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S.1 Benzene MO energies 

In Fig. 2 of the main article, we plotted the energy eigen-values of the particle-in-a-ring (PIR) model and compared 

them to the MO energies of the benzene molecule, in both cases, energies were plotted as a function of an external 

uniform magnetic field perpendicular to the ring systems. MO energies of the benzene molecule were calculated 

with the GFN1-xTB-M1 method (see Section S.2 and Refs. 1 to 3) without the contributions from the spin-Zeeman 

effect since this is not included in the PIR model. To reduce the complexity of the benzene MO energy plots, only 

MOs with contributions from the pz atomic orbitals were shown. For completeness, we include in Fig S.1 the 

benzene α and β-spin MO energies with the spin-Zeeman interaction for the benzene MOs which included 

contributions from the pz atomic orbitals. 

 

  
Fig. S.1. Magnetic field dependence of the energy eigen-values of the benzene molecule (calculated using the 
GFN1-xTB-M1 method and plotted relative to the centre of the HOMO-LUMO gap in the absence of a magnetic 
field) only the benzene energy eigen-values of MOs with contributions from the pz atomic orbitals are shown. 
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S.2 GFN1-xTB-M1 

All calculations presented in the main article were carried out using the GFN1-xTB-M1 variant of the GFN1-

xTB-M extended tight-binding method,1-3 which incorporates field-dependent kinetic and spin-Zeeman 

interaction energy terms in the Hamiltonian. To avoid gauge-origin dependencies of the calculations, the GFN1-

xTB-M methods use London atomic orbitals (LAOs), which are obtained from standard atomic orbitals (AOs) 

through the multiplication of a field-dependent complex exponential:4 

𝜔!(𝐑! , 𝐫) = 𝜙!(𝐑! , 𝐫)exp ,−
𝑖𝑒
ℏ 𝐀! ⋅ 𝐫3 (1) 

with 

𝐀! =
1
2𝐁 ×

(𝐑! −𝐎), (2) 

where 𝜔!(𝐑! , 𝐫) are the LAOs, 𝜙!(𝐑! , 𝐫) are AOs, 𝐀! is the vector potential (defined in the Coulomb gauge) of 

a uniform magnetic field, 𝐁, evaluated at the atomic orbital center 𝐑! and 𝐎 is the gauge-origin. 

The use of LAOs leads to a reduction of the permutational symmetry of the two-electron integrals, which 

results in a greater computational burden that hampers the use of current density functional theory (CDFT) 

methods for large systems such as those considered herein. Notably, the GFN1-xTB-M1 method circumvents the 

need for explicit two-electron integral evaluations and considers only the valence electrons, resulting in a 

considerable reduction to the computational load. Further details of the GFN1-xTB-M1 method including 

comparisons against Hartree-Fock calculations of geometries, total energies, magnetic properties, and current 

densities under strong magnetic fields can be found in Ref. 3 below. 

To validate the GFN1-xTB-M1 approach for the porphyrin nanorings considered in the main article, we 

compared the difference between the field-free and 5 T orbital energies of the non-planar c-P4 and f-P4 molecules 

calculated using GFN1-xTB-M1 and CDFT. For the CDFT calculations, we use the PBE0 exchange-correlation 

density functional with the 3-21G basis set and the resolution-of-the-identity approximation for the two-electron 

integral evaluations5 with an auxiliary basis set generated using the AutoAux algorithm.6 To that end, we used the 

optimized GFN1-xTB-M1 molecular geometries in the absence of a magnetic field. 

First, we note that both GFN1-xTB-M1 and PBE0 provide a qualitatively similar low-energy spectrum, 

where the former yields smaller bandgaps and overall lower orbital energy spacings, as expected.1 Table S.1 

presents the change in the GFN1-xTB-M1 and PBE0 orbital energies upon the application of a perpendicular 5 T 

magnetic field. Here, as well, a qualitative agreement between the two methods is observed with some quantitative 

differences, where the GFN1-xTB-M1 generally underestimates the absolute value of the energy change occurring 

for the doubly degenerate orbitals for both the c-P4 and f-P4 nanorings. In the transmittance probability curves, a 

similar qualitative agreement is expected to occur with some quantitative differences in the peak positions. Given 

the good qualitative agreement obtained between both methods and the considerable computational burden 

associated with CDFT calculations, we have opted to use GFN1-xTB-M1 throughout the main article. 
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  ∆𝐸 / meV 
(GFN1-xTB-M1) 

∆𝐸 / meV 
(PBE0/3-21G) 

Spin Orbital c-P4 f-P4 c-P4 f-P4 

α -
sp

in
 

LUMO+3 0.29 0.29 0.29 0.29 
LUMO+2 1.67 1.06 2.41 2.20 
LUMO+1 −1.10 −0.48 −1.83 −1.63 

LUMO 0.29 0.29 0.29 0.30 
HOMO 0.29 0.29 0.28 0.28 

HOMO−1 1.62 0.29 2.50 0.29 
HOMO−2 −1.04 0.93 −1.92 1.35 
HOMO−3 0.29 −0.35 0.29 −0.77 

β -
sp

in
 

LUMO+3 −0.29 −0.29 −0.29 −0.29 
LUMO+2 1.10 0.48 1.83 1.63 
LUMO+1 −1.67 −1.06 −2.41 −2.21 

LUMO −0.29 −0.28 −0.28 −0.28 
HOMO −0.29 −0.29 −0.30 −0.29 

HOMO−1 1.04 −0.29 1.92 −0.29 
HOMO−2 −1.62 0.35 −2.50 0.77 
HOMO−3 −0.29 −0.93 −0.29 −1.35 

Table S.1. The change (with respect to the field-free case) in the α and β-spin orbital energies of the planar c-P4 
and the f-P4 nanorings after a perpendicular magnetic field of 5 T is applied, calculated using GFN1-xTB-M1 
and CDFT at the PBE0/3-21G level of theory. 
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S.3 The non-self-consistent Green’s function approach 

To evaluate the current-voltage-magnetic-field characteristics of molecular interferometers, we implemented and 

applied a non-self-consistent non-equilibrium Green's function approach within the QUEST code. Given the 

overlap and effective Kohn-Sham matrix blocks of the extended molecule, the left and right leads, and their 

corresponding coupling matrices (evaluated in the absence of a bias voltage for the entire finite model system) we 

can obtain the necessary matrices required for the calculation of the transmission probability function via eq (8) 

in the main article. The dressed extended-molecule retarded Green's function is obtained from, 

𝐆M
r,%(𝐸) = [(𝐸 + 𝑖𝜂)𝐒M − 𝐅M% 	− 𝚺L

r,%(𝐸) − 𝚺R
r,%(𝐸)](), (3) 

where 𝐅M% and 𝐒M are the Kohn-Sham and overlap matrix blocks of the extended molecule section (including the 

molecular ring and its adjacent lead sections, chosen to be sufficiently long to avoid direct coupling between the 

ring and the leads), 𝜎 = 𝛼, 𝛽 represents the spin state, and 𝜂 is a small real number introduced to shift the poles 

of the Green's function from the real axis. The retarded lead self-energies are given by, 

𝚺J=L/R
r,% (𝐸) = H(𝐸 + 𝑖𝜂)𝐒MJ − 𝐅MJ% I𝐆-

r,%(𝐸)H(𝐸 + 𝑖𝜂)𝐒JM − 𝐅JM% I, (4) 

where 𝐅MJ%  and 𝐅JM%  (𝐒MJ and 𝐒JM) are the Kohn-Sham (overlap) block matrices between the left or right leads and 

the extended molecule, respectively. The retarded surface Green's functions of the bare left or right leads, 𝐆L/R
r,% (𝐸), 

are evaluated via an iterative procedure outlined in Refs. 7 and 8. Due to the presence of a finite magnetic field, 

this procedure must be modified to account for the fact that the Kohn-Sham and overlap matrix elements in the 

LAO basis are not necessarily translationally invariant (see Section S.4). The advanced lead self-energy is given 

by 𝚺L/R
a,% (𝐸) 	= 	 H𝚺L/R

/,% (𝐸)I0 and the broadening matrices appearing in eq (8) in the main article are obtained via, 

𝚪L/R% (𝐸) = 𝑖H𝚺L/R
r,% (𝐸) − 𝚺L/R

a,% (𝐸)I (5) 
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S.4 The iterative procedure 
Due to the presence of a finite magnetic field, we outline some modifications that we made to the iterative 

procedure used to calculate the surface and bulk Green's functions (GF) of the semi-infinite leads. The original 

scheme, found in Refs. 7 and 8, divides a (semi-)infinite system into a set of principal layers, such that the inter-

layer coupling is negligible beyond nearest neighbors. The approach progressively adds to the Green's function of 

the surface principal layer the contribution of increasingly remote bulk layers up to convergence to a given 

accuracy threshold. 

 

S.4.1 The surface Green's function 

In the absence of a magnetic field, the corresponding procedure to obtain the energy dependent surface Green's 

function 𝐆11(𝐸) follows the equation: 

M

𝜀𝐒11 −𝐇11 𝜀𝐒1) − 𝐕1) 𝟎 ⋯
𝜀𝐒)1 − 𝐕)1 𝜀𝐒)) −𝐇)) 𝜀𝐒)2 − 𝐕)2 ⋯

𝟎 𝜀𝐒2) − 𝐕2) 𝜀𝐒22 −𝐇22 ⋯
⋮ ⋮ ⋮ ⋱

UM

𝐆11(𝐸) 𝐆1)(𝐸) 𝐆12(𝐸) ⋯
𝐆)1(𝐸) 𝐆))(𝐸) 𝐆)2(𝐸) ⋯
𝐆21(𝐸) 𝐆2)(𝐸) 𝐆22(𝐸) ⋯

⋮ ⋮ ⋮ ⋱

U = 𝕀. (6)	 

If the overlap (𝐒), Hamiltonian (𝐇), and coupling (𝐕) matrix blocks for each principal layer and between each pair 

of adjacent layers beyond the surface layer are sufficiently similar, eq (6) can be approximated by, 

M

𝜀𝐒11 −𝐇11 𝜀𝐒1) − 𝐕1) 𝟎 ⋯
𝜀𝐒)1 − 𝐕)1 𝜀𝐒)) −𝐇)) 𝜀𝐒1) − 𝐕1) ⋯

𝟎 𝜀𝐒)1 − 𝐕)1 𝜀𝐒)) −𝐇)) ⋯
⋮ ⋮ ⋮ ⋱

UM

𝐆11(𝐸) 𝐆1)(𝐸) 𝐆12(𝐸) ⋯
𝐆)1(𝐸) 𝐆))(𝐸) 𝐆)2(𝐸) ⋯
𝐆21(𝐸) 𝐆2)(𝐸) 𝐆22(𝐸) ⋯

⋮ ⋮ ⋮ ⋱

U = 𝕀, (7) 

where 𝐇11 and 𝐒11 are the surface layer Hamiltonian and overlap block matrices, 𝐇)) and 𝐒)) are the bulk layer 

Hamiltonian and overlap block matrices, 𝐒)1/𝐒1) and 𝐕)1/𝐕1) are the overlap and coupling block matrices between 

adjacent layers respectively, and 𝜀 = (𝐸 + 𝑖𝜂). We deviate slightly from the original iterative scheme in Refs. 7 

and 8 by allowing the surface layer to be different from the bulk layers. To obtain the electronic structure of the 

(semi-)infinite system using matrix blocks extracted from manageable finite system calculations via the following 

chain of equations: 

(𝜀𝐒11 −𝐇11)𝐆11(𝐸) = 𝐈 − (𝜀𝐒1) − 𝐕1))𝐆)1(𝐸)	

(𝜀𝐒)) −𝐇)))𝐆)1(𝐸) = (𝐕)1 − 𝜀𝐒)1)𝐆11(𝐸) + (𝐕1) − 𝜀𝐒1))𝐆21(𝐸)	

(𝜀𝐒)) −𝐇)))𝐆21(𝐸) = (𝐕)1 − 𝜀𝐒)1)𝐆)1(𝐸) + (𝐕1) − 𝜀𝐒1))𝐆31(𝐸),	

⋮ (8)	 

so that 

𝐆11(𝐸) = [(𝜀𝐒11 −𝐇11) + (𝜀𝐒1) − 𝐕1))(𝐭1 + 𝐭̃1𝐭) + 𝐭̃1𝐭̃)𝐭2 +⋯)](), (9) 

where	

𝐭1 = (𝜀𝐒)) −𝐇)))()(𝐕)1 − 𝜀𝐒)1)	

𝐭̃1 = (𝜀𝐒)) −𝐇)))()(𝐕1) − 𝜀𝐒1)) (10) 

and 
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𝐭4 = (𝐈 − 𝐭4()𝐭̃4() − 𝐭̃4()𝐭4())()𝐭4()2 	

𝐭̃4 = (𝐈 − 𝐭4()𝐭̃4() − 𝐭̃4()𝐭4())()𝐭̃4()2 . (11) 

 

S.4.2 An iterative procedure for LAOs 

When considering finite magnetic fields, the matrix blocks need to be written in the basis of LAOs rather than 

standard (e.g. Gaussian or Slater) atomic orbitals, to produce gauge-origin independent results.4 The 

corresponding overlap matrix elements are then given by, 

𝑆))5! = ad𝐫  𝑒46𝐀!(𝐀"8⋅𝐫𝜙5∗d𝐑5 , 𝐫e𝜙!(𝐑! , 𝐫). (12) 

Since in each iteration step, we are interested in adding the contribution of progressively displaced principal layers, 

the elements of the overlap matrices of the next two layers will be, 

𝑆225! = ad𝐫  𝑒46𝐀!# (𝐀"# 8⋅𝐫𝜙5∗d𝐑5< , 𝐫e𝜙!(𝐑!< , 𝐫)	

𝑆335! = ad𝐫  𝑒46𝐀!##(𝐀"##8⋅𝐫𝜙5∗d𝐑5<<, 𝐫e𝜙!(𝐑!<<, 𝐫)	, (13) 

where 𝐑!< = 𝐑! + 𝐑T and 𝐑!<< = 𝐑! + 2𝐑T are the positions of orbital ν in layers 2 and 3, respectively, 𝐑T is the 

translation vector, which relates one layer to another, and 

𝐀!< =
1
2𝐁 ×

(𝐑!< −𝐎) =
1
2𝐁 ×

(𝐑! + 𝐑T −𝐎)	

𝐀!<< =
1
2𝐁 ×

(𝐑!<< −𝐎) =
1
2𝐁 ×

(𝐑! + 2𝐑T −𝐎)	. (14)	

Since 𝜙(𝐑, 𝐫) depends only on (𝐫 − 𝐑)	we may write: 

𝜙!(𝐑! + 𝐑T, 𝐫) 	= 	𝜙!(𝐑! , 𝐫 − 𝐑T)	

𝜙!(𝐑! + 2𝐑T, 𝐫) = 𝜙!(𝐑! , 𝐫 − 2𝐑T). (15) 

Setting 𝐫< = 𝐫 − 𝐑T and 𝐫<< = 𝐫 − 𝟐𝐑T, we obtain the equations: 

𝑆225! = 𝑒46𝐀!(𝐀"8⋅𝐑Tad𝐫< 𝑒46𝐀!(𝐀"8⋅𝐫#𝜙5∗d𝐑5 , 𝐫<e𝜙!(𝐑! , 𝐫<)	

𝑆335! = 𝑒246𝐀!(𝐀"8⋅𝐑Tad𝐫<< 𝑒46𝐀!(𝐀"8⋅𝐫##𝜙5∗d𝐑5 , 𝐫<<e𝜙!(𝐑! , 𝐫<<). (16) 

Since the integrations over 𝐫< and 𝐫<< run over the same space as the integration over 𝐫 in eq (12) the integrals are 

equivalent so that 

𝑆225! = 𝑒46𝐀!(𝐀"8⋅𝐑T𝑆))5!	

𝑆335! = 𝑒246𝐀!(𝐀"8⋅𝐑T𝑆))5! . (17) 

From eqs (17) we can see that we can obtain the block matrices 𝐒22, 𝐒33, ⋯ from 𝐒)) using the unitary matrix: 
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𝐔 = M
𝑒4𝐀!⋅𝐑T 0 0 ⋯
0 𝑒4𝐀"⋅𝐑T 0 ⋯
0 0 𝑒4𝐀%⋅𝐑T ⋯
⋮ ⋮ ⋮ ⋱

U , (18)	 

so that, 

𝐒22 = 𝐔𝐒))𝐔()	

𝐒33 = 𝐔𝐒22𝐔() = 𝐔𝟐𝐒))𝐔(2.	

⋮ (19) 

The same transformation applies for the inter-layer overlap matrix blocks so, for example, 

𝐒23 = 𝐔𝐒)2𝐔()	

𝐒32 = 𝐔𝐒2)𝐔().	

⋮ (20) 

A similar derivation yields the same transformation for the layer Hamiltonian and inter-layer coupling matrix 

blocks. 

The procedure adopted to construct the surface GF of the semi-infinite lead is based on an iterative 

construction of the GF generating equation eqs (8)–(11) generated from eq (7). In the presence of an external 

magnetic field, eq (7) should be modified according to eqs (19) and (20) such that, 

⎝

⎜
⎛

𝜀𝐒11 −𝐇11 𝜀𝐒1) − 𝐕1) 𝟎 𝟎 ⋯
𝜀𝐒)1 − 𝐕)1 𝜀𝐒)) −𝐇)) 𝐔(𝜀𝐒1) − 𝐕1))𝐔() 𝟎 ⋯

𝟎 𝐔(𝜀𝐒)1 − 𝐕)1)𝐔() 𝐔(𝜀𝐒)) −𝐇)))𝐔() 𝐔2(𝜀𝐒1) − 𝐕1))𝐔(2 ⋯
𝟎 𝟎 𝐔2(𝜀𝐒)1 − 𝐕)1)𝐔(2 𝐔2(𝜀𝐒)) −𝐇)))𝐔(2 ⋯
⋮ ⋮ ⋮ ⋮ ⋱⎠

⎟
⎞

×

⎝

⎜
⎛
𝐆11(𝐸) 𝐆1)(𝐸) 𝐆12(𝐸) 𝐆13(𝐸) ⋯
𝐆)1(𝐸) 𝐆))(𝐸) 𝐆)2(𝐸) 𝐆)3(𝐸) ⋯
𝐆21(𝐸) 𝐆2)(𝐸) 𝐆22(𝐸) 𝐆23(𝐸) ⋯
𝐆31(𝐸) 𝐆3)(𝐸) 𝐆32(𝐸) 𝐆33(𝐸) ⋯

⋮ ⋮ ⋮ ⋮ ⋱⎠

⎟
⎞
= 𝕀. (21)

 

While this equation could, in principle, be used to evaluate the surface GF, a more tractable version can be obtained 

by performing the following transformation, 

𝕌

⎝

⎜
⎛

𝜀𝐒11 −𝐇11 (𝜀𝐒1) − 𝐕1))𝐔 𝟎 𝟎 ⋯
𝐔()(𝜀𝐒)1 − 𝐕)1) 𝐔()(𝜀𝐒)) −𝐇)))𝐔 (𝜀𝐒1) − 𝐕1))𝐔 𝟎 ⋯

𝟎 𝐔()(𝜀𝐒)1 − 𝐕)1) 𝐔()(𝜀𝐒)) −𝐇)))𝐔 (𝜀𝐒1) − 𝐕1))𝐔 ⋯
𝟎 𝟎 𝐔()(𝜀𝐒)1 − 𝐕)1) 𝐔()(𝜀𝐒)) −𝐇)))𝐔 ⋯
⋮ ⋮ ⋮ ⋮ ⋱⎠

⎟
⎞
𝕌()

×

⎝

⎜
⎛
𝐆11(𝐸) 𝐆1)(𝐸) 𝐆12(𝐸) 𝐆13(𝐸) ⋯
𝐆)1(𝐸) 𝐆))(𝐸) 𝐆)2(𝐸) 𝐆)3(𝐸) ⋯
𝐆21(𝐸) 𝐆2)(𝐸) 𝐆22(𝐸) 𝐆23(𝐸) ⋯
𝐆31(𝐸) 𝐆3)(𝐸) 𝐆32(𝐸) 𝐆33(𝐸) ⋯

⋮ ⋮ ⋮ ⋮ ⋱⎠

⎟
⎞
= 𝕀, (22)

 

where the transformation matrix 𝕌 reads as 
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𝕌 =

⎝

⎜
⎛
𝟏 𝟎 𝟎 𝟎 ⋯
𝟎 𝐔 𝟎 𝟎 ⋯
𝟎 𝟎 𝐔2 𝟎 ⋯
𝟎 𝟎 𝟎 𝐔3 ⋯
⋮ ⋮ ⋮ ⋮ ⋱⎠

⎟
⎞
. (23) 

Multiplying eq (22) from the left and right with 𝕌() and 𝕌, respectively, we obtain 

⎝

⎜
⎛

𝜀𝐒11 −𝐇11 (𝜀𝐒1) − 𝐕1))𝐔 𝟎 𝟎 ⋯
𝐔()(𝜀𝐒)1 − 𝐕)1) 𝐔()(𝜀𝐒)) −𝐇)))𝐔 (𝜀𝐒1) − 𝐕1))𝐔 𝟎 ⋯

𝟎 𝐔()(𝜀𝐒)1 − 𝐕)1) 𝐔()(𝜀𝐒)) −𝐇)))𝐔 (𝜀𝐒1) − 𝐕1))𝐔 ⋯
𝟎 𝟎 𝐔()(𝜀𝐒)1 − 𝐕)1) 𝐔()(𝜀𝐒)) −𝐇)))𝐔 ⋯
⋮ ⋮ ⋮ ⋮ ⋱⎠

⎟
⎞

× 𝕌()

⎝

⎜
⎛
𝐆11(𝐸) 𝐆1)(𝐸) 𝐆12(𝐸) 𝐆13(𝐸) ⋯
𝐆)1(𝐸) 𝐆))(𝐸) 𝐆)2(𝐸) 𝐆)3(𝐸) ⋯
𝐆21(𝐸) 𝐆2)(𝐸) 𝐆22(𝐸) 𝐆23(𝐸) ⋯
𝐆31(𝐸) 𝐆3)(𝐸) 𝐆32(𝐸) 𝐆33(𝐸) ⋯

⋮ ⋮ ⋮ ⋮ ⋱⎠

⎟
⎞
𝕌 = 𝕀. (24)

 

We may now define the 𝕌 transformed GF as follows 

𝕌()

⎝

⎜
⎛
𝐆11(𝐸) 𝐆1)(𝐸) 𝐆12(𝐸) 𝐆13(𝐸) ⋯
𝐆)1(𝐸) 𝐆))(𝐸) 𝐆)2(𝐸) 𝐆)3(𝐸) ⋯
𝐆21(𝐸) 𝐆2)(𝐸) 𝐆22(𝐸) 𝐆23(𝐸) ⋯
𝐆31(𝐸) 𝐆3)(𝐸) 𝐆32(𝐸) 𝐆33(𝐸) ⋯

⋮ ⋮ ⋮ ⋮ ⋱⎠

⎟
⎞
𝕌 =

⎝

⎜
⎛
𝓖11(𝐸) 𝓖1)(𝐸) 𝓖12(𝐸) 𝓖13(𝐸) ⋯
𝓖)1(𝐸) 𝓖))(𝐸) 𝓖)2(𝐸) 𝓖)3(𝐸) ⋯
𝓖21(𝐸) 𝓖2)(𝐸) 𝓖22(𝐸) 𝓖23(𝐸) ⋯
𝓖31(𝐸) 𝓖3)(𝐸) 𝓖32(𝐸) 𝓖33(𝐸) ⋯

⋮ ⋮ ⋮ ⋮ ⋱⎠

⎟
⎞
, (25) 

so that eq (24) becomes 

⎝

⎜
⎛

𝜀𝐒11 −𝐇11 (𝜀𝐒1) − 𝐕1))𝐔 𝟎 𝟎 ⋯
𝐔()(𝜀𝐒)1 − 𝐕)1) 𝐔()(𝜀𝐒)) −𝐇)))𝐔 (𝜀𝐒1) − 𝐕1))𝐔 𝟎 ⋯

𝟎 𝐔()(𝜀𝐒)1 − 𝐕)1) 𝐔()(𝜀𝐒)) −𝐇)))𝐔 (𝜀𝐒1) − 𝐕1))𝐔 ⋯
𝟎 𝟎 𝐔()(𝜀𝐒)1 − 𝐕)1) 𝐔()(𝜀𝐒)) −𝐇)))𝐔 ⋯
⋮ ⋮ ⋮ ⋮ ⋱⎠

⎟
⎞

×

⎝

⎜
⎛
𝓖11(𝐸) 𝓖1)(𝐸) 𝓖12(𝐸) 𝓖13(𝐸) ⋯
𝓖)1(𝐸) 𝓖))(𝐸) 𝓖)2(𝐸) 𝓖)3(𝐸) ⋯
𝓖21(𝐸) 𝓖2)(𝐸) 𝓖22(𝐸) 𝓖23(𝐸) ⋯
𝓖31(𝐸) 𝓖3)(𝐸) 𝓖32(𝐸) 𝓖33(𝐸) ⋯

⋮ ⋮ ⋮ ⋮ ⋱⎠

⎟
⎞
= 𝕀. (26)

 

The original iterative procedure can then be used to solve for 𝓖11(𝐸), which according to eqs (23) and (25) 

satisfies 𝓖11(𝐸) = 𝐆11(𝐸). From eq (26) it becomes evident that the only modification required with respect to 

the field-free case is to perform the following block transformations 

𝜀𝐒1) − 𝐕1) → (𝜀𝐒1) − 𝐕1))𝐔	

𝜀𝐒)1 − 𝐕)1 → 𝐔()(𝜀𝐒)1 − 𝐕)1)	

𝜀𝐒)) −𝐇)) → 𝐔()(𝜀𝐒)) −𝐇)))𝐔, (27)	

and use them in the original iterative scheme. 
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S.5 The non-self-consistent Green’s function approach with a biased electron 
density 
In this section, we compare the transmission functions of the c-P10 molecular AB interferometer, which uses an 

equilibrium electron density, against those that use a biased electron density to mimic the effect of the electric 

field falling across the junction due to biased leads. To obtain an effective Kohn-Sham matrix with a biased 

electron density we run the GFN1-xTB-M1 calculation of a finite junction model under an error function electric 

potential 

𝑉erf(𝑥) =
1
2𝑉b	erfd𝜆(𝑥 − 𝑥1)e, (28) 

where 𝑉b is the bias between the leads, 𝜆 is a parameter that controls the rate at which the potential goes from 

−𝑉b/2	to 𝑉b/2	and 𝑥1	is a parameter that is used to center the potential, an example plot of this potential is shown 

in Fig. S.2. 

 

 
Fig. S.2. An example error function potential with Vb = 10 meV, λ = 0.0575 Å-1 and x0 = 0 Å, which is used to bias 
the electron density of a molecular AB interferometer.  
 

Before GFN1-xTB-M1 calculations are carried out, the reduced junction model must be rotated so that the 

acetylene-linkers lie along the 𝑥-axis and the error function potential is applied along the leads. With the error 

function potential, the self-consistent charge (SCC) iterations will result in charge polarization across the finite 

junction model. Once the SCC iterations converge, we can remove the error function potential from the resulting 

effective Kohn-Sham matrix to obtain the original Kohn-Sham matrix with a biased electron density, which will 

produce an effective bias potential across the extended molecule region of the junction. The Kohn-Sham matrix 

with the biased electron density is then used in the non-self-consistent NEGF approach to calculate the 

transmission function and compare against the results from the main article. 

In Figs. S.3 to S.6, we show the transmission function with Kohn-Sham matrices obtained from the 

procedure described above using an error function potential with 𝑉b = 10 and 100 meV, respectively, in both 

cases λ = 0.0575 Å-1 and 𝑥1 was used to center the potential to the middle of the c-P10 ring. With the smaller (10 

meV) bias, the transmission function is essentially indistinguishable from the results presented in the main article. 
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For the larger (100 meV) bias, only small quantitative differences can be seen for the transmission function peaks 

that we are interested in, specifically the HOMO−4, HOMO−3, HOMO−2, HOMO−1 and the LUMO+1 and 

LUMO+2 peaks. This justifies the use of the non-self-consistent NEGF procedure in our calculations. 

 

 
Fig. S.3. Transmittance probability T(E) (middle column) of the α-spin channel of the c-P10 molecular AB 
interferometer (Fig. 3c in the main article) with a biased electron density generated using the error function 
potential method described above with Vb = 10 meV, λ = 0.0575 Å-1, and an 𝑥1 value that centers the potential at 
the middle of the ring. Transmission probabilities were calculated under perpendicular magnetic fields of (a) 0, 
(b) 5, and (c) 10 T. Energies are shown relative to the HOMO-LUMO gap center of the isolated c-P10 molecular 
ring at 0 T. Left and right columns show a zoom-in on the occupied (blue) and virtual (orange) transmittance 
peaks, respectively. Transmission probability peaks are labelled with the corresponding isolated c-P10 ring 
orbital (see Section S.8). 
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Fig. S.4. Transmittance probability T(E) (middle column) of the β-spin channel of the c-P10 molecular AB 
interferometer (Fig. 3c in the main article) with a biased electron density generated using the error function 
potential method described above with Vb = 10 meV, λ = 0.0575 Å-1, and an 𝑥1 value that centers the potential at 
the middle of the ring. Transmission probabilities were calculated under perpendicular magnetic fields of (a) 0, 
(b) 5, and (c) 10 T. Energies are shown relative to the HOMO-LUMO gap center of the isolated c-P10 molecular 
ring at 0 T. Left and right columns show a zoom-in on the occupied (purple) and virtual (brown) transmittance 
peaks, respectively. Transmission probability peaks are labelled with the corresponding isolated c-P10 ring 
orbital (see Section S.8). 
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Fig. S.5. Transmittance probability T(E) (middle column) of the α-spin channel of the c-P10 molecular AB 
interferometer (Fig. 3c in the main article) with a biased electron density generated using the error function 
potential method described above with Vb = 100 meV, λ = 0.0575 Å-1, and an 𝑥1 value that centers the potential 
at the middle of the ring. Transmission probabilities were calculated under perpendicular magnetic fields of (a) 
0, (b) 5, and (c) 10 T. Energies are shown relative to the HOMO-LUMO gap center of the isolated c-P10 molecular 
ring at 0 T. Left and right columns show a zoom-in on the occupied (blue) and virtual (orange) transmittance 
peaks, respectively. Transmission probability peaks are labelled with the corresponding isolated c-P10 ring 
orbital (see Section S.8). 
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Fig. S.6. Transmittance probability T(E) (middle column) of the β-spin channel of the c-P10 molecular AB 
interferometer (Fig. 3c in the main article) with a biased electron density generated using the error function 
potential method described above with Vb = 100 meV, λ = 0.0575 Å-1, and an 𝑥1 value that centers the potential 
at the middle of the ring. Transmission probabilities were calculated under perpendicular magnetic fields of (a) 
0, (b) 5, and (c) 10 T. Energies are shown relative to the HOMO-LUMO gap center of the isolated c-P10 molecular 
ring at 0 T. Left and right columns show a zoom-in on the occupied (purple) and virtual (brown) transmittance 
peaks, respectively. Transmission probability peaks are labelled with the corresponding isolated c-P10 ring 
orbital (see Section S.8). 
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S.6 Non-planar c-PN porphyrin nanoring orbital energies 
In the main text, we presented the orbital energies of a set of planar c-PN porphyrin nanorings. We focused on 

these conformers since they are expected to be more suitable for junction fabrication. For completeness, we report 

below the orbital energies for the corresponding lower energy non-planar c-PN molecular rings. Using GFN1-

xTB-M1 we optimized non-planar c-PN porphyrin nanorings with 10, 20, 30, and 40 porphyrin monomer units in 

the absence of a magnetic field, yielding optimized ring radii of 21.4, 43.0, 64.5, and 86.0 Å, respectively (see 

Fig. S.7 for the optimized non-planar c-P10 molecule). In Fig. S.8 we show the magnetic field dependence of α 

and β-spin molecular orbital (MO) energies and in Table S.2 the calculated effective masses for the HOMO and 

LUMO orbitals for non-planar c-PN, demonstrating similarity to the planar counterparts (see Fig. 4 and Table 1 

of the main text and Fig. S.9). 

 
Fig. S.7. GFN1-xTB optimized geometry of the non-planar c-P10 porphyrin nanoring. 

 
 
 

Nanoring r / nm m* / me (HOMO) m* / me  
(LUMO) 

B0 / T 

c-P10 21.4 −0.1054 0.1029 287 
c-P20 43.0 −0.1076 0.1050 71 
c-P40 86.0 −0.1082 0.1055 18 

Table S.2. Calculated effective masses m* and magnetic fields corresponding to one flux quantum B0 for selected 
nanoring orbitals of the c-PN nanorings in the non-planar (cylindrical) conformation. 
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Fig. S.8. GFN1-xTB-M1 non-planar c-P10 (top row), c-P20 (second row), c-P30 (third row), and c-P40 (bottom 
row) α (left) and β (right) spin orbital energies as a function of the perpendicular magnetic field intensity. Orbital 
energies are plotted relative to the corresponding HOMO-LUMO gap center in the absence of a magnetic field. 
Blue and orange colors are used for the α-spin occupied and unoccupied orbital energies, respectively, and purple 
and brown colors are used for the corresponding β-spin orbital energies. 
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S.7 β-Spin results 

In the main text, we presented α-spin results for the orbital energies of the planar c-PN and the f-PN nanoring 

sets, as well as the transmittance probability curves for the α-spin channel of the c-P10 molecular AB 

interferometer. For completeness, we provide below the corresponding β-spin results. Overall, the results obtained 

for the β-spin are in qualitative agreement with those presented in the main text for the α-spin counterpart. Some 

minor quantitative differences arise at high magnetic field strengths, due to the spin-Zeeman interaction. 

 

 
Fig. S.9. The β-spin orbital energies of planar c-P10, c-P20, c-P30, c-P40 (upper panels) and f-P10, f-P20, f-
P30, f-P40 (lower panels) molecular rings as a function of the perpendicular magnetic field strength. Energies 
are plotted relative to the corresponding field-free HOMO-LUMO gap center. Occupied and unoccupied orbitals 
are shown in purple and brown, respectively. 

 

 ∆𝐸 / meV ∆𝐸	/ meV 
Orbital c-P10 c-P20 c-P30 c-P40a f-P10 f-P20 f-P30 f-P40 

LUMO+4 5.9 8.7 10.1 11.1 3.4 7.5 11.6 15.6 
LUMO+3 −7.0 −9.4 −9.9 −9.6 −4.6 −8.7 −12.7 −16.7 
LUMO+2 4.0 4.9 5.6 6.3 3.5 7.5 11.4 15.4 
LUMO+1 −5.1 −5.4 −5.1 −4.5 −4.6 −8.6 −12.5 −16.4 

LUMO −0.5 −0.2 0.3 1.0 −0.3 1.4 4.2 7.5 
HOMO −0.7 −1.0 −1.4 −2.1 −0.9 −2.6 −5.4 −8.6 

HOMO−1 3.7 4.2 3.8 3.2 −0.6 7.2 11.2 15.1 
HOMO−2 −5.0 −5.9 −6.6 −7.3 1.4 −8.4 −12.4 −16.3 
HOMO−3 5.5 8.0 8.5 8.2 −2.6 −0.6 11.1 15.1 
HOMO−4 −6.7 −9.6 −10.9 −11.9 3.2 1.6 −12.3a −16.3 

Table S.3. The change in the β-spin orbital energies ∆𝐸 (with respect to the field-free case) of the planar c-P10, 
c-P20, c-P30, c-P40 and f-P10, f-P20, f-P30, f-P40 nanorings due to a perpendicular magnetic field of 10 T. aFor 
all c-P40 orbitals and the f-P30 HOMO−4, the 10 T magnetic field was sufficiently large to induce state crossing. 
In these cases, we calculate the energy changes by following the orbital through the crossing. 
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Fig. S.10. Transmittance probability T(E) (middle column) of the β-spin channel of the c-P10 molecular AB 
interferometer (Fig. 3c in the main article) under perpendicular magnetic fields of (a) 0, (b) 5, and (c) 10 T. 
Energies are shown relative to the HOMO-LUMO gap center of the isolated c-P10 molecular ring at 0 T. Left 
and right columns show a zoom-in on the occupied (purple) and virtual (brown) transmittance peaks, respectively. 
Transmission probability peaks are labelled with the corresponding isolated c-P10 ring orbital (see Section S.8). 
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S.8 Extended molecule density of states peak assignment 
In the main text, we considered both isolated and lead-coupled c-P10 molecular rings. To compare the isolated 

system behavior to that of the coupled system, it is important to identify equivalent MOs. To that end, we plotted 

MOs of the two systems (an isolated ring and a finite junction model consisting of the ring, linkers, and hydrogen-

passivated lead sections formed from 13 fused benzene rings) and matched specific isolated molecular ring 

orbitals with the corresponding MOs of the coupled system, based on spatial distribution (see Fig. S.15). The 

corresponding field-free orbital energies of the isolated ring and the finite junction model are presented in the left 

and center sub-tables of Table S.4, respectively. Next, we associate these eigen-states with peaks in the 

transmittance probability curve. To demonstrate how this is performed we plot in Figs. S.11 the density of states 

(DOS) of the infinite junction model, as evaluated from the extended molecule Green's function block in the 

presence of the semi-infinite leads surface Green's functions, which were obtained from the iterative scheme 

described in Section S.4. Focusing on, for example, the HOMO−8 and HOMO−7 of the finite junction model, 

their orbital energies match the peaks marked as 1 and 2 in the DOS diagram (compare the center and right sub-

tables of Table S.4). In the corresponding transmittance probability curve at 0 T, a peak appears only at the energy 

of DOS peak 2, which is rationalized by the fact that the HOMO−8 is localized on the ring and does not present 

electron density along the linkers, whereas the HOMO−7 state delocalizes across the junction. The fact that at a 

finite magnetic field, a transmittance peak appears at the energy of DOS peak 1 and the HOMO−8 delocalizes 

across the junction, further supports the peak assignment. 

 

 
Fig. S.11. DOS of the extended molecule section for the α-spin channel of the c-P10 molecular AB interferometer 
(structure presented in Fig. 3c of the main text) under perpendicular magnetic fields of (a) 0, (b) 5, and (c) 10 T. 
Energies are presented relative to the HOMO-LUMO gap center of the isolated c-P10 at 0 T. Left and right 
columns show sections of the occupied (blue) and virtual (orange) DOS, respectively. 
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Fig. S.12. DOS of the extended molecule section for the β-spin channel of the c-P10 molecular AB interferometer 
(structure presented in Fig. 3c of the main text) under perpendicular magnetic fields of (a) 0, (b) 5, and (c) 10 T. 
Energies are presented relative to the HOMO-LUMO gap center of the isolated c-P10 at 0 T. Left and right 
columns show sections of the occupied (purple) and virtual (brown) DOS, respectively. 

 

Isolated c-P10 orbital energies  Finite junction orbital energies  DOS peak energies 
Orbital 𝐸 − 𝐸F / meV  Orbital 𝐸 − 𝐸F / meV  Peak 𝐸 − 𝐸F / meV 

LUMO+2 428  LUMO+6 417  8 409 
LUMO+1 428  LUMO+5 410  7 403 

LUMO 357  LUMO+2 342  6 336 
HOMO −357  HOMO−2 −364  5 −373 

HOMO−1 −426  HOMO−3 −416  4 −437 
HOMO−2 −426  HOMO−4 −439  3 −444 
HOMO−3 −582  HOMO−7 −588  2 −584 
HOMO−4 −582  HOMO−8 −597  1 −602 

Table S.4. Tables of the isolated c-P10 orbital energies (left), energies of the equivalent orbitals in the finite 
junction model (see Section S.9) consisting of the ring, linkers, and hydrogen-passivated lead sections formed 
from 13 fused benzene rings (middle), and the DOS peaks of the extended molecule section (right). DOS peak 
numbering matches the one appearing in Figs. S.11 and S.12. All energies are obtained in the absence of a 
magnetic field and are presented relative to the HOMO-LUMO gap center of the isolated c-P10 molecule. 
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S.9 The finite junction model 
In the main text and Section S.8 above, we used a finite junction model (Fig. S.13) to help assign eigen-states 

found on the isolated c-P10 ring to the DOS and transmittance probability peaks of a c-P10 molecular ring coupled 

via acetylene-linkers to two polyacene leads. The finite junction model acts as a manageable intermediate between 

the isolated nanoring and the infinite molecular junction. For completeness, we include in Fig. S.14 the magnetic 

field dependence of the orbital energies of the finite junction model. The states that show strong magnetic field 

dependence are those which are delocalized across the junction, whereas the mid-gap states that are insensitive to 

the field are mainly localized on the lead sections. In Fig. S.15 the corresponding magnetic field dependence of 

representative MOs are presented for the isolated ring states and their finite junction model counterparts. 

 

Fig. S.13. The finite model junction created from a c-P10 nanoring linked to polyacene chains formed from 13 

fused rings via acetylene units. 

 

  
Fig. S.14. GFN1-xTB-M1 α (left) and β (right) spin orbital energies of the finite junction model as a function of 
the perpendicular magnetic field strength. Orbital energies are given relative to the HOMO-LUMO gap center of 
the isolated c-P10 nanoring in the absence of a magnetic field. Blue and orange (purple and brown) lines 
represent the occupied and unoccupied α-spin (β-spin) states, respectively. 
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Fig. S.15. The HOMO−4 to LUMO+2 molecular orbitals of the isolated c-P10 ring (top) plotted in the absence 
of a magnetic field (left) and under a perpendicular magnetic field of 10 T (right) compared to their finite junction 
model counterparts (bottom). Orbital plots show isosurfaces with an isovalue of |𝜓| = 0.0025 a0−3/2 and are 
colored according to the phase of the orbital, where 𝑎𝑟𝑔(𝜓) ∈ (−𝜋, 𝜋], values are mapped to the color wheel in 
Fig. S.16. 
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Fig. S.15. continued 
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Fig. S.15. continue 
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Fig. S.15. continued 

 



S26 
 

 

Fig. S.16. The color wheel used to represent the phase of the molecular orbitals presented in Fig. S.15. 
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S.10 Current switching at higher bias and electronic temperature 
In the main article, we took advantage of the Fano resonances, seen in the transmission function, to modulate the 

current across the molecular interferometer. To maximize the effect, small 10 meV width Fermi transport windows 

with bath electronic temperatures of 0 K were used. Here, we present results with 50 meV windows that may be 

more easily achievable in an experimental setting and higher bath electronic temperatures, up to 50 K (see Fig. 

S.17). With the larger 50 meV windows, smaller current variations are obtained for a given magnetic field strength. 

For example, switching on a magnetic field of 10 T yields current variations of up to ∼32–45% with the 10 meV 

transport window at 0 K (see main text Fig. 7), compared to variations of up to ∼9–28% obtained with the 50 

meV window at 0 K (Fig. S.17, upper row), ∼5–13% at 25 K (Fig. S.17, middle row), and ∼3–5% at 50 K (Fig. 

S.17, bottom row). Fig. S.18 presents the current change upon the application of a magnetic field of 10T as a 

function of temperature for a transport window of 50 meV, demonstrating that for the observation of AB 

interferometry in such porphyrin molecular rings, it is advisable to work at relatively low temperatures. 
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Fig. S.17. (a–c,e–g,i–k) Transmission probability function for the α (blue) and β (purple) spin channels in the 
vicinity of the HOMO−1 and HOMO−2 (see Fig. 5 of the main text), calculated for a c-P10 junction under 
perpendicular magnetic fields of (a,e,i) 0, (b,f,j) 10, and (c,g,k) 20 T. (d,h,l) Magnetic field dependence of the 
current, calculated using eq (6) of the main article with 50 meV wide Fermi windows (red and green) and 
electronic temperatures of 0 (top row), 25 (middle row), and 50 K (bottom row). Transmission probability peaks 
are labelled with the c-P10 ring orbital they correspond to (see Section S.8). 
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Fig. S.18. The current change, after the application of a 10 T perpendicular magnetic field, as a function of 
temperature, calculated using 50 meV fermi transport windows gated at −469 (green) and −419 meV (red). 
 

  



S29 
 

S.11 Band structure calculations on infinite periodic linear ribbons 
We carried out band structure calculations on edge-fused zinc and nickel coordinated porphyrin linear nanoribbons 

so as to compare their effective masses with the cyclic oligomers f-PN. The geometries of these linear ribbons 

were optimized using the GFN1-xTB method within DFTB+ [9]. Periodicity was enforced along the x-axis with 

a Gamma centered 32´1´1 k-point mesh, and a vacuum region of 50 Å was applied along the y and z-axes to 

prevent spurious interactions between neighboring system images. The resulting band structures of the optimized 

geometries are shown in Fig. S.19. Effective masses were calculated for the lowest energy band above the Fermi 

energy at the Brillouin zone boundary resulting in electron effective masses of 0.0054 and 0.042 for the zinc and 

nickel coordinated porphyrin nanoribbons, respectively. Similar values (of opposite sign) for the hole effective 

masses were obtained for the highest energy band below the Fermi energy. Compared to PBE calculations for the 

nickel coordinated porphyrin nanoribbons [10, 11], we can see that GFN1-xTB underestimates effective masses 

so that we should expect the effective masses for the c-PN and f-PN nanoring to also be underestimated. The zinc 

coordinated porphyrin nanoribbon effective masses are smaller than those calculated for the f-PN series from the 

main article. These results follow expectations, given the decreasing effective masses with increasing ring size 

due to the decreased strain and increased coupling between porphyrin monomer units. 

 

       

Fig. S.19. (a) Chemical structure of infinite periodic linear ribbons; (b) and (c) energy bands as a function of the 
wavevector k for M = Zn and M = Ni, respectively; occupied and unoccupied bands are shown by blue and orange 
lines, respectively. The band gaps are 0.022 eV (M = Zn) and 0.19 eV (M = Ni). 
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S.12 List of data files deposited on Zenodo 
Data files relating to this manuscript are openly available via Zenodo; https://doi.org/10.5281/zenodo.13865479.  
 
This data set includes: 

 
./cpn 
xyz files: Optimized geometries of the c-PN porphyrin nanorings using the GFN1-xTB method in the absence of 
a magnetic field.  
txt files: Orbital energies of the c-PN porphyrin nanorings relative to its HOMO-LUMO gap center in the 
absence of a magnetic field calculated using the GFN1-xTB-M1 method where first number in each line is the 
magnetic field strength (Tesla) and the remaining numbers are the orbital energies (eV). 
 
./cpn_flat 
xyz files: Optimized geometries of the flattened c-PN porphyrin nanorings using the GFN1-xTB method in the 
absence of a magnetic field.  
txt files: Orbital energies of the flattened c-PN porphyrin nanorings relative to its HOMO-LUMO gap center in 
the absence of a magnetic field calculated using the GFN1-xTB-M1 method where the first number in each line 
is the magnetic field strength (Tesla) and the remaining numbers are the orbital energies (eV). 
 
./current 
txt files: The calculated current as a function of the external magnetic field for the specified Fermi transport 
windows and electronic temperatures where the first number in each line is the magnetic field strength (Tesla) 
and the second number is the current (micro Amps). 
 
./finite_junction 
xyz files: Optimized geometries of the finite junction model using the GFN1-xTB method in the absence of a 
magnetic field.  
txt files: Orbital energies of the finite junction model relative to the HOMO-LUMO gap center of the c-P10 
nanoring in the absence of a magnetic field calculated using the GFN1-xTB-M1 method where the first number 
in each line is the magnetic field strength (Tesla) and the remaining numbers are the orbital energies (eV). 
 
./fpn 
xyz files: Optimized geometries of the f-PN porphyrin nanobelts using the GFN1-xTB method in the absence of 
a magnetic field.  
txt files: Orbital energies of the f-PN porphyrin nanobelts relative to its HOMO-LUMO gap center in the 
absence of a magnetic field calculated using the GFN1-xTB-M1 method where the first number in each line is 
the magnetic field strength (Tesla) and the remaining numbers are the orbital energies (eV). 
 
./transmission 
txt files: The transmission function calculation results using the NEGF+GFN1-xTB-M1 method for a number of 
field strengths and biased electron densities where the 1st, 2nd and 3rd numbers in each line are the energy 
(Hartree) relative to the HOMO-LUMO gap center of the c-P10 nanoring in the absence of a magnetic field, 
transmission probability, and density of states. 
 
./transmission_homo-1 
txt files: The transmission function calculation results using the NEGF+GFN1-xTB-M1 method for energies 
around the HOMO-1 and HOMO-2 peaks for a number of field strengths where the 1st, 2nd and 3rd numbers in 
each line are the energy (Hartree) relative to the HOMO-LUMO gap center of the c-P10 nanoring in the absence 
of a magnetic field, transmission probability, and density of states.  
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