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Spin in one-electron atoms

The electrostatic Hamiltonian for a one-electron atom is (in

spherical coordinates)

H(0) = − h̄2

2μ

1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

2μr2
L2 − Ze2

r
,

where μ is the electron reduced mass, e its charge, Z the nu-

clear charge, and L2 is the angular momentum operator, which

includes terms in θ and ϕ but not in r. The eigenfunctions are

ψ
(0)
nlml

,

H(0)ψ
(0)
nlml

= E(0)
n ψ

(0)
nlml

.

H(0) describes an electron without internal degrees of freedom

(spin). A full description must include the spin, with the wave-

functions χsms (2-dimensional vectors in the spin space), which

satisfy

S2χsms = s(s + 1)h̄2χsms

Szχsms = msh̄χsms.

If we ignore the interaction between the spin and other degrees

of freedom, we can express the wavefunction by

ψ
(0)
nlmlms

= ψ
(0)
nlml

χsms.

Obviously, if there were no such interaction, the spin could not

be observed. The full Hamiltonian includes an interaction term

Hso,

H = H(0)I + Hso,

where I is a 2× 2 unit matrix in the spin space. In general, the

eigenfunctions of H will not be pure α or β functions; they will
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have the more general form

ψ =

(
ψ+

ψ−

)
= ψ+

(
1

0

)
+ ψ−

(
0

1

)
= ψ+α + ψ−β.

|ψ+(	r)|2 d	r is the probability of finding an electron with spin

+1
2h̄ in the volume element d	r around 	r.

Spin-orbit coupling

Because of the spin angular momentum, the electron has a mag-

netic moment 	Ms, proportional to the spin 	S. From the point of

view of the electron, the nucleus with charge Ze moves around

it, creating a magnetic field proportional to the angular momen-

tum 	L. The interaction is therefore proportional to the scalar

product 	S · 	L. The full expression is

Hso =
Ze2

2μ2c2

1

r3
	S · 	L.

We can estimate the size of the interaction by taking r ∼ a0

and 〈	S · 	L〉 ∼ h̄2. We obtain (for Z = 1) 〈Hso〉 ∼ 10−4eV,

whereas atomic energies are of order of one eV. The interaction

is relatively small, and we can use perturbation theory. We

obtain in first order (ignoring degeneracy)

Ej ≈ E
(0)
j + 〈ψ(0)

j |Hso|ψ(0)
j 〉,

ψj ≈ ψ
(0)
j +

∑
k �=j

〈ψ(0)
k |Hso|ψ(0)

j 〉
E

(0)
j − E

(0)
k

ψ
(0)
k .
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This is not an efficient approach. The E
(0)
n energies have a 2n2

degeneracy, so that secular determinants of that order must be

solved. In addition, while the perturbation splits some of the

degenerate levels, the brute force diagonalization of the secular

determinant does not give the physical reason for the nature of

the splitting. Thus, the n = 2 level of the H atom, which is

8-fold degenerate, splits into three sublevels, with degeneracies

2, 2, 4. This result is obtained but not explained in the secular

determinant treatment. We shall see that the splitting mode

can be predicted from angular momentum considerations with-

out any calculations.

The generalized angular momentum 	J

The Hamiltonian of a 1-e atom, including spin-orbit interac-

tion, was given above as H = H (0)I + Hso. Without Hso,

the functions ψ
(0)
nlmlms

are eigenfunctions of the five operators

H(0), L2, Lz, S
2, Sz. This is possible since all the operators com-

mute. The question is now: what happens if H (0) is replaced

by H?

Since H(0) commutes with all the other operators, the only

problem may come from Hso. This operator includes physi-

cal constants, the term 1/r3, and 	S · 	L. 1/r3 commutes with

the other operators, since they only involve angular and spin

coordinates, so we need to check 	S · 	L.

[	S · 	L, Lz] = [LxSx, Lz] + [LySy, Lz] + [LzSz, Lz] =

= [Lx, Lz]Sx + [Ly, Lz]Sy + [Lz, Lz]Sz = −ih̄LySx + ih̄LxSy.

Note that any [Si, Lj] = 0. The result is that 	S · 	L does not

commute with Lz; therefore, [H, Lz] �= 0, and ml is not a good
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quantum number. Similarly, we can get

[	S · 	L, Sz] = −ih̄LxSy + ih̄LySx,

so that Sz also does not commute with H. If we define

	J ≡ 	L + 	S,

Jz commutes with H. It is easily shown that 	J is a generalized

angular momentum, since

[Jx, Jy] = [Lx + Sx, Ly + Sy] = [Lx, Ly] + [Sx, Sy] =

= ih̄(Lz + Sz) = ih̄Jz.

We can now define J2 ≡ J2
x+J2

y +J2
z in the usual way, and the 5

operators H, L2, S2, J2, Jz commute. The exact wave functions

will be defined by the quantum numbers n, l, s(= 1/2), j, mj:

Hψnljmj
= Enljψnljmj

L2ψnljmj
= l(l + 1)h̄2ψnljmj

S2ψnljmj
= (3/4)h̄2ψnljmj

J2ψnljmj
= j(j + 1)h̄2ψnljmj

Jzψnljmj
= mjh̄ψnljmj

.

Note that s is always 1
2

and is therefore omitted.

We start with the functions ψ
(0)
nlmlms

, which are eigenfunctions

of H(0), L2, Lz, S
2, Sz. We want the exact functions ψnljmj

,

eigenfunctions of H, L2, S2, J2, Jz. The best way is to go via

ψ
(0)
nljmj

, eigenfunctions of H (0), L2, S2, J2, Jz. This step is rela-

tively easy, and it gives important information about the final

states. The energies depend on nlj, so that the splitting may be

obtained by looking at the values these quantum numbers can

have for a given case. In addition, the integrals of Hso vanish

between functions which do not have the same lsjmj, so that

nondegenerate perturbations may be used.
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Proof that integrals of Hso vanish between degenerate zero-

order functions ψ
(0)
nljmj

with the same n:

J2 = (	S + 	L)2 = S2 + L2 + 2(	S · 	L) (	S · 	L = 	L · 	S)

Hso = K
1

r3
	S · 	L =

1

2
K

1

r3
(J2 − L2 − S2).

Since ψ
(0)
nljmj

are eigenfunctions of L2, S2, J2 and Jz, integrals of

Hso between two functions which differ in one of the eigenvalues

ljsmj will vanish. Since the degenerate functions have the same

n, they must differ in one (at least) of the other numbers, which

proves the statement. The function correct to first order will

therefore be

ψnljmj
≈ ψ

(0)
nljmj

+
∑
n′ �=n

〈ψ(0)
n′ljmj

|Hso|ψ(0)
nljmj

〉
E

(0)
n − E

(0)
n′

.

The energy is given to first order by

Enlj = E(0)
n + 〈ψ(0)

nljmj
|Hso|ψ(0)

nljmj
〉 =

= E(0)
n +

Z2|E(0)
n | α2

2n

[j(j + 1) − l(l + 1) − 3
4
]

l(l + 1
2)(l + 1)

,

where the dimensionless fine structure constant is α ≡ e2

h̄c
≈

1
137. The correction vanishes for l = 0. The fine structure

splittings are of order 10−4 eV in light atoms. There are other

relativistic effects of the same order. In addition, there are

hyperfine structure terms of order 10−7 eV, resulting from the

electron interaction with the nuclear spin.

The first order energy correction depends on Z2α2. It is small

for light elements, but increases with Z2, and for heavy ele-

ments it becomes large, as do other relativistic effects. They
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cannot be treated as perturbation, and the starting point must

be relativistic quantum mechanical formulation (Dirac equa-

tion). This is true not only for the one-electron atoms discussed

here. Looking at Au (Z = 79), the lowest ionization potential

is higher than non-relativistic predictions by more than 3 eV,

while relativistic calculations agree with experiment. Trends in

the periodic table change in the 6th and 7th row.

The energy cannot depend on the value of m-type quantum

numbers as long as spherical symmetry is retained. These values

are changed by L±-type operators, which commute with H.

Therefore,

Hψnlm = Eψnlm ⇒ HL±ψnlm = L±Hψnlm = EL±ψnlm,

and L±ψnlm has the same energy as ψnlm.

The functions ψ
(0)
nljmj

are linear combinations of the ψ
(0)
nlmlms

,

with the same nl:

ψ
(0)
nljmj

=
∑
mlms

amlmsψ
(0)
nlmlms

.

The combination coefficients are a special case of the Clebsch-

Gordan parameters, which appear whenever two angular mo-

menta are coupled to form a new angular momentum. There

are well known (but complicated) expressions for these coeffi-

cients, but in most cases they can be found by simple arguments

(example follows).

The main advantage of coupling 	L and 	S is that we know im-

mediately how the levels will split under the spin-orbit coupling.

The allowed j values go from |l − s| to l + s in steps of one.

Consequently, j can be l − 1
2 or l + 1

2 for l ≥ 1; for l = 0 j can

only be +1
2
. This means that all levels of a one-electron atom,
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except s, will split into two sublevels with j = l± 1
2, which will

show up as doublets in the spectrum. The degeneracy will be

2j + 1. An s level does not split.

Looking at 2n2 functions with the main quantum number n,

the energy will now depend on nlj. Counting the functions, we

find for each l two levels, with degeneracies 2(l + 1
2) + 1 and

2(l − 1
2) + 1. The total number of the functions is

n−1∑
l=0

[2(l+
1

2
)+1+2(l−1

2
)+1] =

n−1∑
l=0

(4l+2) =
2 + 4n − 2

2
·n = 2n2,

so all functions are accounted for.

Example: The n = 2 levels of the H atom.

There are 8 functions in the (nlmlms) representation:

2 0 0 ±1
2 (2sα, 2sβ)

2 1 0 ±1
2

(2p0α, 2p0β)

2 1 1 ±1
2

(2p1α, 2p1β)

2 1 −1 ±1
2 (2p−1α, 2p−1β)

There must also be 8 functions in the (nljmj) representation:

2 0 1
2

1
2

2 1 3
2

3
2

2 1 1
2

1
2

2 0 1
2 −1

2 2 1 3
2

1
2 2 1 1

2 −1
2

2 1 3
2
−1

2

2 1 3
2 −3

2

How are the functions in the second set expressed in terms of the

first? There are two conditions: l must be the same, and mj =

ml + ms. This gives immediately the following expressions:

(201
2

1
2) = 2sα, (201

2 − 1
2) = 2sβ, (213

2
3
2) = 2p1α, (213

2 − 3
2) =

2p−1β.
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What about the others? For example, (213
2

1
2) must be a linear

combination of 2p1β and 2p−1α. To find the combination, we

start from (203
2

3
2
) = 2p1α and apply the operator J−.

J−(21
3

2

3

2
) = N−(21

3

2

1

2
).

It has been shown (in an exercise) that N− for applying L−

to the general Ylm is h̄
√

(l + m)(l − m + 1). In this case, l is

j = 3
2

and m is mj = 3
2
, so that N− = h̄

√
3. In order to apply

J− to 2p1α we must use J− = L− + S−. The l, m in N− are

l, ml for L− and s, ms for S−. The result of operating L−+S−

on the rhs is

h̄
√

2p0α + h̄
√

1p1β,

which must be equal to h̄
√

3(213
2

1
2
) obtained above. (p is used

here rather than 2p to avoid confusion.) We thus find

(21
3

2

1

2
) =

1√
3
(p1β +

√
2p0α).

We can now find (211
2

1
2) by noting it must be orthogonal to

(213
2

1
2
). The orthogonal combination is

√
2p1β−p0α, and upon

normalization we get

(21
1

2

1

2
) =

1√
3
(
√

2p1β − p0α).

Since the energy depends on nlj and not on mj, we normally

need only one function for each nlj level.

Conclusion: Using only angular momentum arguments, we found

the fine structure of one-electron atoms including SO coupling.

The new ψ
(0)
nljmj

form the basis for a simple, non-degenerate

perturbation theory treatment.


