
Convergence tests for the cluster DFT calculations 

 

1. Convergence with respect to basis set. 

Test calculations for basis set convergence have been performed using the PBE 
functional for a 72 atoms zigzag h-BN dimmer. A set of three Gaussian basis sets with 
increasing size and diffuseness has been used including the 3-21G, 6-31G**, and 6-
311++G(3df,3pd). At an interlayer distance of 3.3 Å the difference between the total energy 
calculated using the 6-31G** and the 6-311++G(3df,3pd) basis sets is ~1.3 meV/atom. When 
looking at the different energy components at that interlayer distance the exchange-correlation 
energy is converged down to ~1.2 meV/atom. The electrostatic and kinetic energies are less 
converged (~8 and ~10.6 meV/atom, respectively) although, as mentioned above, their overall 
contribution to the total energy is well converged. The following figure shows the 
convergence of the different energy terms as function of interlayer distance with respect to the 
basis set used. As can be seen, for the purpose of estimating the role of the different energy 
components for the interlayer binding the 6-31G** basis set results are satisfying. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. S1: Basis set convergence tests for the cluster DFT calculations. Electrostatic (upper left panel), exchange correlation (upper 
right panel), kinetic (lower left panel), and total (lower right panel) energies as a function of the interlayer distance of a 72 atoms 
zigzag h-BN dimmer calculated using the PBE functional and the 3-21G (solid black line), 6-31G** (dashed red line), and the 6-
311++G(3df,3pd) (dashed-dotted green line) basis sets. Insets: zoom in on the region of physically relevant interlayer distances. 



2. Convergence with respect to the size and shape of the cluster 

To test for convergence of the results with respect to the shape and size of the finite 
bilayer flakes used, calculations of the different energy components as a function of the 
interlayer distance for armchair and zigzag flakes of increasing size have been performed. Fig. 
S2 presents images of some of the flakes used in the present study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All calculations have been performed using the PBE/6-31G** level of theory. At 3.3 
Å the total, electrostatic, exchange-correlation, and kinetic energies of the zigzag h-BN 
dimmer consisting of 672 atoms are converged down to 0.2, 1.4, 0.5, 2.1 meV/atom, 
respectively. For the armchair graphene dimmer consisting of 528 atoms at the same 
interlayer distance the total, electrostatic, exchange-correlation, and kinetic energies are 
converged down to 0.2, 2.5, 1.7, 4.4 meV/atom, respectively. 

Figs. S3 and S4 present the convergence of the interlayer dependence of the different 
energy components as a function of flake size for bilayer graphene and h-BN, respectively. As 
can be seen, for all practical purposes the results of the largest cluster sizes are well converged 
showing only marginal edge effects. 

Fig. S5 compares the interlayer dependence of the different energy components of two 
armchair and one zigzag h-BN dimmers showing that the converged results are independent 
of the shape of the flakes used in the calculations. 

Fig. S2: Images of some of the hydrogen terminated dimmer hexagonal flakes used in the present study: (a) 120 atoms armchair 
graphene dimmer, (b) 288 atoms armchair graphene dimmer, (c) 528 atoms armchair graphene dimmer, (d) 120 atoms armchair h-
BN dimmer, (e) 288 atoms armchair h-BN dimmer, (f) 72 atoms zigzag h-BN dimmer, (g) 240 atoms zigzag h-BN dimmer, (h) 504 
atoms zigzag h-BN dimmer, and (i) 672 atoms zigzag h-BN dimmer. Cyan, blue, pink and grey spheres represent carbon, nitrogen, 
boron, and hydrogen atoms, respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S3: Convergence of the interlayer dependence of the electrostatic (upper left), exchange-correlation (upper right), kinetic 
(lower left), and total (lower right) energies with respect to the size of the armchair graphene flakes. Solid black, dashed red, and 
dashed-dashed-dotted green curves represent results for the 120, 288, and 528 atoms graphene dimmer flakes. 

Fig. S4: Convergence of the interlayer dependence of the electrostatic (upper left), exchange-correlation (upper right), kinetic 
(lower left), and total (lower right) energies with respect to the size of the zigzag h-BN flakes. Solid black, dashed red, dashed-
dashed-dotted green, and dashed-dotted blue curves represent results for the 72, 240, 504, and 672 atoms h-BN dimmer flakes. 



 

 

 

 

 

 

  

Fig. S5: Convergence of the interlayer dependence of the electrostatic (upper left), exchange-correlation (upper right), kinetic 
(lower left), and total (lower right) energies with respect to the shape of the h-BN flakes. Solid black, dashed red, and dashed-
dashed-dotted green curves represent results for the 120 atoms armchair, 288 atoms armchair, and 672 atoms zigzag h-BN dimmer 
flakes. 



The Ewald summation method for the Coulomb potential of a two 
dimensional (2D) periodic slab of point charges 

We are interested in calculating the electrostatic potential induced by a slab of charged particles which 
is periodic in two directions and finite in the third direction. For simplicity we consider a rectangular 
unit-cell such that the periodic directions are aligned along the X and Y axes with translational vectors 

 0,0,xx Ta 


 and  0,,0 yy Ta 


. The unit cell is assumed to contain d  charged particles
 
located at 

positions   dizyxr iiii ,,2,1;,, 
  and to be charge neutral such that: 
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The location of a general atom in the slab is then given by the following expression: 
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With these definitions we may write the general expression for the electrostatic potential at point 

  mnirzyxr ,,,,


  due to the infinite 2D-periodic slab as: 
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The potential  r
  is a periodic function in the X and Y directions with a period of xx aT


  along 

the X direction and a period of yy aT


  along the Y direction. This can be easily demonstrated as 

follows: 
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where p  is an integer number and the equality leading from the second to the third line uses the fact 

the summation over the index n covers the infinite range of integer numbers from   to  . 
Similar arguments may be used to prove the periodicity in the y direction. 

We can now define the potential arising at point r


 due to one of the particles in the unit cell and its 
periodic images: 
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such that 
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The sum appearing in Eq. (5) is divergent while the sum appearing in Eq. (3) is conditionally 

convergent provided that the unit cell is charge neutral (Eq. (1)). In order to evaluate the sum  r
  we 

utilize the Ewald summation method which splits the conditionally convergent sum into two 
absolutely (fast) converging sums. This is achieved by splitting the singular and long-range Coulomb 
potential into a singular short-range part, which can be readily evaluated in real-space, and a non-
singular long-range part which is evaluated in reciprocal space. To this end, we notice that, similar to 

 r
 ,  ri

  is also a periodic function in the X and Y directions with the same periodicity (the proof 

follow the same lines as the proof for  r
 ). 

We now recall that a periodic function     ,2,1,0;  nnTxfxf  can be expanded in a 

Fourier series of the form: 
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 Defining ,4,2,0 TTkx    the expansion can be rewritten in the following form: 
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Similarly, for a two-dimensional (2D) periodic function which obeys 

    ,2,1,0,;,,  mnmTynTxfyxf yx one has: 
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It is now possible to expand  ri

  as a 2D Fourier series of the form: 
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With the Fourier coefficients given by: 

(S12) 

   

     
 ykxki

iyixi
n m

T

T

T

Tyx

i

i
i

T

T

T

Tyx
i

yx

y

y

x

x

y

y

x

x

e
zzmTyynTxx

dydx
TT

q

erdydx
TT

z








 










  



222

2

2

2

2

2

2

2

2

1

1
,ˆ 



 

Defining new variables:  

(S13) 
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We can rewrite the integral as: 

(S14) 
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Noticing that 
    ,2,1,0,,,;12
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and defining 

 iii yx ,  and  yx ~,~~ 


 we obtain: 
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In Eq. (15) both integrations are performed over finite segments. The summation shifts the segments 
in a consecutive manner such that the sum of all segmental integrals can be replaced by an integral 
over the full range: 
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Here, we have displayed the terms with 1,0,1 n , respectively. Similarly, we obtain  
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 such that  z~,ˆ    is given by: 
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The evaluation of the remaining double integrals is performed by transforming to a polar coordinate 
system such that: 
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and 
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We may now also transform   to its polar representation  

(S20) 
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to obtain: 

(S21) 
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By changing variables such that  ~
;

~
dd   we can write: 
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Since the cosine function is periodic and the angular integration is performed over a full period of 2  
we may write: 
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where  xJ0  is the zeroth order Bessel function of the first kind, and the last equality results from the 

fact that   and ~  are positive norms of the corresponding vectors. With this we can write: 

(S24) 
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where we have set  ~;~ ddRR  . Since, izzz ~ we can finally write: 
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In order to construct fully convergent lattice sums, we now use the following integral identity to split 

the 1  into two ranges: 
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Using this we obtain: 

(S27) 
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Where the short (S) and long (L) range contributions to  zi ,ˆ  
 have been defined as: 

(S28) 
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The full potential can be now written as: 
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The long range term 

The long range term,  rL  , is absolutely convergent in reciprocal space and thus it is first summed 

in reciprocal space and then transformed back to real space. When evaluating the relevant integrals 
one needs to separately treat the cases where 0  and 0 : 



For 0  the long-range integral is given by: 
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And thus: 
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For 0  the integral is divergent. Nevertheless, it can be written as a sum of a converging integral 
and a constant (not depending on i) divergent part as follows: 

(S32) 
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with this we obtain: 

(S33) 
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Since we treat charge neutral unit‐cells such that  0
1
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iq  (Eq. (1)) the divergent term falls and we 

are left with: 
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We can now back‐transform to real space: 
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Where  ,4,2,0 xxx TTk    and  ,4,2,0 yyy TTk    and the star sign  indicates 

that we the term with  0 yx kk  is excluded from the sum. This can be explicitly written as:

 

(S36) 
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The short range term 

The short range term,  rS  , is first back-transformed to real space (where it is absolutely 

convergent) and then summed. 

(S37) 
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According to Poisson's summation formula (see proof below) we may write 
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and applying to one of the sums above we obtain: 
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Thus using Poisson's formula (Eq. (38)) we obtain: 

(S40)         









 
n

txnTx

m

TimxTimxtTm

xk

xxiktk

x

ixxxix

x

ixx e
t

eee
T

ee
T

222222 4222

2

111


  

Using this we can now write 
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So that 
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The Ewald method for partially charged atomic centers in h-BN 

Using the method described above, we can now write explicit expressions for calculating the 
electrostatic potential above a single layer of hexagonal boron nitride (h-BN). As explained above, we 
consider a rectangular unit-cell of the h-BN layer (see Fig. S1) with translational vectors 

 0,0,13aax 


 and  0,1,03aay 


, x-periodicity of aaT xx 3


 and y-periodicity of 

aaT yy 3


,  a  being the B-N bond length. 

 

 

 

 

 

 

 

 

 

 

 

Without loss of generality we assume that the h-BN sheet is located in the XY-plane with Z=0 and 

calculate the electrostatic potential generated by the 2D sheet at a general point  0,,  zyxr


. The 

rectangular unit cell includes 4d  atoms located at the following positions: 
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and bearing the following charges: 
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such that it is charge neutral: 

(S45) 
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The long range term 

The long range term appearing in Eq. (36) is composed of two terms, one resulting from the case 

where =0 and the other with >0. 




a3

a3

a x 

y 

Fig. S6: Illustration of the unit cell used for the Ewald summation of the electrostatic potential above a two dimensional layer of 
pristine hexagonal boron nitride. Blue and orange circles represent boron and nitrogen atoms, respectively. Dashed red line shows 
the minimal (non-Cartesian) unit-cell consisting of two atoms while the full red line shows the rectangular Cartesian four atom unit-

cell used in the calculations presented in the present study. a and  stand for the B-N bond length and partial charge on each atomic 
site, respectively (see main text for more details). 



Since 0iz  (Eq. (43)) and the unit cell is neutral (Eq. (45)) the term with =0 vanishes 

(S46) 
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Therefore, for the long range contribution to the potential we are left with the >0 term:  

(S47) 
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This sum can be rewritten as a sum of three terms: (i) a term with 0n  and 0m , (ii) a term with 

0n  and 0m , and (iii) a term with 0n  and 0m . Furthermore, we can limit the sums to the 

range ,,1,0   by collecting the terms with corresponding positive and negative indices: m  and 

n . 
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So that 

(S48) 
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So that 
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so that 
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Summing up all the long-range terms (Eqs. (48), (49), and (50)) we obtain: 

(S51) 

       

               

           

    

           

    











































































































































4

1

3232

1

4

1

3232

1

4

1

22332

22332

1 1
22

32cos

2
32

2
32

1

3

1

32cos

2
32

2
32

1

3

1

32cos32cos
2

332

2
332

39

12

22

22

i
ii

zanzan

n

i
i

i

zamzam

m

i
iii

zmna

zmna

n m

L

axxnq

z
anerfce

z
anerfce

na

ayymq

z
amerfce

z
amerfce

ma

ayymaxxnq
z

mnaerfce

z
mnaerfce

mna
r

































 

 

 

 



The short range term 

For the short range term we obtain (see Eq. 42): 

(S52) 
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Proof of Poisson's summation formula (Eq. 38): 

We define a function 

(S53)    
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expanded in a Fourier series such that: 
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Here, similar to Eq. (16) we have used the relation:  

(S56)  
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The total interlayer Coulomb energy due to interactions between partially 

charged atomic centers of an infinite h-BN bilayer 

Consider a h-BN bilayer of finite size consisting of N unit cells stacked in parallel exactly on top of 
each other in the AA' stacking mode with an interlayer distance R. The intra-layer monopolar 
Coulomb interactions within each layer are independent of R and are therefore not considered. We are 
interested in calculating the interlayer monopolar interaction energy given by (in atomic units):  

(S57) 
   


   


N

i d

N

j e ejdi

ejdiEl
N r

qq
E

1

2

1 1

2

1 ,;,

2
,

1
,;2,1  

Where the sums over i and j run over all unit cells in layers 1 and 2, respectively, and the sums over d 

and e run over the two atoms within each unit cell of the corresponding layer.  1
,diq  is the formal charge 

on atom d of unit cell i in layer 1,  2
,ejq  is the formal charge on atom e of unit cell j in layer 2, and 

ejdir ,;,  is the distance between these two atoms. We may rewrite this sum as follows: 

(S58)  
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,  is the monopolar electrostatic potential experienced by particle d in unit 

cell i of layer 1 due to all the atomic formal charges in layer two. 

As the limit of an infinite bilayer will be taken it is desired to normalize the energy by the total number 
of atoms 4N: 

(S59)    
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When the limit N  is taken all unit cells of layer 1 become equivalent both in terms of their 
atomic charges and in terms of the electrostatic potential they experience due to layer 2. Therefore, 
one may replace the general cell index i by any cell index, say 1, and write 
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didi qq  .With this we may write the total energy per atom in the limit of an 

infinite bilayer as: 
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or: 

(S61)      
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Furthermore, due to the lattice symmetry of the AA' stacked h-BN bilayer the potential experience by 
the two atoms within each unit cell is equal in magnitude and opposite in sign. Since the formal 
charges of the two atoms in the unit cell are opposite in sign as well the monopolar electrostatic energy 
they contribute is equal resulting in the following final expression for the total energy per atom of the 
infinite bilayer h-BN system: 

(S62)      
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Namely, the total monopolar electrostatic energy per atom of the infinite bilayer h-BN system equals 
half the energy of a charge placed above a lattice site of a single infinite h-BN layer. The monopolar 

electrostatic potential,  2
,di , may be calculated using the Ewald summation method described above. 

  



The total interlayer vdW energy of infinite bilayer graphene and h-BN 

Consider a finite sized h-BN or graphene bilayer consisting of N unit cells stacked in parallel exactly 
on top of each other in the AA' stacking mode with an interlayer distance R. The intra-layer vdW 
interactions within each layer are independent of R and are therefore not considered. We are interested 
in calculating the interlayer vdW energy given by: 

(S63) 
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where the sums over i and j run over all unit cells in layers 1 and 2, respectively, and the sums over d 

and e run over the two atoms within each unit cell of the corresponding layer. ejdic ,;,
6  is the appropriate 

c6 coefficient between atom d of unit cell i in layer 1 and atom e of unit cell j in layer 2 and ejdir ,;,  is 

the distance between these two atoms. 

As the limit of an infinite bilayer will be taken it is desired to normalize the energy by the number of 
atoms, 4N. Thus, the total vdW energy per atom is given by: 

(S64) 
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where the bar designates energy per atom. In the above expression the term  
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 is the 

vdW interaction energy of unit cell i in layer 1 with all the atoms in layer 2. When the limit N  is 
taken all unit cells in layer 1 become equivalent in terms of their chemical environment (and thus also 
in terms of their C6 coefficients) and also in terms of their interaction with the infinite layer 2. 
Therefore one may replace the general cell index i by any cell index, say 1, and write 
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. With this we may write the total energy per atom in 

the limit of an infinite bilayer as:  

(S65) 
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or: 

(S66)  
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Namely, the total vdW energy per atom of the infinite bilayer h-BN or graphene systems equals a 
quarter of the vdW energy of a single unit cell placed above a single infinite layer of the corresponding 

material. As the vdW energy decays as 1 ൗݎ  this sum is absolutely convergent and one may use a 

finite flake to represent the infinite lower layer and converge the results with respect to the dimensions 
of the flake. 


