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The hydrogen molecule

The simplest function puts two electrons in the orbital φ =

N(1sA + 1sB):

Φ = Aφ(1)α(1)φ(2)β(2) = φ(1)φ(2)· 1√
2
[α(1)β(2)−β(1)α(2)],

where A is the antisymmetrizer. This is the molecular orbitals

(MO) approach, which is easily extended to larger molecules.

The experimental molecular parameters are Re=0.74 Å, De=4.75 eV.

The function above gives 0.84 Å and 2.65 eV. Optimizing the

1s exponent at each R improves the results to 0.73 Å and

3.49 eV. The Hartree-Fock function (best molecular orbitals)

gives 0.73 Å and 3.63 eV, still 1.12 eV off the experimental De.

The remaining error is due to correlation. For molecular sys-

tems we can see that the neglect of correlation leads to other

problems too. If we write the MOs explicitly, the spatial part

of Φ is

φ(1)φ(2) =
1

2(1 + S)
[1sA(1) + 1sB(1)][1sA(2)1sB(2)] =

=
1

2(1+S)
[1sA1sA + 1sA1sB + 1sB1sA + 1sB1sB].

When the molecule dissociates (R → ∞), the second and third

terms in this sum describe dissociation to two neutral H atoms,

whereas the first and last terms correspond to dissociation to

H++H−, with both electrons on the same nucleus. If this were

true, the dissociation of H2 would have equal probability to pro-

duce two neutral atoms or two ions. This is a very poor result:

since it takes 13.6 eV to ionize the H atom, and its electron

affinity is 0.75 eV, the ion pair is higher by ∼13 eV than two
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neutral atoms. The physical reason for this is neglect of corre-

lation. The second electron “knows” only the average distribu-

tion of the first, with equal probability on each nucleus, but not

its actual location. It therefore chooses the nuclei with equal

probability, and has a 50% chance of ending up on the same

nucleus as the first electron. This is a general phenomenon,

and MO single determinant functions are thus not suitable for

describing the whole potential surface. The region around the

equilibrium configuration is usually described with reasonable

accuracy. Hartree-Fock functions also give in most cases a good

description of one-electron properties, such as dipole moments

and charge distribution. On the other hand, binding energies

come out 30–50% too low. The reason is that forming bonds

usually involves new electron pairs with more correlation en-

ergy, so that the estimate of the binding energy of the molecule

AB by the difference between its Hartree-Fock energy and that

of atoms A and B is too low. A notorious example is that of

the F2 molecule, which has a rather low De. The difference in

correlation energy between the atom and molecule is sufficient

to produce a negative binding energy.

The Valence Bond method

This was actually the first method used (1927) to study molec-

ular structure, predating MO by one year. It has the advantage

of giving molecular descriptions close to chemical concepts, and

makes better predictions than MO. Its major problem is the

difficulty of application to any but the smallest molecules. The

vast majority of quantum chemical application use some form

of MO methods.
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The simplest way to describe the H2 molecule is by the function

1sA(1)1sB(2), 1s =
1√
π

(
Z

a0

)3/2

e−r/a0.

However, this form ignores the basic assumption that electrons

are indistinguishable. To allow for this property and for the

antisymmetry with respect to interchanging the electrons, we

must use the form

Ψ = N [1sA(1)1sB(2) + 1sB(1)1sA(2)]
α(1)β(2) − β(1)α(2)√

2
.

The normalization constant N is obtained by

1 =

∫
Ψ2dτ = N 2

∫
[1sA(1)1sB(2)+1sB(1)1sA(2)]2dτ = 2+2S2,

where S =
∫

1sA(1)1sB(1)dτ (1), giving N = 1√
2(1+S2)

. The

energy is

E =

∫
ΨHΨdτ =

1

2(1 + S2)

{
2

∫
1sA(1)1sB(2)H1sA(1)1sB(2)dτ

+2

∫
1sA(1)1sB(2)H1sB(1)1sA(2)dτ

}
=

J ′ + K ′

1 + S2
.

J ′ is the Coulomb integral, which describes an interaction be-

tween two charge distributions, 1s2
A and 1s2

B in the present case.

K ′ is the exchange integral, which appears here because of the

indistinguishability of identical particles in quantum mechanics.

It may be shown that the energy is also

E = 2EH +
J + K

1 + S2
,

where EH is the energy of an H atom, and J and K are Coulomb

and exchange integrals with the interaction ΔH, which includes
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the terms in the molecular Hamiltonian which do not appear in

the separate atoms,

ΔH = − e2

rA2
− e2

rB1
+

e2

r12
+

e2

R
.

This form shows the energy change from separate atoms to

molecule. It is interesting to note that both J(R) and K(R)

give functions with minima and contribute to the binding en-

ergy, but the contribution of J is far smaller (in absolute value)

than that of K. This may explain the fact that attempts to

explain molecular binding using classical mechanics failed.

Note that another combination with the proper symmetry is

N [1sA(1)1sB(2) − 1sB(1)1sA(2)].

This function is antisymmetric under electron exchange, and

the spin part must therefore be symmetric. There are three

such functions:

α(1)α(2), α(1)β(2) + β(1)α(2), β(1)β(2),

which correspond to a triplet state. The energy of the state is

ET =
J ′ − K ′

1 − S2
= 2EH +

J − K

1 − S2
.

The potential curve is repulsive, and the state is not bound.

The parameters given by the ground state function are Re=0.80 Å,

De=3.20 eV. Comparing with experiment (0.74 Å and 4.75 eV),

we see that the VB values are better than MO at the same level.

Here again we can improve the function by optimizing the expo-

nent of the 1s orbital and adding more functions. A few results

are shown in the table:
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Re(Å) De(eV)

exp 0.74 4.75

MO: e−r/a0 0.84 2.65

e−αr/a0 0.73 3.49

HF 0.73 3.63

VB: e−r/a0 0.80 3.20

e−αr/a0 0.74 3.78

+2pz 0.74 4.04

Since H2 is a very small molecule, it is possible to get highly ac-

curate results. James and Coolidge proposed in 1933 a function

written in the elliptical coordinates

ξ =
rA + rB

R
, η =

rA − rB

R
, ϕ.

The function is an exponential multiplied by a polynomial in

these coordinates,

Ψ =
∑
pqrst

cpqrst (ξp
1η

q
1ξ

r
2η

s
2 + ξr

1η
s
1ξ

p
2η

q
2) rt

12e
−α(ξ1+ξ2).

The function is less frightening than it looks. The 1st term in

the parentheses is a monomial in ξ and η (p, q, r, s, t are small

non-negative integers), the second term is needed to make the

function symmetric to electron interchange, r12 is the interelec-

tron separation, the inclusion of which is the most straightfor-

ward way to take care of correlation, and the exponential is

known to determine the behavior of the electrons. 13 terms

of this type were chosen carefully and the linear coefficients c

were optimized. The dissociation energy obtained was 4.72 eV.

The function was extended to 40 terms in 1960, giving accuracy

equal to or better than experiment.
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Like in the He case, the goal is not so much to match experi-

mental accuracy as to make sure we know everything about the

forces and effects in the system. An added benefit in the molec-

ular case is the treatment of excited states with similar meth-

ods and accuracy. Excited states cannot be studied directly by

experiment. What one measures is spectroscopic transitions of

various types (electronic, vibrational, rotational), and interprets

them to extract structure information. For these states, James-

Coolidge-type functions provide more and better information

than experiment.
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Diatomic molecules

The terms (energy levels) of diatomic molecules are built in

a similar manner to atoms. They are classified and named

by the value of Lz, denoted Λ: Λ=0,1,2 give Σ, Π, Δ states,

respectively. Closed shells always give 1Σ levels. If we look at

the open shell π2 configuration, it has 4 spinorbitals (π±1, with

spins α and β), therefore 4·3
2 = 6 determinants. Λ is simply the

sum over electrons
∑

i λi.

MS Λ = 2 0 −2

1 π1απ−1α

0 π1απ1β
π1απ−1β

π−1απ1β
π−1απ−1β

−1 π1βπ−1β

Note that Lz is not an angular momentum. As a result, Λ does

not have to change in steps of 1. We follow the same scheme

as for atoms. The extreme function π1απ−1α represents a 3Σ

state, which has 3 components, with Λ=1 and MS=1,0,−1. An-

other extreme state, π1απ1β gives a 1Δ state, with components

having Λ = ±2 and MS=0. After the corresponding functions

are deleted, there remains one function with Λ = 0,MS = 0,

which gives a 1Σ state. The explicit form of this function may be

found as follows: applying the S− operator to the 3Σ(MS = 1)

state π1απ−1α, in the way we did for atoms, gives

3Σ(MS = 0) =

√
1

2
(π1βπ−1α + π1απ−1β).

The 1Σ state must be orthogonal to that, therefore

1Σ(MS = 0) =

√
1

2
(π1βπ−1α − π1απ−1β).
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Σ functions have an additional symmetry. It is related to re-

flection in the xz plane which includes the molecular (z) axis.

The angle ϕ is transformed by such reflection to −ϕ (see graph

below), and the π orbitals therefore transform by

π1 = R(r, θ)eiϕ σ(xz)←→ R(r, θ)e−iϕ = π−1.

R is the factor of the π orbital which depends on the r, θ coor-

dinates.

The equation above gives

σ(xz)1Σ =

√
1

2
(π−1βπ1α − π−1απ1β) =1 Σ,

where it should be remembered that each term in the paren-

thesis is actually a determinant, so that changing orbital order

involves a minus sign. The triplet functions, on the other hand,

go to minus themselves under the reflection. The states are

therefore denoted by 1Σ+ and 3Σ−. States with higher Λ do

not have this symmetry, because they are always doubly degen-

erate. The two components may be denoted + and −, but they

mix freely and this distinction is meaningless.

Non-equivalent electrons

Here we can simply combine the λ values, adding and sub-

tracting them. Remember that λ does not represent angular

momentum, so no vector addition is done. Taking the πδ con-

figuration, with λi values of ±1 and ±2, the total Λ can be
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±1 and ±3, giving Π and Φ states. The spins of the two elec-

trons are added vectorially to S = 0, 1, so that the levels of the

system will be 1,3Π and 1,3Φ.

ππ′ is also a configuration with nonequivalent electrons. The

addition and subtraction of the λi values, both of which are ±1,

gives Λ = ±2, 0, 0, and the resulting terms are 1,3Δ and two

sets of 1,3Σ. Further analysis shows that the Σ states are 1,3Σ+

and 1,3Σ−.

Heteronuclear diatomic molecules

Here it is not possible to give a scheme applicable to all molecules

of this type. The two atoms may be close to each other, as in

CO, or far way, as in HCl. The structure of CO is not very differ-

ent than that of N2, except that there is no inversion symmetry

and the g, u classification disappears. Compare the configura-

tions:

N2 : 1σ2
g1σ

2
u2σ

2
g2σ

2
u1π

4
u3σ

2
g

CO : 1σ22σ23σ24σ21π45σ2

For HCl, the 1s22s22p63s2 electrons of the Cl atom have con-

siderably lower energies that the 1s on H, so they do not change

much when HCl is formed. They are inner shell orbitals. The

bond is formed between the H1s and Cl3pz. The Cl 3px and 3py

are in the valence shell, but there are no hydrogen orbitals of

the right symmetry and energy to combine with them, so they

remain largely atomic. Such orbitals are non-bonding, and the

electrons in them form lone pairs. The configuration of the HCl

ground state is thus

1s2
Cl2s

2
Cl2p

6
Cl3s

2
Cl (3pzCl + k1sH)2 3p2

xCl3p
2
yCl.

Note that the bonding orbital 3pzCl + k1sH is not an equal
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mix of the two AOs. We know that Cl is more electronegative

than H, and expect k to be smaller than 1. There is also an

antibonding orbital, 3pzCl−k′1sH , which is not occupied in the

ground state.


