
46

ANGULAR MOMENTUM

Angular momentum is a far broader concept than the momen-

tum of a rotating single body. In its generalized form, it is

the main tool for understanding and classifying energy levels of

atomic systems. The spin, which is a major factor in discussing

atoms and molecules, is also a form of angular momentum.

Angular momentum of a single body:
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The total momentum is

L̂2 = L̂2
x + L̂2

y + L̂2
z.

The commutation relations are

[Lx, Ly] = ih̄Lz, [Ly, Lz] = ih̄Lx, [Lz, Lx] = ih̄Ly.

It turns out there are Hermitian operators in many systems

which satisfy these commutation relations. Such operators rep-

resent generalized angular momenta. We will find properties

determined by commutation relations only, which apply to all

generalized angular momenta.
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Given are three Hermitian operators, Lx, Ly, Lz, which satisfy

[Lx, Ly] = ih̄Lz, [Ly, Lz] = ih̄Lx, [Lz, Lx] = ih̄Ly.

Nothing else is known about the operators.

Define L2 ≡ L2
x + L2

y + L2
z. What is the commutator [L2, Lz]?

Using [AB,C] = A[B,C] + [A,C]B, which is easily proved by

writing the commutators explicitly, and remembering that the

commutator of an operator with itself is always zero, we get

[L2
x, Lz] = Lx[Lx, Lz] + [Lx, Lz]Lx = −ih̄LxLy − ih̄LyLx

[L2
y, Lz] = Ly[Ly, Lz] + [Ly, Lz]Lx = +ih̄LxLy + ih̄LxLy

[L2
z, Lz] = 0.

Adding the three equations gives

[L2, Lz] = 0.

L2 and Lz have therefore a complete set of common eigenfunc-

tions:

L2Ylm = KlYlm

LzYlm = kmYlm.

From the first equation we get (L2
x +L2

y +L2
z)Ylm = KlYlm, and

from the second – L2
zYlm = k2

mYlm.

Subtracting the 2nd from the 1st gives

(L2
x + L2

y)Ylm = (Kl − k2
m)Ylm.

A scalar product with 〈Ylm| gives

〈Ylm|L2
x + L2

y|Ylm〉 = Kl − k2
m.
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Each of the two integrals in this equation is ≥ 0:

〈Ylm|L2
x|Ylm〉 = 〈LxYlm|LxYlm〉 ≥ 0.

The first equality comes from the hermiticity of Lx, and it gives

a scalar product of LxYlm with itself, which must be ≥ 0. The

same holds for L2
y, and therefore Kl − k2

m ≥ 0, or Kl ≥ k2
m .

Define the ladder operators

L+ ≡ Lx + iLy L− ≡ Lx − iLy.

These operators are not Hermitian, which is OK since they do

not correspond to any observable. (L+)† = L−.

[Lz, L
+] = [Lz, Lx] + i[Lz, Ly] = ih̄Ly + h̄Lx = h̄L+.

Writing the commutator explicitly, LzL
+−L+Lz = h̄L+, gives

LzL
+ = L+(Lz + h̄).

Applying to Ylm,

Lz

(
L+Ylm

)
= L+(Lz+h̄)Ylm = L+(km+h̄)Ylm = (km+h̄)

(
L+Ylm

)
,

showing that L+Ylm is an eigenfunction of Lz with the eigen-

value km + h̄. Since L2 commutes with L+, L+Ylm is also an

eigenfunction of L2 with the eigenvalue Kl. We can also show,

in similar manner, that L−Ylm is an eigenfunction of L2 with

the eigenvalue Kl and an eigenfunction of Lz with the eigen-

value km − h̄. These operators can be applied repeatedly, giv-

ing an infinite series of eigenfunctions of L2 and Lz, with the

same eigenvalue Kl of L2 and a series of eigenvalues of Lz,

· · · km − 2h̄, km − h̄, km, km + h̄, · · · . This contradicts our find-

ing above that the square of the eigenvalue of Lz must be ≤
the eigenvalue of L2.
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The way to solve this apparent contradiction is to require the

series of eigenfunctions to be truncated at both ends. This can

happen if applying L+ to the Ylm with the largest km and L−

to Ylm with the smallest km gives zero:

L+Ylm2 = 0, L−Ylm1 = 0.

L2 may be expressed as L2 = L−L++L2
z+h̄Lz, giving L−L+ =

L2 − L2
z − h̄Lz. Applying L− to the first equation above and

using the last expression gives

L−L+Ylm2 = 0 = (L2−L2
z−h̄Lz)Ylm2 = (Kl−k2

m2
−h̄km2)Ylm2.

From this we get Kl = k2
m2

+ h̄km2.

L2 may also be expressed as L2 = L+L− + L2
z − h̄Lz, which

gives L+L− = L2 − L2
z + h̄Lz. Applying L+ to the equation

with Ylm1 above gives

L+L−Ylm1 = 0 = (L2−L2
z+h̄Lz)Ylm1 = (Kl−k2

m1
+h̄km1)Ylm1,

and therefore Kl = k2
m1

− h̄km1.

Equating the two expressions for Kl gives

k2
m2

+ h̄km2 = k2
m1

− h̄km1.

This is a quadratic equation for km2, with the two solutions

km2 = −km1 or km1−h̄. Remember that km1 is the smallest km,

whereas km2 is the largest, and the second solution is therefore

not possible, as it implies km1 > km2. We get km2 = −km1.
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The difference km2 − km1 is an integer n times h̄, so that

km1 = −n/2 and km2 = +n/2. Obviously, n is determined

by Kl, because the series of km values is truncated so that

k2
m ≤ Kl. There is therefore a connection between n and l.

This connection may be chosen in many ways, and the choice

defines l, which has not been defined so far. We choose n = 2l,

which gives km1 = −lh̄ and km2 = lh̄. Therefore,

Kl = k2
m2

+ h̄km2 = l(l + 1)h̄2.

km = −lh̄,−(l − 1)h̄, · · · , lh̄ or

km = mh̄, m = −l,−l + 1, · · · , l,

and the eigenvalue equations look like those of a single particle,

L2Ylm = l(l + 1)h̄2Ylm

LzYlm = mh̄Ylm

Note that l can be integer or half integer, as only n must be an

integer. The operators L2 and Lz, as well as the functions Ylm,

are in the coordinates of the system discussed. We know, how-

ever, that the eigenvalues will have the form obtained above for

any system with generalized angular momentum (obeying the

right commutation relations). The various relations we proved

for the functions and/or operators will hold in all such cases.

The role of the ladder (or step) operators L± in raising or low-

ering the m value of the eigenfunctions Ylm has been discussed

above. Using normalized functions, we obtained (exercise)

L+Ylm = h̄
√

(l − m)(l + m + 1)Ylm+1

L−Ylm = h̄
√

(l + m)(l − m + 1)Ylm−1

These relations are very useful in obtaining Ylm, as we shall see

in many cases.


