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MANY-ELECTRON ATOMS

The electrostatic Hamiltonian is

H = − h̄2

2m2

N∑
j=1

∇2
j −

N∑
j=1

Ze2

rj
+

N∑
j=1

∑
i<j

e2

rij
.

H is invariant under the exchange of electrons. Pij interchanges

the coordinates and spins of electrons i and j, e.g.

P12ψ(1, 2, 3, · · · , N) = ψ(2, 1, 3, · · · , N).

Pij is a symmetry operator, [H, Pij] = 0. Since electrons are

indistinguishable, this interchange cannot affect any physical

property, including |ψ|2. Therefore,

|P12ψ(1, 2, · · · , N)|2 = |ψ(1, 2, · · · , N)|2, giving

P12ψ(1, 2, · · · , N) = γψ(1, 2, · · · , N),

where γ is a phase factor, γ = eiα, with α real. Applying P12

twice gives back the original function,

P 2
12ψ(1, 2, · · · , N) = γ2ψ(1, 2, · · · , N) = ψ(1, 2, · · · , N),

so that γ2 = 1 and γ = ±1. There is nothing in nonrelativistic

quantum mechanics to tell us which is the correct sign. How-

ever, the two signs lead to very different physics. The most

prominent example is that only particles with antisymmetric

functions (γ = −1) obey the Pauli exclusion principle. Obvi-

ously, electrons fall into this category.

Particles with symmetric ψ (γ = 1) are called bosons, since

they obey the Bose-Einstein statistics. These include photons

and some elementary particles such as pions. They do not obey

Pauli’s principle, and many of them can live happily in the
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same level (the Bose-Einstein condensation at ultracold temper-

atures). Fermions (electrons, protons, neutrons) are particles

obeying the Fermi-Dirac statistics. They have an antisymmet-

ric function and obey Pauli. Relativistic quantum mechanics

shows that bosons have integer spin (0,1,· · · ), while fermions

have half-integer spin.

Model system: two identical particles in one dimension

This model, taken from the book by Morrison, Estle and Lane,

demonstrates some of the prominent features of atomic systems,

while not including all their complexities. The Hamiltonian is

H = − h̄2

2m

∂2

∂x2
1

+ V (x1) − h̄2

2m

∂2

∂x2
2

+ V (x2) + V ′(|x1 − x2|).

V is an attractive potential simulating the attraction to the nu-

cleus, and V ′ is repulsive, similar to the interelectron repulsion.

A perturbation approach is used, with

H(0) =
2∑

i=1

(
− h̄2

2m

∂2

∂x2
i

+ V (xi)

)
, H(1) = V ′(|x1 − x2|).

We assume that the solutions of the one-particle equations are

known, (
− h̄2

2m

∂2

∂x2
+ V (x)

)
ψ(0)

n (x) = E(0)
n ψ(0)

n (x),

so that the solutions of H (0) are

ψ(0)
n1n2

(x1x2) = ψ(0)
n1

(x1)ψ
(0)
n2

(x2), E(0)
n1n2

= E(0)
n1

+ E(0)
n2

.
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ψ
(0)
n1n2(x1x2) is neither symmetric nor antisymmetric under an

interchange of x1 and x2. It is easy to write functions with the

correct symmetry. For bosons,

Sψ(0)
n1n2

=
1√
2

[
ψ(0)

n1
(x1)ψ

(0)
n2

(x2) + ψ(0)
n2

(x1)ψ
(0)
n1

(x2)
]
,

and for fermions

Aψ(0)
n1n2

=
1√
2

[
ψ(0)

n1
(x1)ψ

(0)
n2

(x2) − ψ(0)
n2

(x1)ψ
(0)
n1

(x2)
]
.

If n1 = n2, the boson function only needs a different normal-

ization, whereas the fermion function vanishes.

Bosons with zero spin

The zero-order function of the ground state is
Sψ

(0)
11 = ψ

(0)
1 (x1)ψ

(0)
1 (x2). To first order,

E11 ≈ 2E
(0)
1 + 〈Sψ

(0)
11 |V ′(|x1 − x2|)Sψ

(0)
11 〉 = 2E

(0)
1 + J11,

where the Coulomb integral

Jnn′ ≡
∫ ∞

−∞

∫ ∞

−∞
ψ(0)∗

n (x1)ψ
(0)∗
n′ (x2)V

′ψ(0)
n (x1)ψ

(0)
n′ (x2)dx1dx2 =

=

∫ ∞

−∞

∫ ∞

−∞
|ψ(0)

n (x1)|2V ′(|x1 − x2|)|ψ(0)
n′ (x2)|2dx1dx2.

The last step is allowed because V ′ is a multiplicative potential.

First excited state: in classical mechanics this state is twofold

degenerate, since there is a function with boson 1 in ψ
(0)
1 and

boson 2 in ψ
(0)
2 and another function with the two bosons ex-

changed. In quantum mechanics these two functions describe
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the same state, since identical particles are indistinguishable.

Sψ
(0)
12 =

√
1

2

[
ψ

(0)
1 (x1)ψ

(0)
2 (x2) + ψ

(0)
1 (x2)ψ

(0)
2 (x1)

]

E12 ≈ E
(0)
1 +E

(0)
2 +〈Sψ

(0)
12 |V ′|Sψ

(0)
12 〉 = E

(0)
1 +E

(0)
2 +J12 +K12,

where J is the Coulomb integral defined above and K is the

exchange integral,

Knn′ ≡
∫ ∞

−∞

∫ ∞

−∞
ψ(0)∗

n (x1)ψ
(0)∗
n′ (x2)V

′ψ(0)
n′ (x1)ψ

(0)
n (x2)dx1dx2.

The exchange integral has no classical analog. It appears be-

cause of the requirement that the wavefunction be symmetric.

For V ′ > 0 (repulsive potential) it can be shown that Jnn′ ≥
Knn′ ≥ 0.

Two identical spin-1/2 fermions in one dimension

Here we must include the spin from the start. There will be

four functions corresponding to fermions in orbitals ψ
(0)
n1 , ψ

(0)
n2 ,

differing by the spins:

Aψ
(0)
n1n2++ =

√
1

2

[
ψ(0)

n1
(x1)α(1)ψ(0)

n2
(x2)α(2) − ψ(0)

n2
(x1)α(1)ψ(0)

n1
(x2)α(2)

]

Aψ
(0)
n1n2+− =

√
1

2

[
ψ(0)

n1
(x1)α(1)ψ(0)

n2
(x2)β(2) − ψ(0)

n2
(x1)β(1)ψ(0)

n1
(x2)α(2)

]

Aψ
(0)
n1n2−+ =

√
1

2

[
ψ(0)

n1
(x1)β(1)ψ(0)

n2
(x2)α(2) − ψ(0)

n2
(x1)α(1)ψ(0)

n1
(x2)β(2)

]

Aψ
(0)
n1n2−− =

√
1

2

[
ψ(0)

n1
(x1)β(1)ψ(0)

n2
(x2)β(2) − ψ(0)

n2
(x1)β(1)ψ(0)

n1
(x2)β(2)

]
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These zero-order functions are degenerate, with energy E
(0)
n1 +

E
(0)
n2 . Rather than solve 4 × 4 secular equations, we will look

at the coupling of the two spins. �S ≡ �S1 + �S2 is an angular

momentum. There exist therefore functions χSMS
which satisfy

S2χSMS
= S(S + 1)h̄2χSMS

, SzχSMS
= MSh̄χSMS

.

Since the vector addition of the two spins gives |s1−s2| ≤ S ≤
s1 + s2, S can have the values 0 and 1. In all there will be 4

functions:

S = 0, MS = 0; S = 1, MS = 1, 0,−1.

Since energies do not depend on M values, the 4 degenerate

functions will split into two energy levels with degeneracy 1

(singlet) and 3 (triplet). This is indeed what happens in real

system which resemble the model we are using. An example is

the He atom in the 1s2s excited states, which appear as singlet

and triplet.

We want to write the new functions ψ
(0)
n1n2SMS

in terms of the

old ψ
(0)
n1n2±±. Since MS = ms1 + ms2, two of the new functions

can be written immediately,

ψ
(0)
n1n211 = ψ

(0)
n1n2++ and ψ

(0)
n1n21−1 = ψ

(0)
n1n2−−.

To find the two linear combinations of ψ
(0)
n1n2+− and ψ

(0)
n1n2−+

(MS = 0) which belong to S = 1 and S = 0, we apply S− to

ψ
(0)
n1n211:

S−ψ
(0)
n1n211 =

√
2h̄ψ

(0)
n1n210

(S−
1 + S−

2 )ψ
(0)
n1n2++ = h̄(ψ

(0)
n1n2+− + ψ

(0)
n1n2−+).
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From these equations we get

ψ
(0)
n1n210 =

√
1

2

(
ψ

(0)
n1n2+− + ψ

(0)
n1n2−+

)
.

The function for S = 0, MS = 0 must be orthogonal, giving

ψ
(0)
n1n200 =

√
1

2

(
ψ

(0)
n1n2+− − ψ

(0)
n1n2−+

)
.

Using the definitions of ψ
(0)
n1n2±± above we find

ψ
(0)
n1n200 =

√
1

2

[
ψ(0)

n1
(x1)ψ

(0)
n2

(x2) + ψ(0)
n2

(x1)ψ
(0)
n1

(x2)
]
χ00

ψ
(0)
n1n21MS

=

√
1

2

[
ψ(0)

n1
(x1)ψ

(0)
n2

(x2) − ψ(0)
n2

(x1)ψ
(0)
n1

(x2)
]
χ1MS

The singlet spin function is χ00 =
√

1
2
[α(1)β(2) − β(1)α(2)].

The triplet functions are χ11 = α(1)α(2),

χ10 =
√

1
2[α(1)β(2) + β(1)α(2)], χ1−1 = β(1)β(2).

Note that all the triplet functions have the same spatial part,

which is different from that of the singlet. This means that

the triplet functions have the same energy, again different from

the singlet. All functions are antisymmetric under electron ex-

change. The triplet has a symmetric spin part and antisymmet-

ric space part; the singlet has an antisymmetric spin part and

symmetric space part. The energy difference between singlet

and triplet is not caused by spin-spin interaction, which does

not appear in our model. It results from the different symmetry

of the spin functions, which leads to different space functions

and different energy expressions.
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Ground state (n1 = n2 = 1)

In this case all triplet functions vanish, and only the singlet

remains, with the energy

E11 ≈ 2E
(0)
1 + J11 + K11.

1st excited state (n1 = 1, n2 = 2)

To first order

E12 ≈ E
(0)
1 +E

(0)
2 +〈ψ(0)

12SMS
|V ′|ψ(0)

12SMS
〉 = E

(0)
1 +E

(0)
2 +J12±K12,

where the + sign applies to the singlet and the − sign to the

triplet. The energy of the triplet is lower. The reason: the spin

function of the triplet is symmetric, so that the spatial part is

antisymmetric. The function therefore vanishes for x1 = x2 and

is small for x1 ≈ x2 (”the Fermi hole”). If so, why are most

molecular ground states singlets? Because most of them are

closed shells, which give rise to singlets only. The ground state

of He is 1s2, which is a singlet. The first excited state is 1s2s,

which has a singlet and a triplet state, with the triplet lower in

energy.


