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Quantitative treatment of atoms

We will first describe the simplest perturbational and variational

calculations of diatomic atoms. The Hamiltonian is

H =
2∑

i=1

(
− h̄2

2m
∇2

i −
Ze2

r2
i

)
+

e2

r12
.

In the simplest perturbation treatment, the last term (e2/r12)

is taken as the perturbation. The ground state of H (0) is then

ψ
(0)
1s1s00 = ψ1s(�r1)ψ1s(�r2)χ00, χ00 =

√
1

2
(αβ − βα),

E
(0)
1s1s = 2E1s = −Z2e2

a0
= −27.21Z2 eV.

Note that E(0) is lower than the real energy of He (-78.98 eV),

because a positive term of H is ignored. To first order,

E1s1s ≈ 2E1s + 〈ψ(0)
1s1s|

e2

r12
|ψ(0)

1s1s〉 = 2E1s + J1s1s =

= −Z2e2

a0
+

5

8

Ze2

a0
= −Z2e2

a0

(
1 − 5

8

1

Z

)
.

The table below shows the experimental, zero-order and first-

order energies for some light 2-electron species. The last column

is obtained by a variational treatment described later.

Energies in eV with minus signs

Exp. E(0) E(0) + E(1) Var

He 78.98 108.85 74.83 77.49

Li+ 198.04 244.91 193.89 196.55

Be2+ 371.51 435.39 367.36 370.02

B3+ 599.43 680.30 595.26 597.92

C4+ 881.83 979.63 877.59 880.25
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E(0) gives a very large error. This is to be expected, since

the perturbation term in the Hamiltonian, e2/r12, is not much

smaller than the potential term in H (0), −Ze2/r12. E(1) cor-

rects a very large part of the error, giving a nearly constant

deviation of about 4.15 eV, which is still rather substantial.

Note that the relative error of E(0) + E(1) gets smaller with in-

creasing Z, since the perturbation remains the same while the

term in H(0) increases in absolute value.

Variational treatment

The important step in applying variational methods is the selec-

tion of the trial function. The simplest function for a 2-electron

atom is a product of two hydrogenic functions,

φ(�r1, �r2) = ϕ1s(�r1)ϕ1s(�r2).

The hydrogenic 1s function is 1√
π

(
Z
a0

)3/2

e−Zr/a0, and we take

the same functional with the variational parameter Z ′ instead

of the real Z. We expect Z ′ to be smaller than Z because of

the screening effect.

ϕ(ri) =
1√
π

(
Z ′

a0

)3/2

e−Z ′r/a0

gives E ′
1s1s = 〈φ|H|φ〉 = − e2

a0

(
2ZZ ′ − Z ′2 − 5

8Z
′).

Differentiating wrt Z ′ gives dE′
dZ ′ = −e2

a0

(
2Z − 2Z ′ − 5

8

)
= 0 ⇒

Z ′ = Z − 5
16

,

E′ = −Z2e2

a0

(
1 − 5

8

1

Z
+

25

256

1

Z2

)
.

The first two terms are similar to those obtained by the per-

turbation treatment. The results have an error of ∼1.5 eV (see

table above).
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What is the best function (meaning lowest energy) of the form

φ = ϕ(�r1)ϕ(�r2)? It has been shown that the best function

corresponds to a physical model, in which the electron “sees”

the attraction of the nucleus and the repulsion by the average

distribution of the other electron. This potential is

V (r1) = −Ze2

r1
+ e2

∫ |ϕ(r2)|2
r12

d�r2.

It is obtained by looking at the repulsion from the electron

charge in the volume element d�r2, which is e·e|ϕ(r2)|2d�r2
r12

. In-

tegration over the �r2 space gives the expression above. The

one-electron Schrödinger equation is then[
− h̄2

2m
∇2

1 + V (r1)

]
= ε1ϕ(�r1).

Note that ϕ, the solution of this equation, appears also in V ,

so that the equation must be solved iteratively. This is a simple

example of the approximation called self consistent field (SCF)

functions, used extensively in quantum chemistry.

Is the SCF function exact? For the He atom it gives a total

energy of −77.9 eV, or 1.1 eV above experiment. Why?

The interelectronic interaction taken into account in the SCF

model is between average distributions. In real life, the interac-

tion is between instantaneous electron positions. Thus, if one

electron is above the nucleus, the other will have larger probabil-

ity of being below the nucleus. This is the correlation between

electrons, which is not allowed for in SCF. The 1.1 eV error in

He is the correlation energy of the atom.

The conceptually simplest way to include correlation is to have
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r12 explicitly in the function. Hylleraas (1928) used the function

φ = Ne−αr1/a0e−αr2/a0 (1 + br12) .

The lowest energy was −78.7 eV (0.3 eV off experiment) for

α = 1.849, b = 0.364/a0. Positive b means higher probabil-

ity for large r12, as expected. A more complicated function

gave an energy off by just 0.01 eV. Pekeris extended this work

in 1959, and his final energy was −2.903724375e2/a0, agreeing

with experiment to 9 figures, the experimental accuracy. The

calculated ionization potential was 198310.69 cm−1, vs. the ex-

perimental 198310.82±0.15. For this kind of accuracy, many

small effects had to be included, such as relativistic, magnetic

interactions, and others. The success proved that we indeed

know the existing interaction terms at least with this accuracy.

A similar calculation for Li (1968) gave a ground state energy

of −7.47802e2/a0, compared with the experimental −7.47807.

Unfortunately, the method is not practical for large systems,

because the number of rij variables and the computational effort

go up very rapidly.

Many-electron atoms

It is convenient to keep the concept of one-electron orbitals as

far as possible, at least as a starting approximation. We can

write the trial function as the product

φ = ϕ1(1)ϕ2(2) · · ·ϕN(N).

The potential acting on electron i will include the nuclear at-

traction and the repulsion by the average distribution of all
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other electrons, similar to what we used for He

Vi(i) = −Ze2

ri
+

N∑
j �=i

e2

∫ |ϕj(j)|2
rji

dj,

and the equations will have the form[
− h̄2

2m
∇2

i + Vi(i)

]
ϕi(i) = εiϕi(i).

This is the Hartree method. Note that it is not antisymmet-

ric! One may retain the concept of one-electron orbitals and

still have the desired antisymmetry by using a determinantal

wavefunction

φ =
1√
N !

∣∣∣∣∣∣∣∣∣

ϕ1(1) ϕ1(2) · · · ϕ1(N)

ϕ2(1) ϕ2(2) · · · ϕ2(N)

· · · · · · · · · · · ·
ϕN(1) ϕN(2) · · · ϕN(N)

∣∣∣∣∣∣∣∣∣
This is the Hartree-Fock, which is used extensively, either in

itself or as a starting point for more accurate methods which

include correlation. Such methods include, among others

• Configuration interaction, where the wavefunction is a lin-

ear combination of many determinants (can go to many

millions),

Φ =
∑

I

CIφI .

It is convenient to start with the Hartree-Fock determinant,

then add determinants obtained from it by replacing some

occupied orbitals by other orbitals, not occupied in the first

determinant.
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• Perturbation theory. Highly sophisticated methods have

been devised to apply PT in large systems.

• Since perturbation theory often converges slowly, so-called

coupled cluster methods sum up important parts of the

perturbation to infinite order. These are the most accurate

methods known, but also rather expensive.

We will not discuss these methods in detail.


