1. For the trial function
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a) The normalized wavefunction is obtained by requiring
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b) Using the Hamiltonian inside a 1D box, the variational energy is
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such that
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The exact ground-state energy for a box of length L = 24 is
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So, the variational principle holds and the approximation is quite good.

c¢) Replacing the box Hamiltonian with that of a harmonic oscillator,
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Minimizing this gives
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d) The minimum energy from the previous calculation is
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while the exact answer is (note k = mw? = w =/ £)
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The variational principle therefore holds.

2. For the potential

a)

b)
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V (x) = —sech? (z) = — (2>2,

The Schrodinger equation in atomic units (A =m = 1) is
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At x — oo, the positive exponent diverges while the negative exponent goes to zero; at
x — —oo the opposite of this happens. Therefore, at each of these limits the denominator
diverges and the potential approaches zero.

The only minimum of the function is at , where :
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To perform the Taylor expansion, we need the second derivative of the potential at the
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The result is the Hamiltonian of a harmonic oscillator with %mw2 =1= w =+/2, and the

minimum:
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With this,
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zero point energy is %hw = g (in atomic units, where i = m = 1). This must be added to
the constant energy —1, giving
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d) We replace the given function into the Schrédinger equation:
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So, this is an eigenfunction with | E = 5t This is differs from the harmonic approximation
by over 40%.
3. For the box with the mobile inner wall,
a) The Hamiltonian is
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with the boundary conditions
[0 (0) =y (L) =0]
b) The eigenfunction and energies are those of a 1D box:
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c) We need only set n to 1:
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The classical spring energy is




d) The equilibrium position will be the one having minimal energy, such that
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Using this,
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e) We expand the potential in a Taylor series around the minimum:
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So,
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and with Mw? = 4k we have
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4. For the LiH molecule,

a) According to the hydrogen-like atom model from class, using the fact that in atomic units

e=1and ag =1,
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c) The determinant gives
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b) With g = % (—% — %) = —13 the secular equation reads
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The corresponding eigenvectors are
(0.56,0.82), (—0.82,0.56),

Such that the molecular orbitals will be
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In the ground state we will have two electrons in ¢; and a total energy of 2A;.
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d) The charge density is twice the square of the amplitudes:
ng ~ 2 x 0.56% = [0.62], nr; =~ 2 x 0.82% ~[1.34].

e) In the second excited state, the particles have different spins and the wavefunction must
have the symmetric form:

P (1,2) = 2 (1)1 (2)

Once again, the charge density is twice the square of the amplitudes:

ng ~ 2 x 0.822 ~[1.34], np; ~ 2 x 0.56% ~[0.62].



