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Higher orbitals

The H+
2 molecule has additional orbitals. The Hamiltonian

H = − h̄

2m
∇2 − e2

rA
− e2

rB
+

e2

rAB

has cylindrical symmetry. Defining the molecular axis as the

z-axis, transformation to spherical coordinates (or any coordi-

nate system which includes the angle ϕ, such as elliptical or

cylindrical) will make possible the separation of the equation in

ϕ, which is

d2Φ(ϕ)

d2ϕ
= −λ2Φ, giving Φ(ϕ) =

1√
2π

eiλφ,

with λ = 0,±1,±2, · · · . Another way to look at the situation

is noting that the total orbital energy operator L̂2 does not

commute with H, but L̂z does. The eigenfunctions of H may

therefore be chosen as eigenfunctions of L̂z with the eigenvalue

λh̄. The orbitals are classified according to λ, similar to the

classification of atomic orbitals by their l value, and denoted by

letters which are the Greek equivalents to the AO notations: an

orbital with λ = 0 is called σ, λ = ±1 gives a π orbital, λ = ±2

corresponds to a δ orbital, etc. Note that only λ2 will appear in

the equation determining the energy, so that all orbitals (except

σ) are doubly degenerate.

It is convenient to work with real, rather than complex, orbitals.

We do the same in atoms, when we take real combinations of

degenerate orbitals, e.g.

px =
p1 + p−1√

2
, py =

p1 − p−1

i
√

2
.
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For linear molecules, the + combination of φλ and φ−λ gives

a real orbital with a ϕ dependence of cos(λϕ), while the −
combination gives a ϕ factor of sin(λϕ).

The real form of the orbitals makes possible an understanding

of their spatial shape. The orbital φ with a ϕ factor of sin(λϕ)

will obviously vanish at all points satisfying sin(λϕ) = 0, which

happens for certain ϕ values. Each such ϕ value defines a plane

which includes the molecular axis (the z axis), which is a nodal

plane. The solutions of sin(λϕ) = 0 are λϕ = nπ, or ϕ =

nπ/λ, n = 0, 1, · · · . It is easily seen that when n reaches λ

we get nodal planes which have been counted before. Unique

nodal planes are thus obtained for n = 0, 1, · · · , λ − 1, and

an orbital with the ϕ dependence sin(λϕ) will have λ nodal

planes. Reversing the argument, the λ of an orbital (in its real

form) is given by the number of nodal planes which include the

molecular axis. The two H+
2 orbitals discussed above have no

such planes, and are therefore σ orbitals (λ = 0). Note that the

second orbital (1sA − 1sB) has a nodal plane, but it does not

include the molecular axis and is not counted for determining

λ.

If the molecule has an inversion center, squares of orbitals are

invariant under inversion, and the orbitals are invariant up to a

possible minus sign (inversion is the transformation x, y, z →
−x,−y,−z; geometrically, a point (x, y, z) is connected to the

origin and the vector is continued with the same length, giving

the transformation of the original point). An orbital going to

itself upon inversion is denoted by the subscript g, an orbital

going to minus itself is u. The orbital 1sA + 1sB is 1σg, and

1sA − 1sB is 1σu. The 1 in both cases means this is the first
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orbital of the σg or σu symmetry.

So far we constructed molecular orbitals from the atomic 1s

orbitals. MOs may similarly be constructed from higher AOs.

The 2s AOs will give

2σg ≈ 2sA + 2sB, 2σu ≈ 2sA − 2sB.

Here, as for 1s, the + combination will be bonding, while the −
combination will have a nodal plane between the atoms and will

be antibonding. The case of 2p orbitals is more complicated.

The 2px, 2py, and 2pz orbitals are equivalent in the atom. In

the molecule, the z direction is where the other nucleus lies, and

it differs from the other two directions. The 2pz orbitals form

two σ MOs,

3σg ≈ 2pzA − 2pzB, 3σu ≈ 2pzA + 2pzB,

with the first bonding and the second antibonding. Note that

the shape of the atomic 2p dictates signs opposite to that of the

s orbitals. The combinations of 2px and 2py orbitals have nodal

planes which include the molecular (z) axis, the yz plane for

2px and xz for 2py. The MOs obtained from them will therefore

have π symmetry. These MOs will be

1πu ≈ 2pxA + 2pxB, 1πg ≈ 2pxA − 2pxB,

1πu ≈ 2pyA + 2pyB, 1πg ≈ 2pyA − 2pyB.

Note that each MO appears twice. As discussed above, all

orbitals with λ > 0 are doubly degenerate. The 1πu orbitals

have the positive lobes of the AOs next to each other, and

similarly for the negative lobes; they are therefore bonding. The

1πg orbitals, on the other hand, have the positive lobe of one



96

AO next to the negative lobe of the other; they will therefore

have a nodal plane between the atoms and will be antibonding.

The bonding orbitals obtained from the 2p AOs will have lower

energy than the antibonding MOs. The ordering in these groups

is less obvious. In most (but not all) cases, the π orbitals lie

below the σ ones, so the order is

1πu < 3σg << 1πg < 3σu,

but the order within the first two or last two may change some-

times.
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The scheme above produces a series of molecular orbitals for

diatomic homonuclear (=same atoms) molecules. In order of

increasing energy, with a star marking antibonding orbitals, the

series is

1σg, 1σ
∗
u, 2σg, 2σ

∗
u, 1πu, 3σg, 1π

∗
g, 3σ

∗
u.

The structure and bonding of diatomic homonuclear molecules

can be understood by filling the orbitals from the bottom up

and counting the bonding and nonbonding electrons. The bond

order n is defined as the number of electrons in bonding or-

bitals minus their number in nonbonding orbitals, divided by

2. It corresponds to the traditional chemical idea of bond type

(single, double, etc.) and gives a semiquantitative measure of

the bond strength, as measured by Re, the equilibrium inter-

nuclear distance, and De, the dissociation energy. Obviously,

smaller Re and larger De indicate a stronger bond.

config. n De(eV) Re(Å)
H+

2 1σg 0.5 2.79 1.06
H2 1σ2

g
1 4.75 0.741

He+

2 1σ2
g
1σu 0.5 2.5 1.08

He2 1σ2
g
1σ2

u
0 0.0009 3.0

Li2 · · · 2σ2
g

1 1.07 2.67
Be2 · · · 2σ2

g
2σ2

u
0 0.10 2.45

B2 · · · 1π2
u

1 3.1 1.59
C2 · · · 1π4

u
2 6.3 1.24

N+

2 · · · 1π4
u
3σg 2.5 8.85 1.12

N2 · · · 1π4
u
3σ2

g
3 9.91 1.10

O+

2 · · · 1π4
u
3σ2

g
1πg 2.5 6.78 1.12

O2 · · · 1π4
u
3σ2

g
1π2

g
2 5.21 1.21

F2 · · · 1π4
u
3σ2

g
1π4

g
1 1.66 1.41

Ne2 · · · 1π4
u
3σ2

g
1π4

g
3σ2

u
0 0.0036 3.1

The table shows these trends in diatomic homonuclear molecules.

There are a few exceptions. Thus, Li+2 , with a bond order of 0.5,

has a stronger bond (D0=1.44 eV) than Li2 with a bond order
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1. More accurate calculations give the correct results, but the

highly qualitative treatment above gives very good predictions

in almost all cases. It also explains why the oxygen molecule is

paramagnetic. The ground state has a π2
g open shell, which gives

rise to triplet and singlet states, with the triplet lower by Hund’s

rules. The tiny binding energies of the rare gas molecules are

due to van der Waals interactions. The small De of Be2, which

has a bond order 0, is caused by the closeness of the 2p LUMO

to the 2s HOMO, which allows some hybridization.

The MO picture gives a simple understanding of excited states

too. Let us take He2 as an example. The ground state is bound

only by van der Waals interaction, which is very weak. Exciting

an electron gives the 1σ2
g1σu2σg configuration. This configura-

tion has a bond order of 1, and gives rise to triplet and singlet

states, with binding energy of about 2.5 eV.


