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function of the system. This selection is based on physical

grounds and past experience, and depends on the system. Since

the set is finite, the function obtained will be approximate; nev-

ertheless, it is customary to call it a basis set. Here we will

discuss the method for obtaining the best (i.e. minimizing the

energy) combination coefficients.

The basis set is {ui, i = 1, · · · , N}. It is not assumed to

be orthogonal, because in many cases it is convenient to use

nonorthogonal sets. The function is expanded in the basis

φ =
N∑

i=1

ciui

E′ =
〈φ|H|φ〉
〈φ|φ〉 =

∑N
j=1

∑N
i=1 c∗jciHji∑N

j=1

∑N
i=1 c∗jciSji

,

where Hji ≡ 〈uj|H|ui〉, Sji ≡ 〈uj|ui〉.
Note that Hji and Sji are constant numbers, although the in-

tegrals may in some cases be rather difficult to calculate.

The equations above may be written as

N∑
j=1

N∑
i=1

c∗jci (Hji − E′Sji) = 0.

Since we are looking for a minimum of E ′, ∂E′/∂ci = 0. The

total differential of the equation is therefore

N∑
j=1

dc∗j

N∑
i=1

ci(Hji − E′Sji) +
N∑

i=1

dci

N∑
j=1

c∗j(Hji − E′Sji) = 0.

We can always change summation indices, as long as we do it

consistently. In the first sum we will replace i by j and j by i,
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giving

N∑
i=1

dc∗i

N∑
j=1

cj(Hij − E′Sij) +
N∑

i=1

dci

N∑
j=1

c∗j(Hji − E′Sji) = 0.

This equation holds for any choice of the differentials {dci}. We

choose all dci = 0, except one dck = a. For this choice

a∗
N∑

j=1

cj(Hkj − E′Skj) + a
N∑

j=1

c∗j(Hjk − E′Sjk) = 0.

Now choose all dci = 0, except dck = ıa (this ı is
√−1), giving

−ıa∗
N∑

j=1

cj(Hkj − E′Skj) + ıa
N∑

j=1

c∗j(Hjk − E′Sjk) = 0.

The last two equations give

N∑
j=1

cj(Hkj − E′Skj) = 0 and
N∑

j=1

c∗j(Hjk − E′Sjk) = 0.

The second equation is just the Hermitian conjugate of the first.

Again we get secular equations, which have non-trivial solutions

only if the determinant |Hji − E′Sji| = 0.

The secular determinant is zero for N values of E ′, which may

be ordered

E′
1 ≤ E′

2 ≤ · · · ≤ E ′
N .

The lowest energy obtained this way is an upper bound to the

lowest eigenvalue of the Hamiltonian,

E′
1 ≥ E1.
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It can be shown that the other E ′
n provide bounds to respective

eigenvalues,

E′
n ≥ En.

If we substitute in the secular equations one of the values E ′
n

for which the secular determinant vanishes, the N equations

N∑
j=1

(Hij − E′
nSij)c

(n)
j = 0, i = 1, · · · , N

become linearly dependent. They will therefore have a non-

trivial solution, which may be obtained in principle by solving

N − 1 equations and expressing N − 1 coefficients c
(n)
j in terms

of one coefficient, say c
(n)
1 . This coefficient may be found by

normalizing the total function. If the Hji integrals are collected

in a matrix H, Sji in S, and c
(n)
j in the column vector c(n), the

secular equations are written as

(H− E′
nS)c(n) = 0.

The matrix H represents the operator Ĥ in the N -dimensional

space spanned by the {ui} basis. This space is finite and not

complete, and the energies and wave functions are therefore

approximate. As N → ∞, the representation becomes exact.

The solution of these equations is similar to matrix diagonaliza-

tion (it is exactly matrix diagonalization if the basis is orthonor-

mal, making S a unit matrix). Solving the equations will yield

all eigenvalues and eigenfunctions.

In practice, very large basis sets (many millions) can be used.

It is not possible to find all the eigenvalues and eigenfunctions

in such cases, and we are not interested in all of them. Highly
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efficient algorithms have been devised to find a few lowest en-

ergies and corresponding functions.

Example: Particle in a box.

V =

{
0 0 ≤ x ≤ l

∞ elsewhere

Find approximate energies of 4 lowest levels.

The system is symmetric for reflection about x = 1
2
l. The

wavefunction must therefore be odd or even with respect to the

reflection, and the odd and even levels can be treated separately,

as the H and S integrals between odd and even levels vanish.

The trial functions:

Even: f1 = x(l − x), f2 = x2(l − x)2

Odd: f3 = x(l − x)(1
2
l − x), f4 = x2(l − x)2(1

2
l − x).

Calculating the Hji and Sji integrals and substituting in the

secular determinant gives for the even functions∣∣∣∣∣∣∣
h̄2l3

6m
− l5

30
E′ h̄2l5

30m
− l7

140
E′

h̄2l5

30m
− l7

140
E′ h̄2l7

105m
− l9

630
E′

∣∣∣∣∣∣∣
= 0.

The first solution, approximating the ground state energy, is

E′
1 = 0.1250018 h2

ml2
. The exact energy is 0.125 h2

ml2
, so the ap-

proximation is only 0.0014% off. We solved this system earlier,

using the function f1 only, and got an error of 1.3%, so adding

the second function reduced the error by three orders of mag-

nitude! This is not a typical example.

The second solution approximates the third level and gives

E′
3 = 1.293495 h2

ml2
. The exact energy of this state is 1.125 h2

ml2
,
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and the error is 15.0%. For the odd levels we get the approx-

imate energies E ′
2 = 0.5002930 h2

ml2
and E ′

4 = 2.5393425 h2

ml2
.

Comparison with the exact results, 0.5 h2

ml2
and 2 h2

ml2
, gives er-

rors of 0.059% and 27.0%. The results are excellent for the two

low levels and poor for the next two. Adding more functions to

the basis will improve the latter.

Excited states

So far we discussed upper bounds to the ground state energy.

It is easily shown (exercise) that a function known to be or-

thogonal to the n lowest eigenfunctions of H provides an upper

bound to the energy of level n+1. This is particularly useful for

the lowest fumction of a symmetry, since we know it is orthog-

onal to functions with different symmetry, hence to all lower

functions. The linear variation method has the additional ad-

vantage of always giving bounds to excited states. If the roots

of the secular equations are ordered, E ′
1 ≤ E′

2 ≤ · · · ≤ E ′
N , it

can be shown that E ′
i ≥ Ei, where Ei is the ith eigenvalue of

H. This holds true if we look at each symmetry separately.

Here we end the general presentation of approximate meth-

ods. The rest of the course will involve applications to sys-

tems (atoms, molecules). All these systems are far too com-

plicated for analytical solutions, and approximations must be

used. However, there is information which can be stated ex-

actly. This information is given by operators which commute

with H (symmetry operators), and is used to understand and

classify the energy levels of the system and to facilitate their

approximate evaluation.


