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REAL ATOMS – the shell model

The Hamiltonian is

H =
N∑

i=1

(
− h̄2

2m
∇2

i −
Ze2

ri

)
+

N∑
i=1

N∑
j>i

e2

rij
.

ri is the distance between electron i and the nucleus, and rij is

the distance between electrons i and j. Note that each electron

pair ij appears exactly once.

The N -electron Schrödinger equation cannot be solved analyt-

ically for N > 1. One may start with an approximate Hamil-

tonian, written as a sum of one-electron terms,

H(0) =

N∑
i=1

[
− h̄2

2m
∇2

i + V (�ri)

]
.

The equation is then separated into one-electron equations,[
− h̄2

2m
∇2

i + V (�ri)

]
ψεi(�ri) = Eniliψεi.

εi collects the quantum numbers nilimimsi. The energy de-

pends on n and l (it is l-independent only for an exactly Coulom-

bic V ). The determinant Ψ = |ψε1ψε2 · · ·ψεN | will be an anti-

symmetrized eigenfunction of H (0).

Various choices may be used for V . The choice of the actual

one-electron interaction V = −Ze2

ri
is not very good. A central

potential is normally used, which depends on r and not on

�r. The general expression is V (ri) = −Ze2

ri
+ V eff(r), where

the second term approximates the effect of interaction with the

other electrons. The orbitals may be written as a radial function

multiplied by a spherical harmonic and a spin part,

ψεi = Rnili(ri)Ylimi
(θi, ϕi)χ1

2 ,msi
,
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and the radial equation is{
1

r2
i

d

dri

(
r2
i

d

dri

)
− l(l + 1)

r2
i

+
2m

h̄2 [E − V (ri)]

}
Rnili(ri) = 0.

The orbitals in atoms are 1s, 2s, 2p, · · · . The energy depends

on n and l (only on n in 1-electron atoms). The orbitals may be

ordered by energy, and the electrons put in the lowest orbitals.

This is the aufbau principle. For a given n, the energy goes

up with l. This happens because the radial equation includes

the centrifugal potential l(l + 1)/r2, which keeps electrons in

high-l orbitals further away from the nucleus. The distribution

of electrons in the orbitals is called electron configuration, e.g.

1s22s22p2 for C and 1s22s22p5 for F. The configuration is not

sufficient to describe the atom. Thus, carbon atom has three

low-energy atomic levels with the configuration 1s22s22p2. To

understand atomic structure we need to look at the various an-

gular momenta in the atom.

Angular momenta in the atom

Electron i has an orbital angular momentum �Li and a spin

angular momentum �Si. All these momenta are coupled. The

individual �Li do not commute with H. The coupling scheme

which works best in light atoms is the LS coupling,

�L ≡
N∑

i=1

�Li
�S ≡

N∑
i=1

�Si
�J ≡ �L + �S.

The first two couplings (creating �L, �S) are the most important.

They lead to splitting of level energies which do not depend

only on the interactions between magnetic moments. This is
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similar to the singlet-triplet splitting in the 2-electron model,

which does not come from magnetic interactions. The coupling

between �L and �S to form �J is magnetic in nature, like the spin-

orbit coupling in 1-e atoms, and in light atoms involves small

energies (fine structure).

If spin-orbit coupling is ignored, the determinants Ψ constructed

of N orbitals may be characterized by the quantum numbers

nLSMLMS (the last four numbers correspond to the operators

L2, S2, Lz, Sz, and n differentiates between functions with the

same angular momentum numbers), or nLSJMJ , belonging to

the operators L2, S2, J2, Jz. Only the second set remains valid

when SO coupling is included.

The angular momentum z components are added algebraically.

This gives

ML =

N∑
i=1

mli MS =

N∑
i=1

msi.

The determinants satisfy

LzΨ = MLh̄Ψ, MzΨ = Szh̄Ψ.

For two non-equivalent electrons (n1l1 �= n2l2), one may simply

add the l’s and s’s vectorially, giving

L = |l1 − l2|, · · · , l1 + l2 and S = |s1 − s2|, · · · , s1 + s2.

For example, if the open shells are one 2p and one 3p electrons,

the allowed values are L = |1− 1|, · · · , 1 + 1 = 0, 1, 2 and S =

|12 − 1
2|, · · · , 1

2 + 1
2 = 0, 1. All possible combinations of L and S

are allowed, and we get 6 energy levels (called terms). The terms

are denoted by 2S+1L, where L is the letter corresponding to the
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spd orbital notation but written as a capital letter, and 2S + 1

is a number. The 6 terms resulting from 2s3s are therefore

L = 0 S = 0 1S L = 0 S = 1 3S

L = 1 S = 0 1P L = 1 S = 1 3P

L = 2 S = 0 1D L = 2 S = 1 3D

Closed shells always have L = 0, S = 0, so that only open

shells need be taken into account when determining the atomic

level structure. The 1s22s22p3p excited configuration of the car-

bon atom will therefore have the six energy levels listed above.

Note that these levels indeed exist and have different energies,

even though the electron configuration is identical. The orbital

picture is not sufficient to fully describe the atomic structure,

although it gives the major features.

Finding the terms resulting from equivalent electrons is more

complicated, since Pauli’s exclusion principle does not allow

many of the possible combinations. It is easy to see that the

2p3p configuration has 36 determinants (6× 6). A 2p2 configu-

ration will only have 15 allowed determinants: the first electron

can go into any of the 6 spinorbitals of 2p; the 2nd electron

is allowed into one of the 5 remaining spinorbitals; and since

electrons are indistinguishable, we must divide by 2. It is easy

to find the ML and MS value of each determinant (the sums

of mli and msi, respectively); the L and S values, needed to

define the terms, are more difficult. A straightforward way is

to classify the determinants by the known ML and MS values
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and put them in a table:

MS ML = 2 1 0 −1 −2

1 p1αp0α p1αp−1α p0αp−1α

0 p1αp1β p1αp0β p1αp−1β p0αp−1β p−1αp−1β

p0αp1β p0αp0β p−1αp0β

p−1αp1β

−1 p1βp0β p1βp−1β p0βp−1β

To find the terms, we only need to know how many determinants

appear in each box:

ML = 2 1 0 −1 −2

MS = 1 1 1 1

0 1 2 3 2 1

−1 1 1 1

We now take an extreme box, meaning that no functions appear

above it or to its left. For example, p1αp0α in the (1,1) box. It

is easily seen that the function must belong to an L = 1, S = 1

term: obviously, it cannot have lower L or S; if it had higher L,

say L = 2, S = 1, there must have been a function with ML =

2, MS = 1. We therefore know that this function belongs to a 3S

term, with L = 1, S = 1. This term has nine components, since

ML = 1, 0,−1 and MS = 1, 0,−1, which sit in the appropriate

boxes of the table. We do not know at this stage the form of

all these functions, but we can drop one function from each of

these boxes in the table, leaving

ML = 2 1 0 −1 −2

MS = 1 0 0 0

0 1 1 2 1 1

−1 0 0 0
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We repeat the procedure. The extreme function now sits in the

(2,0) box, giving an (L = 2, S = 0) or 1D term. Dropping the

five functions belonging to this term, with ML = 2, 1, 0,−1,−2

and MS = 0, only one function is left, in the (0,0) box, which

gives a 1S term. The p2 configuration therefore gives rise to

three terms, 3P, 1D, and 1S. This is indeed the situation in the

spectrum of the carbon atom. The ground state is 3P, the next

state is 1D 1.26 eV higher, and the third is 1S, 2.68 eV above

the ground state. Note the large differences occurring between

states which belong to the same 1s22s22p2 configuration. The

fourth state of carbon belongs to the 1s22s12p3 configuration.

It is a 5S state, 4.18 eV above the ground state.

The LS terms may split (fine structure) because of the spin-

orbit coupling. In contrast to the large differences between dif-

ferent terms of the same configuration, caused by different forms

of the wavefunctions, the fine structure is caused by magnetic

interactions, and is small for light elements. It is easy to under-

stand the splitting by coupling �J = �L + �S. The J values are

given by vector addition of L and S,

J = |L − S|, · · · , L + S.

Thus the 3P term (L = 1, S = 1) has J = 0, 1, 2, giving three

sublevels denoted by 3P0,
3P1,

3P2, with energies 0, 0.0020 and

0.0054 eV, respectively. The other two states can have only one

J value, and are denoted by 1D2 and 1S0.

Hund’s rules for level order:

1. The term with highest S is lowest. We saw an example in

the one-dimensional 2-fermion model.

2. Among terms with highest S, the term with highest L is
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lowest.

3. Within the same term, a sublevel with lower J is lower

if the open shell is less than half full, higher if the open

shell is more than half full. About shells which are exactly

half full (e.g. p3), the lowest term always has L = 0 and

maximum S, so there is no splitting; the higher terms have

small splittings.

These rules work very well to determine the lowest level, less

well for ordering the higher levels. In the carbon atom, we

indeed get the order
3P0 < 3P1 < 3P2 < 1D2 < 1S0.

If the open shells involve some equivalent and some non-equivalent

electrons (e.g. 2p23s), we use the procedure outlined above to

find the terms for each group of equivalent orbitals, then com-

bine the terms by vector addition. Combining the 3P of p2

(L = 1, S = 1) with the s electron (l = 0, s = 1
2) gives

L = 1, S = 3
2
, 1

2
and the levels 4P and 2P. We also have to

combine the 1D term with s, getting 2D, and the 1S with s,

giving 2S. In all, the 2p23s configuration will yield 4 terms: 4P,
2D, 2P and 2S.

Functions

Above we found the terms resulting from arbitrary electron con-

figurations. In order to determine energies and other proper-

ties, we need the wavefunctions (combinations of determinants)

which belong to the various terms. It will normally suffice to

know just one function of each term. Here we will see how this

is done.
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Going back to the table of determinants, we can immediately

find functions for two of the terms. For the 3P we may take

p1αp0α, which sits alone in the (1,1) box; for the 1D term we

have p1αp1β from the (2,0) box. More difficult is the 1S term,

since the only box where it is represented is (0,0), which contains

3 determinants. We must find the combinations belonging to
3P and 1D in this box; the orthogonal combinations will be the
1S function.

For the 3P term, 3P(0, 1) = p1αp−1α. Applying S− (and ignor-

ing h̄, which cancels out on both sides)

S− 3P(0, 1) =
√

2 3P(0, 0),

S−p1αp−1α = (S−
1 + S−

2 )p1αp−1α = p1αp−1β + p1βp−1α,

giving 3P(0, 0) =
√

1
2(p1αp−1β + p1βp−1α).

The second determinant does not appear in the table; however,

it is just the p−1αp1β determinant with a minus sign. We there-

fore write
3P(0, 0) =

√
1
2(p1αp−1β − p−1αp1β).

Note:

• When applying S− to p1αp−1α we must use it as S−
1 +S−

2 .

• The normalization factor involved in applying L− is given

by
√

(l + m)(l − m + 1), where l, m correspond to the

particular angular momentum used. Thus, application of

S− to 3P(0, 1) requires l = S = 1, m = MS = 0, giv-

ing a factor of
√

2, and application of S−
1 to p1α means

l = s = 1
2, m = ms = 1

2, with the factor 1.

• Correct application results in a normalized function.

Looking now at the 1D term, we start from 1D(2,0)=p1αp1β
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and apply L− twice to get to the (0,0) box.

L− 1D(2,0)=2 1D(1,0)

(L−
1 + L−

2 )p1αp1β =
√

2(p0αp1β + p1αp0β)
1D(1,0)=

√
1
2(p0αp1β + p1αp0β).

And again,

L− 1D(1,0)=
√

6 1D(0,0)

(L−
1 + L−

2 )
√

1
2
(p0αp1β + p1αp0β) = (p−1αp1β + p0αp0β +

p0αp0β + p1αp−1β)
1D(0,0)=

√
1
6(p−1αp1β + 2p0αp0β + p1αp−1β)

We now need to find the combination of the three (0,0) deter-

minants which is orthogonal to the two combinations we have.

If we write this (unnormalized) combination as p−1αp1β + a×
p0αp0β + b × p1αp−1β, its overlap with the 3P(0,0) function

is 1 − b. The overlap with the 1D(0,0) function is 1 + 2a + b.

Both overlaps must vanish, giving b = 1, a = −1 so the desired

function is (after normalization)
1S(0,0)=

√
1
3(p−1αp1β − p0αp0β + p1αp−1β).

In this way we can find the atomic levels and corresponding

functions. We can then proceed to calculate energies (including

ionization potentials, excitation energies, electron affinities) and

other properties (transition probabilities, spectrum, quadrupole

moments etc.) These calculations are approximate, but can

reach very high accuracy with sophisticated models and exten-

sive computations.


