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S1. Materials and measurements 

S1.1. Device Fabrication 

MoS2 flakes of various thicknesses were exfoliated from a bulk 3R crystal, obtained from 

 onto SiO2/Si substrates. Few-nm thick flakes with topographic steps of ,״HQ Graphene״

single layers were selected. An atomic force microscope (AFM) was used to scan the flake’s 

topography. 

 

S1.2. AFM Measurements 

Topography and Kelvin probe force microscopy (KPFM) measurements were performed 

using a Park System NX10 AFM, employing PPP-EFM n-doped tips with conductive 

coating. The mechanical resonance frequency of the tip was 75 kHz, its force constant was 3 

N/m, and the cantilever was oscillated mechanically with an amplitude of ~20 nm. 

Amplitude-modulated KPFM (AM-KPFM) measurements are known to produce poor spatial 

resolution and severely underestimate the measured surface potential, particularly for 

microscopic samples. Non-local electrostatic interaction of the sample with the cone and 

cantilever of the scanning tip has been identified as the primary reason behind it. To 

overcome this issue and to gain a more localized response, we have used frequency-

modulated KPFM (FM-KPFM) or sideband KPFM, which is sensitive to electrostatic 

interaction variation rather than the interaction strength itself.(1) Therefore, the sideband 

signal has the highest contribution from the tip apex, which has the smallest dimension and is 

the closest to the surface. We note that this type of global external measurement still slightly 

averages the desired signal with additional signal from the surroundings and thus provides a 

lower limit to the measured 𝛥𝑉 value. In our measurements, we excite the cantilever with an 

AC voltage amplitude of 2V and a frequency of 2 kHz. The topography and the KPFM 

signals were obtained separately using a two-pass measurement. The first pass recorded the 

topography in non-contact mode. In the second pass, the KPFM potential was recorded after 

lifting the tip an extra 5 nm and following the same topography line-scan, ensuring separation 

of the topography and the electrical signals. The images in Fig. 1 and S1 were acquired using 

Park SmartScan software and the data analysis was performed with the Gwyddion program. 
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S1.3. Additional Examples 

 

Device 2 

 Fig. S1 presents an additional demonstration of the polarization saturation for another device 

(device 2). The noise is analyzed as the standard deviation of the potential at a clean region of 

a few μm2 and is typically less than 20mV (see the error bars in Fig. 1d and Fig. S1). We note 

that surface contaminants and the noise level tend to accumulate at high potentials and are 

challenging to avoid, although the inert atmosphere in our microscope.  

 

Figure S1. Additional example of polarization saturation. Topography (a) and Surface potential 

(b) maps, measured using AFM and KPFM, respectively. (c) A cross section taken along the red line 

in (a). (d) A cross section taken along the red (inset: blue) line in b. 
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Devices 3+4 

The flakes corresponding to devices 3 and 4 were transferred onto a graphite substrate and 

cleaned in situ before the KPFM measurements in our vacuum AFM. Fig. S2 presents 

additional demonstrations of the polarization saturation for devices with non-uniform 

domains. We observed similar trends in the voltage dependence on the number of layers. We 

have included the data from these additional devices in Fig. S2 of the supplementary 

information and incorporated it into Fig. 2a of the main text.  

 

Figure S2. Additional examples of polarization saturation in multi-domain flakes. 

Topography (a,c) and Surface potential (b,d) maps, obtained from AFM and KPFM 

measurements, respectively, for devices 3 and 4. Here the flakes are placed on a ~ 10 nm 

graphite flake. The number of layers is annotated on the topography images. In the surface 

potential maps, arrows indicate the number of polarized interfaces pointing up and down (↑

, ↓). Note that even for 𝑁 > 𝑁𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ≈ 8, as long as |𝑁↑ − 𝑁↓| < 𝑁𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛, the surface 

potential accumulates in a linear fashion (see red arrows in b,d).   
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S1.4. Comparison of the calculated electric potential with KPFM measurements 

 

To facilitate comparison between the data and the calculated electric potential, the data in 

Fig. 2a are plotted with shifted absolute values. The calculated electric potential for a stack of 

N MoS2 layers, 𝑉(𝑁), is referenced to 𝑉(1). In practice, we shifted all the data relative to the 

minimum layer measurement, corresponding to N=2 for devices 1, 3, 4 and N=4 for device 2, 

with 1 and 3 interfaces, respectively. We then added a correction, Δ𝑉, for changing the 

reference to 𝑉(1). In other words, the plotted data show |𝑉(𝑁) − 𝑉(2)| + Δ𝑉 for devices 1, 

3, 4 and |𝑉(𝑁) − 𝑉(4)| + 3Δ𝑉 for device 2 (where Δ𝑉 is the average measured potential step 

in the linear regime, the values of which for the four devices are 56, 78, 63, and 73 meV, as 

also mentioned  in the main text). 

 

S2. Additional details regarding the DFT calculations 
S2.1. Computational details 

DFT methods 

To obtain the electrostatic potential of the multilayer r-MoS2 stack shown in Fig. 2, we 

used the Perdew-Burke-Ernzerhof (PBE) generalized-gradient exchange-correlation density 

functional approximation,(2) augmented by the Grimme-D3 dispersion correction using 

Becke-Johnson (BJ) damping,(3) as implemented in the Vienna Ab-initio Simulation Package 

(VASP)(4). A plane wave energy cutoff of 600 eV and a k-point mesh of 20×20×1 were used, 

with a vertical vacuum size of 10 nm to avoid interactions between adjacent images. The core 

electrons of the atoms were treated via the projector augmented wave (PAW) approach. The 

3R stacked structures were constructed and relaxed using the conjugated gradients algorithm 

with a force threshold of 10−3 eV/Å. Single-point electron density calculations were then 

performed on the relaxed structure using a Gaussian smearing of 0.05 eV, to enhance the 

convergence of the self-consistent cycle. The same approach was used to calculate the 

potential differences of WSe2 and r-BN that are shown in Fig. 2b.  

 

Consistency and convergence tests 

To evaluate the vertical polarization, a dipole moment correction was employed.(5) For 

validation purposes, doubled supercell calculations were also performed, yielding nearly 

identical potential differences (see Fig. S3a). The doubled supercell consists of two opposing 

mirror images of each MoS2 stack with a 6 nm inter-image vacuum region. Fig. S3b and S3c 
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show the potential profiles along the normal direction calculated by the dipole correction and 

double supercell methods for N=14, respectively. 

 

 

 

Figure S3. Potential difference calculations. (a) Potential drop as a function of number of layers 

calculated by the dipole correction and a doubled supercell setup for multilayer r-MoS2. Potential 

profiles of the N=14 layer system calculated by the (b) dipole correction method and (c) doubled 

supercell approach. 

 

Convergence tests of the calculations (Fig. S4) indicate that our choice of parameters leads to 

electrostatic potential differences convergence to within 2.5, 0.1, and 0.7 meV with respect to 

the number of k-points, energy cut-off, and vacuum size, respectively. The corresponding 

total energy convergence values are to within 0.04, 8, and 0.7 meV. 

 

 

Figure S4. Convergence tests. Convergence tests of the total energy (black curve, left vertical axis) 

and electrostatic potential difference (red curve, right vertical axis) of N=16 MoS2 as a function of: (a) 

number of k-points, (b) energy cutoff, and (c) vacuum size. 
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Effect of geometry relaxation 

Fig. S5 shows a comparison of the potential drop and bandgap calculations for unrelaxed and 

relaxed multilayer r-MoS2. In the former, only the geometry of individual layers is relaxed, as 

described above, whereas in the latter an additional geometry relaxation step is undertaken 

for the entire stack. Both the saturation curve and the bandgap dependence on number of 

layers are weakly affected by stack geometry relaxation, indicating that the polarization 

saturation mechanism is dominated by electronic, rather than structural, effects.  

 

 

Figure S5. Effect of geometry relaxation. The potential difference (black, left) and band gap (red, 

right) of r-MoS2 as a function of layer number before (open symbols) and after (full symbols) stack 

geometry relaxation. 

 

Hybrid functional and spin-orbit coupling calculations 

The polarization saturation shown in the main text was performed at the PBE level of 

theory, excluding spin-orbit coupling (SOC) effects. To evaluate both the effect of the 

exchange-correlation density functional approximation and the possible role of SOC 

contributions, we performed additional single-point polarization calculation using the PBE 

optimized multilayer r-MoS2 model systems, either at the Heyd-Scuseria-Ernzerhof (HSE)(6-

9) screened-exchange hybrid density functional level of theory, or with scalar-relativistic 

corrections. Fig. S6 demonstrates that while the HSE bandgap is consistently larger than the 

PBE one and SOC induces band splitting, at the linear commulative region replacement of 

PBE by HSE or the inclusion of SOC has an insignificant effect on the calculated 

polarization. 
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Figure S6. Screened-hybrid functional and spin-orbit coupling calculations. (a) Potential drop 

and (b) bandgap as a function of number of layers obtained using the PBE functional approximation, 

without (red) and with SOC (blue), and with the HSE functional without SOC (yellow). (c) 

Corresponding band structures of four-layered r-MoS2. 

 

Doping calculations 

To perform DFT calculations that include effective doping, multilayer r-MoS2 stacks were 

first geometrically relaxed as described above. This was followed by single-point calculations 

using the fractional nuclear charge pseudoatom approach,(10) as implemented in the 

Quantum Espresso open source package(11). A doping density of 7.5×1011 cm-2 per layer was 

imposed through fractional charging of both the Mo and S nuclei with an extra charge of 

2.16×10-4 |e|. An energy cutoff of 60 Ry (816.34 eV) was used with a larger k-point grid of 

30 × 30 × 1 (found necessary for convergence) and a vertical vacuum size of 10 nm to avoid 

spurious interactions between adjacent bilayer images. Fermi-Dirac smearing with an 

effective temperature of ~300 K was used to enhance the convergence of the self-consistent 

cycle. 

To confirm that the calculations employing effective doping do not affect the band 

structure, we conducted a comparative analysis of the band structure and density of states 

(DOS) between the undoped and doped 12-layer r-MoS2 stack, shown in Fig. S7a. They are 

additionally compared to the same analysis for non-polar 2H stacked MoS2, as shown in Fig. 

S7b. In the latter case, minimal band changes are observed, other than a trivial uniform shift, 

thereby validating the effective doping approach. For the polar layers, doping results in an 
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increase in the band gap, but the DOS curves clearly establish that this is attributed to 

polarization-induced band shifts, rather than deformation of the bands themselves. 

 

Figure S7. Demonstration of the validity of doping calculations. The band structures and density of 

states (DOS) obtained via DFT calculations for an undoped and doped (charge carrier density of 

7.5∙1011 e∙cm-2 per layer) 12-layer (a) rhombohedral (polar) and (b) AA’ (non-polar) MoS2 stack. The 

energy origin is set to the Fermi level. The blue dashed lines denote the changing position of the local 

valence band maximum (VBM) and the conduction band minimum (CBM) across the stack. 

 

S2.2. DFT calculated MoS2 density of states  

In Fig. 3a of the main text, we show the DFT calculated density of states projected onto 

the various layer of a 15-layered r-MoS2 stack. For completeness, we present in Fig. S8 

similar results for systems of different thickness (𝑁 = 9, 12, and 18). The slopes of the VBM 

and CBM spatial variations for the 𝑁 = 9 and 12 systems are similar, whereas for the 𝑁 =

18 system, which is already above the polarization saturation thickness, a lower slope is 

obtained. 
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Figure S8. DFT calculated DOS. DFT calculated density of states projected onto the various layer of 

a r-MoS2 stack consisting of 𝑁 = 9, 12, or 18 layers. 

 

 

S2.3. Potential profile of MoS2 

The charge transfer between the stacked layers is understood by the potential distribution, 

as illustrated in Fig. S9. The laterally-averaged electrostatic potential profiles, relative to 

individual monolayers, for N=12 (Fig. S9a) and N=16 (Fig. S9b) are depicted. Both systems 

demonstrate uniformly spaced and decoupled potential steps. In the case of the 12-layer 

configuration, the potential step size matches the potential drop observed in bilayer AB 

stacked MoS2 (i.e., 83 meV). In contrast, the potential step size in the 16-layer system is 

smaller, as saturation has already set in.  
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Figure S9. Potential distributions analysis. Difference between the laterally-averaged potential 

profile obtained for r-MoS2 with (a) 𝑁 = 12 and (b) N=16 layers and that of the corresponding 

monolayers. The black dashed lines represent the vertical locations of the ions. The origin of the 

horizontal axis is set to the bottom S sublayer.  

 

S2.4. Estimation of polarization saturation 

Table S1 shows the prediction of polarization saturation for r-MoS2, r-WSe2, and r-BN 

stacks, yielding the critical thickness, 𝑁𝑐, compared to the one predicted from the bandgap. 

 

Table S1. Prediction of polarization saturation thickness by the potential drop associated with 

a single interface, 𝑉𝐼, and the bandgap, 𝐸𝑔, of a bulk r-MoS2, r-WSe2, and r-BN, under 

periodic boundary conditions. 

 

Type 𝑽𝑰 (𝒎𝒆𝑽) 𝑬𝒈(𝒆𝑽) 
𝐍𝐜 

Prediction Calculation 

MoS2 82 0.896 12 14 

WSe2 69 0.992 16 18 

h-BN 115 4.136 37 40 

 

 

S2.5. Band gap of MoS2, r-WSe2 and r-BN as a function of stack thickness 

In Fig. 2b in the main text we compare the saturation characteristics of r-MoS2, r-WSe2 

and r-BN. In Fig. S10a, we present the stack thickness dependence of the bandgap of bernal 

(labled as AB(A), blue), rhombohedral (labeled as AB(C), yellow), and AA’ (red) stacked 
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MoS2. By comparing the polar stacking behavior (yellow) to the non-polar configurations 

(blue and red), we observe that the latter converge to a finite value, whereas the former 

approaches bandgap closure following the mechanism discussed in the main text. Similar 

bandgap closure is seen also for r-WSe2 (Fig. S10b) and r-BN (Fig. S10c) polar multilayers. 

 

 

Figure S10. Band gap of r-MoS2, r-WSe2, and r-BN. (a) Bandgap of multilayer r-MoS2 at various 

stacking modes, as a function of number of layers. (b), (c) Bandgap of multilayer r-WSe2 and r-BN.  

 

S2.6. Potential drop and bandgap dependence on stack thickness for 1T' ReS2, 1T' WTe2 

and MoTe2 

The polarization saturation mechanism discussed in the main text is not limited to r-MoS2 

layered stacks and can be found in other non-centrosymmetrically stacked 2D materials. For 

example, in 1T’-ReS2, the polarization of which was experimentally studied,(12) polarization 

saturation and bandgap closure are predicted to occur at 𝑁 = 18 (see Fig. S10a). While semi-

metallic systems, such as 1T' WTe2 and MoTe2 (Fig. S11b), may exhibit interfacial 

ferroelectricity,(13, 14) no significant dependence on stack thickness is predicted, as expected 

for zero-bandgap materials. 
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Figure S11. Potential drop and bandgap as a function of the number of layers for 1T' ReS2, 1T' 

WTe2 and MoTe2. (a) DFT-computed potential drop and bandgap calculations of structurally relaxed 

1T' ReS2 as a function of stack thickness. (b) DFT-computed potential drop as a function of layer 

number in semi-metallic 1T' WTe2 and MoTe2 multilayers. 

 

S3. Self-consistent solution of the Poisson and Schrödinger equations 
We used the following algorithm to obtain self-consistent solutions of the Poisson and 

Schrödinger equations: 

1. We start by creating a simplified periodic function to model polarization-induced charge 

transfer, 𝜌𝑝𝑜𝑙(𝑧). The corresponding polarization-induced potential, 𝜙𝑝𝑜𝑙(𝑧), is then 

calculated by solving the one-dimensional (1D) Poisson equation: 

 
𝑑2𝜙𝑝𝑜𝑙(𝑧)

𝑑𝑧2 =
𝜌𝑝𝑜𝑙(𝑧)

𝜖0
, (1) 

where 𝜖0 is the free space permittivity. The magnitude and distribution width of 𝜌𝑝𝑜𝑙(𝑧) are 

then optimized to mimic the DFT-calculated polarization induced potential variation across 

the stack. An example of the simplified density profile and the corresponding potential 

profile, compared to the DFT counterparts, is presented in Figs. S12a,b. 
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Figure S12. (a) Example of a simplified density profile used in the Poisson-Schrödinger (P-S) 

calculation (red) compared to the DFT result (black). (b) Corresponding potential profiles 

obtained from the solution of the Poisson equation. 

 

2. A pair of Schrödinger equations are solved to acquire the spontaneously excited free 

electron and hole densities: 

  −
ℏ2

2𝑚𝑒
∗

𝜕𝜓𝑒
2(𝑧)

𝜕𝑧2 + 𝑉𝑐(𝑧)𝜓𝑒
𝑛(𝑧) = Ε𝑒

𝑛𝜓𝑒
𝑛(𝑧) (2) 

  −
ℏ2

2𝑚ℎ
∗

𝜕𝜓ℎ
2(𝑧)

𝜕𝑧2 + 𝑉𝑣(𝑧)𝜓ℎ
𝑛(𝑧) = Εℎ

𝑛𝜓ℎ
𝑛(𝑧) (3) 

where the conduction and valence band potentials are taken to be 𝑉𝑐(𝑧) = −𝑒𝜙𝑝𝑜𝑙(𝑧) and 

𝑉𝑣(𝑧) = 𝑉𝑐(𝑧) − 𝐸𝑔, where 𝐸𝑔 is the bandgap of the system, and Ε𝑒
𝑛 and Εℎ

𝑛 are the nth energy 

eigenvalues of electrons and holes, respectively. 𝑚𝑒
∗  , 𝑚ℎ

∗  are electron and hole effective 

masses, respectively. We use the effective out-of-plane electron mass at the conduction band 

Q, 0.49𝑚𝑒, and the effective out-of-plane hole mass at the valence band Γ point, 0.80𝑚𝑒, 

(16) where 𝑚𝑒 is the free electron rest mass. The free electron and hole densities are then 

calculated via: 

  𝜌𝑒(𝑧) = −𝑒 𝑔𝑣
𝑚𝑒

∗𝑘𝐵𝑇

𝜋ℏ2
∑ ln (1 + 𝑒

𝐸𝑓−Ε𝑒
𝑛

𝑘𝐵𝑇
 
) |𝜓𝑒

𝑛(𝑧)|2
𝑛 , (4) 

  𝜌ℎ(𝑧) = 𝑒 𝑔𝑣
𝑚ℎ

∗ 𝑘𝐵𝑇

𝜋ℏ2
∑ ln (1 + 𝑒

Εℎ
𝑛−𝐸𝑓

𝑘𝐵𝑇
 
)𝑛 |𝜓ℎ

𝑛(𝑧)|2, (5) 

where 𝑘𝐵 is the Boltzmann constant, T (=300K for our calculation) is the temperature, ℏ is 

the reduced Planck constant, and 𝐸𝑓 is the chemical potential. Eqs. (4) and (5) are obtained 

via integration of the 2D density of states, multiplied by the Fermi-Dirac distribution, along 

the two unconfined directions.(15) The prefactors in the summations, prior to the probability 
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density, accounts for the thermal distribution of free carriers at a finite temperature among 

available subbands. 𝑔𝑣 stands for the valley degeneracy viz. 6 for Q valley of conduction 

band and 1 for  valley of valence band. 

3. To obtain a self-consistent solution, 𝜌𝑒(𝑧) and 𝜌ℎ(𝑧) are added to 𝜌𝑝𝑜𝑙(𝑧) in the Poisson 

equation as follows: 

 
𝑑2𝜙

𝑑𝑧2
=

𝜌𝑝𝑜𝑙(𝑧)

𝜖0
+

𝜌𝑒(𝑧)+𝜌ℎ(𝑧)+𝑒 𝑁𝑑

𝜖0𝜖𝑟
, (6) 

where 𝑁𝑑 is the density of positively charged donors and 𝜖𝑟 = 8.9 is the relative permittivity 

of bulk MoS2.(17) 

 

The process is repeated until self-consistency is achieved. If charge neutrality is satisfied the 

calculation is terminated, otherwise the value of 𝐸𝑓 is modified accordingly and the process 

restarts. SciPy and NumPy Python-libraries were used to perform these numerical 

calculations. Eg was used as a free parameter to match the Vkp saturation value obtained from 

DFT. A value of 0.64 eV was used for all the results shown in the paper. It remains a constant 

for all thickness and doping. 

We can further define the bandgap as the energy separation between the frontier eigenvalues 

in the conduction and valence band (see Fig. S13a). Essentially, it is the correction to the 

classical bandgap, Eg, due to quantum confinement. Interestingly, the bandgap variation as a 

function of layer number, both for undoped and doped cases, follows a similar trend as that 

obtained from the DFT calculations. 

 Figure S13.  (a) Calculated conduction and valence band profile along an ABC stacked trilayer with 

co-oriented interfacial polarization. Schematic representation of various parameters used in the self-

consistent Poisson-Schrödinger calculation. (b) Variation of bandgap obtained from the frontier 
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orbitals of the self-consistent calculation, as a function of the number of layers for the undoped and 

electron-doped cases. 
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