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MOLECULES — the Born-Oppenheimer approximation

Molecules are much more difficult than atoms to treat. Two

complicating factors:

• No spherical symmetry (there are lower symmetries which

we will use)

• Need to calculate motion of electrons and nuclei

The Hamiltonian (i goes over electrons, α over nuclei)
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The Schrödinger equation is

H(�ri, �Rα)Ψ(�ri, �Rα) = EΨ(�ri, �Rα).

For convenience, we will denote the various parts of H by T

and V ,

H(�ri, �Rα) = Te(�ri)+Tn(�Rα)+Ven(�ri, �Rα)+Vee(�ri)+Vnn(�Rα).

These terms represent, in order, the electron kinetic energy,

the nuclear kinetic energy, the electron-nuclear attraction, the

electron-electron repulsion, and the nuclear-nuclear repulsion.

The first step is the separation of electron and nuclear motion.

Since nuclei are 3 orders of magnitude heavier than electrons,

the electron “sees” stationary nuclei. The nuclei, on the other
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hand, see the electrons as a charge distribution, which pro-

vides the potential for the nuclear motion. This is the Born-

Oppenheimer approximation. As the name implies, the proce-

dure is not exact. However, the errors involved are small in

most situations. Moreover, this approach provides a conceptual

framework for the discussion of molecular structure.

The molecular Schrödinger equation is solved in two steps:

1. The nuclei are fixed in space, therefore Tn = 0 and Vnn is

a constant. The electronic Hamiltonian is

He(�ri; �Rα) ≡ Te(�ri) + Ven(�ri, �Rα) + Vee(�ri) + Vnn(�Rα),

and the electronic Schrödinger equation is

He(�ri; �Rα)ψe
ε (�ri; �Rα) = Ee

ε (
�Rα)ψe

ε (�ri; �Rα).

ε denotes the set of electronic quantum numbers. Note that

He(�ri; �Rα) and ψe
ε(�ri; �Rα) are functions of �ri, but depend

parametrically on �Rα, as does Ee
ε . This happens because

different nuclear coordinates give different electronic Hamil-

tonians, and therefore different eigenfunctions and eigen-

values. The energy Ee
ε (

�Rα) is the potential surface for the

motion of the nuclei in the electronic state ε.

2. After the electronic equation has been solved for a variety of

molecular configurations, the nuclear Schrödinger equation

is solved, using Ee
ε (

�Rα) as the potential surface:

Hn
ε (�Rα) = Tn(�Rα) + Ee

ε (
�Rα),

Hn
ε (�Rα)ψn

εν(�Rα) = Eενψ
n
εν(�Rα).

ν is the set of nuclear quantum numbers. The solution of

the complete molecular equation is approximated by

Ψεν ≈ ψe
ε(�ri; �Rα)ψn

εν(
�Rα),
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and the energy is close to Eεν .

For a diatomic molecule, the only internal nuclear coordinate is

RAB, and the electronic potential surface is the one-dimensional

potential function Ee(R). The solution of the nuclear equation

gives a series of vibrational levels (see figure).

As the name suggests, this is the Born-Oppenheimer approxi-

mation. What is the error?

The full molecular Schrödinger equation is

(Te + Tn + Ven + Vee + Vnn)Ψ = EΨ.

The two steps of the solution are

(Te + Ven + Vee + Vnn)ψ
e = Eeψe and (Tn + Ee) = Eψn.

If we apply H to ψeψn, (Te + Tn + Ven + Vee + Vnn)ψeψn,

ψn commutes with all parts of H except Tn, which is the only

operator containing derivatives wrt nuclear coordinates. We

may therefore write

(Te+Tn+Ven+Vee+Vnn)ψeψn = ψn(Te+Ven+Vee+Vnn)ψe+Tnψ
eψn

= ψnEeψe+ψeTnψ
n+[Tn, ψ

e]ψn = ψe(Ee+Tn)ψn+[Tn, ψ
e]ψn =

Eψeψn + [Tn, ψ
e]ψn.
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The commutator [Tn, ψ
e]ψn is added to compensate for putting

ψn to the left of Tn. If the commutator vanished, the BO

approximation would have been exact. Neglecting the com-

mutator amounts to neglecting derivatives of ψe wrt nuclear

coordinates. Such derivatives appear because ψe depends para-

metrically on Rα. A hand waving argument may be used to

show that these derivatives have small effect. ψe is expected to

depend mainly on electron-nuclear distances, |ri − Rα|. If this

is true, the derivatives of ψe wrt electronic and nuclear coor-

dinates should be similar, However, derivatives wrt electronic

coordinates are multiplied by h̄2/(2m), whereas derivatives wrt

nuclear coordinates are multiplied by h̄2/(2Mα), which is much

smaller. This is NOT a rigorous argument, and the situation is

more complicated. Nevertheless, The approximation works very

well in most cases. Situations where it fails involve crossing of

potential surfaces with the same symmetry. In such cases, the

crossing point has a degeneracy, which is split by the interaction

left out by the approximation, and the shapes and character of

the surfaces change significantly.
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The simplest molecule – H+
2

This species is not of great interest in itself, but knowledge

gained from its study is applicable to larger, “real” molecules.

The Born-Oppenheimer Hamiltonian is

H = − h̄2

2m
∇2 − e2

rA
− e2

rB
+

e2

RAB
,

where rA, rB are the distances of the electron from nuclei A

and B, and RAB is the internuclear separation, treated as a

constant when solving the electronic Schrödinger equation. It

should be noted that the equation may be separated and solved

analytically after transformation to elliptical coordinates (ξ =
rA+rB
RAB

, η = rA−rB
RAB

, and φ is the angle around the z axis as

in spherical coordinates). However, this approach is not too

helpful for larger molecules, and we will not pursue it.

When the electron is near nucleus A, its behavior is similar to

that of an electron in atomic hydrogen, so its wavefunction is

close to 1sA, or
√

1/(πa3
0)e

−rA/a0. Obviously, the wavefunction

near nucleus B is close to 1sB. We can therefore write a simple

approximate function for the ground state of H+
2 in the form

φ = N(1sA + 1sB), where N is a normalization factor. φ is

a molecular orbital, written as a linear combination of atomic

orbitals.

N is obtained by requiring normalization:∫
φ2dτ = 1.

N2

∫
(1sA + 1sB)2dτ = 2 + 2S, where S ≡

∫
1sA1sBdτ.

Therefore N = 1√
2(1+S)

.



89

The energy is

E =

∫
φHφdτ =

1

2(1 + S)
(HAA + HAB + HBA + HBB) ,

where the H terms are integrals of the Hamiltonian between

atomic orbitals, e.g. HAB =
∫

1sAH1sBdτ . Since HAA = HBB

and HAB = HBA, the result is

E =
HAA + HAB

1 + S
.

Note that E is a function of the internuclear separation R, which

appears as a parameter in the electronic Hamiltonian. If we plot

E vs. R, we get a potential curve. An example, showing two

curves for H2, is given here. The lower curve is the H2 ground

state; the upper curve shows an excited, unbound state.

The potential curve is characterized by the position of the min-

imum (re) and the well depth, which is the binding or dissoci-

ation energy (De). In the example, Re is 0.074 nm (0.74 Å),
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and De is 4.75 eV (D0, which takes into account the zero-point

energy, is 4.48 eV. The source of the value 4.52 in the picture

is not clear). For H+
2 the values are Re=1.06 Å, De=2.79 eV.

The simple function we used gives a qualitatively correct re-

sult: the potential has a minimum, indicating the formation of

a molecule. However, the values obtained are not satisfactory,

with Re=1.32 Å and De=1.77 eV.

How can we improve the results? The first clue is that the cal-

culated Re is much large than the experimental. This means

that our function is biased toward large R. If we look at the

limit R → ∞, the system goes into a hydrogen atom (and a far-

away proton). The function goes into a H atom 1s, which is the

correct function. At the other limit, R → 0, the system goes

into He+ (we ignore the nuclear repulsion). The wavefunction

should then be Ne−Zr/a0, with Z=2. The variation function

we use goes into the same form with Z=1. The natural gen-

eralization is to make the exponent a variational parameter,

to be optimized separately for every R. The function is then

φ = N(e−αrA/a0 + e−αrB/a0), with the variational parameter

α. This gives a much better potential, with Re=1.06 Å and

De=2.25 eV (α at Re is 1.23). Thus, Re agrees with experi-

ment, and the error in De went down by 1
2
.

The next improvement involves polarization. The 1s orbital

has spherical symmetry, which is correct for the free atom but

not for the atom in a molecule. The charge is polarized by the

other nucleus. There are different ways to allow this effect in

the function, but the most widely used method, applicable for

larger systems, involves adding orbitals to describe this effect.
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In the H+
2 case, a simple function would be

φ = N [(1sA + 1sB) + λ(2pzA − 2pzB)].

Note the minus sign, needed to keep the orbital symmetry. This

function, which has 3 parameters (the exponents of 1s and 2pz

and λ) gives Re=1.06 Å and De=2.73 eV.

The two effects addressed in this improved function are (i) the

radial distribution of the electron, determined by the exponent

α, and (ii) polarization of the charge, described by the 2pz

component. We will see that these two effects are important in

larger molecules too.

We have chosen a symmetric combination 1sA + 1sB as the

simplest MO. The antisymmetric combination 1sA − 1sB also

satisfies the requirement of behaving like 1sA near nucleus A

and like 1sB near B (it behaves like −1sB, but all observables

depend on the square of the function).

Following the same procedure as above, this combination gives

φ2 =
1√

2(1 − S)
(1sA − 1sB); E2 =

HAA − HAB

1 − S
.

The potential function for E2 is the upper curve in the diagram

showed above. It is a repulsive potential, and a molecule finding

itself on this potential dissociates into H+H+.

The major difference between the two functions may be seen

by looking at their charge distributions, and comparing them

with the distribution ρ0 obtained by putting half an electron

on A and half on B and ignoring changes caused by molecule

formation:
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ρ0 =
1

2
(1s2

A + 1s2
B)

ρ1 = |φ1|2 =
1

2(1 + S)
(1s2

A + 1s2
B + 2 · 1sA1sB)

ρ2 = |φ2|2 =
1

2(1 − S)
(1s2

A + 1s2
B − 2 · 1sA1sB).

The density ρ1 is higher than ρ0 in the region between the

nuclei. ρ2 is lower in this region, and even vanishes in the plane

the points on which are equidistant from the two nuclei, since

on this plane 1sA = 1sB (this plane is a nodal plane).

The property shown here is general. Orbitals which involve in-

creased electron charge between atoms are bonding, contribut-

ing to the formation of the molecular bond. Orbitals leading to

reduced charge and nodal plane between atoms are antibonding.


