapping mode image of a suspended "diving 

board". For every position marked with a red dot, we acquired a force-distance 

measurement. (b) Relative stiffness of a BNNT (black) compared to Au pedal (red) 

and AFM cantilever stiffness (blue), as a function of distance from the torsional axis. 

Whereas the nanotube and cantilever stiffness are of the same order of magnitude, the 

Au pedal is one to two orders of magnitude stiffer. 

 

Microscopy: SEM imaging was performed with a Supra 55VP FEG LEO Zeiss in 

ultra-high vacuum, at acceleration voltage 5 kV. TEM imaging was performed on a 

FEI/Philips CM120, at acceleration voltage 120 kV.   
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Modeling 

1. Registry index for a faceted double walled boron nitride nanotube 

 
 

A faceted achiral double walled boron nitride nanotube (DWBNNT) has a polygonal 

cross-section which can be represented as follows (we use a perfect hexagonal cross 

section as an example): 

 

Figure S5: Model for a faceted nanotube with a hexagonal cross section 

 

We identify two types of regions along the polygonal circumference: (i) Side regions 

where sections of the outer prism can be projected onto parallel sections of the inner 

prism (we shall name these sections as "red" sections as they are marked with bold 

red lines in the above figure) (ii) Apex regions where such projections are not possible 

(these sections will be named as blue sections as they are marked with bold blue lines 
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in the figure). The length of each of the "blue" apex section is ϕtan/da =  where  d ≈ 

3.33 Å is the interlayer separation. The angle ϕ is related to the central angle θ = 2π/n, 

and thus to the number of apexes n, via 






 −=
−

=
n

1
2
1

2
π

θπ
ϕ . Using these relations 

we find that the total length of the "blue" sections of the outer shell is given by 
















 −

=

n

dn
an

1
2
1

tan

2
2

π
. 

The overall circumference of the outer shell L is assumed to be equal to the 

circumference of the corresponding pristine tube namely, L = πD, D being the 

diameter of the non-faceted outer tube. Therefore, the portion of the circumference 

that is of "red" type: 
















 −

−=
−

=

n
D

dn

L

anL

1
2
1

tan

2
1

2

ππ
β  

For the calculation of the registry index we now assume that the "red" sections are in 

perfect registry and thus contribute "-1" to the overall registry index and the "blue" 

sections which have no interlayer overlap are "neutral" in terms of their registry 

mismatch and thus contribute "0" to the overall registry. Thus the registry index can 

now be evaluated as: 
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It should be noted that in order to obtain perfect registry in the "red" regions the 

difference in length between the inner and outer facet which is of length 2a should be 
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integer multiples of the unit cells translational vector along the nanotube 

circumference. Naturally, this condition is hard to achieve and therefore one should 

expect that the "blue" regions will be somewhat stressed to allow for enhanced 

registry in the "red" regions which will not be in perfect registry. 

Figure 4d presents the results of this model for a hexagonal cross section. The 

dependence of the registry index, calculated using the above described procedure, on 

the number of apexes of the faceted nanotubes is plotted in Figure S6. 

 

Figure S6: Dependence of the registry index of a faceted BNNT, calculated using the 

procedure described above, on the number of apexes of the faceted nanotubes. Left 

panel: armchair DWBNNTs; Right panel: zigzag DWBNNTs. As can be seen, the 

dependence of the calculated RI on the number of apexes is relatively weak thus 

justifying our use of a hexagonal cross section. 
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2. Scaling of torsional mechanical coupling with BNNT radius 

TEM imaging indicated that faceting is the origin of the ultrahigh torsional 

stiffness observed in multiwall BNNTs. Based on the observation that thick BNNTs 

appear faceted in TEM and yet exhibit weak torsional coupling, we hypothesized that 

thick BNNTs undergo unfaceting upon twisting: under torsion, some (or all) shells of 

a thick BNNT undergo a conformational change that allows the outer layer(s) to slide 

freely.  

The model we develop addresses the two following questions:  

(i) What drives the formation of facets, and why do they appear only above a 

certain diameter? 

(ii) What drives the unfaceting of faceted nanotubes? Why is it favored for 

thicker tubes? 

This model is based primarily on analyzing how each contribution to the BNNT total 

energy scales with the BNNT radius R. 

 

2.1. Formation of facets   

The faceting of the nanotubes, namely the transition between circular and 

faceted cross sections, results from a delicate balance between intralayer and 

interlayer energy contributions. We will now evaluate the scaling with R of intralayer 

and interlayer effects both for cylindrical and faceted nanotubes.  
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2.1.1. Intralayer energy 

 The intralayer energy for circular nanotubes corresponds to the curvature 

strain energy Ecurv. Ecurv scales linearly with the number of layers, and quadratically 

with the curvature of the nanotube.S6 The number of layers scales with R and the 

curvature scales with R-1, therefore Ecurv ∝ R-1.    

The intralayer energy for faceted nanotubes corresponds to the energy required 

to create facet edges. Eedges is proportional to the total number of edges. The number 

of edges per layer being a constant, Eedges therefore increases linearly with the number 

of layers: Eedges∝ R. 

 

2.1.2. Interlayer energy 

The interlayer energy corresponds to the attraction (or repulsion) felt by an 

atom from its nearest out-of-plane neighbors. The total interlayer energy Einter is the 

sum of these individual contributions over the whole nanotube. Einter therefore scales 

like the nanotube cross-section area, i.e. Einter∝ R
2, both for circular and faceted 

nanotubes.  

Einter also depends on the stacking between the layers: the better the stacking, 

the lower (i.e. the more stabilizing) Einter will be. Or, expressed in terms of registry 

index (RI) (see Figure 4d): the lower the RI, the lower Einter. Figure 4d shows that for 

a diameter d > 2-3 nm, the RI is lower for faceted than for circular nanotubes. One 

can therefore safely assume that for our BNNTs, Einter is lower for faceted than for 
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circular nanotubes. Moreover, the RI saturates and does not vary with d when d 

becomes larger than a few nm.  

 

2.1.3. Total energy 

One can now express the total energy of the nanotube, both in the faceted and 

the circular geometry. For circular nanotube, the total energy EC can be written as 

E
C (R) = EC

inter (R) + EC
intra (R) = αR

2
 + βR

-1   

where α and β are independent of R. Similarly, for faceted nanotubes:  

E
F (R) = EF

inter (R) + EF
intra (R) = α'R2

 + β'R 

where α' and β' are independent of R. We have also established that EF
inter < EC

inter 

and therefore α' < α. As R increases, interlayer contributions, which scale like R
2, 

become dominant over intralayer contributions, which scale like R or R-1. Since EF
inter 

< EC
inter, the energy of the faceted geometry becomes lower than the energy of the 

cylindrical geometry above a certain RF (faceting radius): the nanotube undergoes 

faceting. In other words, when the nanotube becomes large enough, it can create large 

flat areas with perfect registry that compensate for the energetical cost of edges; then 

faceting occurs. 

   

2.2. Unfaceting under torsional stress 

 Upon application of a torque, a third energy contribution must be considered: 

the elastic torsional energy Etwist. Let us now evaluate the scaling of Etwist with R in the 
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two extreme cases described in the main text of the article (one layer twisting and 

slipping vs. all layer twisting together). 

One layer twisting: Etwist-one = (1/2)κoneφ 2 where κone = (4GπR
3δr)/(2L): Etwist-one ∝ R3. 

All layers twisting: Etwist-all = (1/2)κallφ 2 where κone = (GπR
4)/(2L) : Etwist-all ∝ R4.  

 Therefore, torsional energy terms, which scale at least as R3, are expected to 

become dominant over both intra- and interlayer energy terms (scaling at most as R2) 

as R increases. Since Etwist-one ∝ R3 and Etwist-all ∝ R4, slipping of the outer layer around 

the inner shells should become favorable for large R – even at the expense of 

significant internal reorganization and increase of the interlayer energy. In other 

words: above a certain RU (unfaceting radius) and submitted to a torsional stress, the 

faceted nanotube reverts back to a circular geometry, thereby allowing its outer shell 

to freely slide around its inner layers. It should be noted that unfaceting is also 

expected to occur below RU if the torsion angle is large enough, which probably 

accounts for the relative softening observed at large twisting angles in Figure 3. 

 

2.3. Summary  

We have shown here that the various torsional behaviors observed for BNNTs 

are due to a delicate balance of their intralayer, interlayer and torsional energies.  

For thin nanotubes, intralayer energy dominates: the energetical cost of 

facet edges is too heavy and thin BNNTs are thus circular. They exhibit a low 

torsional coupling and low sliding energy, due probably to the loss of 

commensurability between layers arising when h-BN folds into BNNTs.   
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For intermediate nanotubes, interlayer energy dominates: interlayer 

stabilization allows the formation of faceted nanotube, and the preservation of the 

faceted structure upon twisting. A large torsional coupling ("ultrahigh stiffness") is 

observed. 

For thick nanotubes, torsional energy dominates, entailing unfaceting of 

the nanotube to allow the outer shell to slip around the inner layers. The torsional 

coupling is again low.  
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