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Degenerate perturbations

H(0)ψ
(0)
n = E

(0)
n ψ

(0)
n , with degeneracy

E
(0)
1 = E

(0)
2 = · · · = E

(0)
d .

As in the nondegenerate case, En
λ→0→ E

(0)
n , but ψn can go to

any linear combination of the degenerate functions:

ψn
λ→0→

d∑
i

ciψ
(0)
i ≡ φ(0)

n .

The expansions for i = 1, 2, · · · , d are

ψn = φ(0)
n + λψ(1)

n + λ2ψ(2)
n + · · ·

En = E
(0)
1 + λE(1)

n + λ2E(2)
n + · · ·

The zero-order equation

H(0)φ(0)
n = E

(0)
1 φ(0)

n n = 1, · · · , d

The 1st-order equation

H(0)ψ(1)
n + H ′φ(0)

n = E
(0)
1 ψ(1)

n + E(1)
n φ(0)

n n = 1, · · · , d

Scalar product with 〈ψ(0)
j |, 1 ≤ j ≤ d gives

〈ψ(0)
j |H(0)|ψ(1)

n 〉 + 〈ψ(0)
j |H ′|φ(0)

n 〉 =

= E
(0)
1 〈ψ(0)

j |ψ(1)
n 〉 + E(1)

n 〈ψ(0)
j |φ(0)

n 〉.
The first terms on both sides are equal and cancel out, leaving

〈ψ(0)
j |H ′|φ(0)

n 〉 = E(1)
n 〈ψ(0)

j |φ(0)
n 〉.
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Replacing |φ(0)
n 〉 by

∑d
i=1 ci|ψ(0)

i 〉 gives

d∑
i=1

ci

(
〈ψ(0)

j |H ′|ψ(0)
i 〉 − E(1)

n δij

)
= 0,

d secular equations in d unknown. Solved in the usual manner,

they yield d first-order energy corrections E
(1)
n and d vectors of

coefficients which give the corresponding φ
(0)
n .

Meaning of φ
(0)
n : Without the perturbation, any linear combina-

tion of the degenerate zero-order functions ψ
(0)
i is an eigenfunc-

tion of H(0), and all of the combinations are equally acceptable.

The perturbation breaks this degeneracy. When the perturba-

tion is decreased and is very close (but not equal) to zero, the

perturbed wavefunction is very close to a specific linear combi-

nation of ψ
(0)
i . This linear combination is φ

(0)
n .

By solving the secular equations above we diagonalized the H ′

matrix in the space of the degenerate zero-order functions ψ
(0)
n .

The functions which diagonalize H ′ are φ
(0)
n . This gives

〈φ(0)
i |H ′|φ(0)

j 〉 = E
(1)
i δij, i, j = 1, · · · , d.

All integrals of H ′ between φ
(0)
i and φ

(0)
j vanish if i �= j. Us-

ing the φ
(0)
i set, the usual formulas of perturbation theory are

therefore applicable.

To sum up, we treat degenerate zero-order functions (for which

integrals of H (1) do not vanish) by first diagonalizing the ma-

trix of H ′ in the degenerate subspace. We then use the linear

combinations which diagonalize the perturbation; the integrals

of the perturbation between these linear combinations vanish,

so we can apply the usual nondegenerate method.
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Stark effect in the hydrogen atom

The energy levels of atoms and molecules shift when an electric

field is applied. This is called the Stark effect. We will discuss

the Stark effect on the two lowest levels n = 1, 2 of the hydrogen

atoms.

The Hamiltonian of the H atom in an electric field E is

H = − h̄2

2μ
∇2 − e2

r
+ ezE ,

where μ is the reduced electron mass and the z coordinate is in

the direction of E .

The energies of the zero-order H (0) = − h̄2

2μ∇2 − e2

r are E
(0)
n =

− μe4

2h̄2n2 , n = 1, 2, · · · .

Ground state (n = 1):

The first order correction is 〈ψ1s|ezE|ψ1s〉. It vanishes be-

cause of symmetry: ψ1s is symmetric to inversion (x, y, z →
−x,−y,−z) and z is antisymmetric, so the integrand is anti-

symmetric and the integral is 0.

Second order: λ2E
(2)
1s =

∑
nlm�=100

|〈ψnlm|eEz|ψ1s〉|2
E

(0)
1 −E

(0)
n

. This is the

quadratic Stark effect, proportional to E 2.

This system is simple enough for the first-order equation to be

soluble exactly, giving E
(2)
1 = −9

4a
3
0e

2E2.

The physical picture is as follows: the electric field polarizes

the atomic charge, creating an induced dipole moment d =

αE , which in turn interacts with the field. The energy shift is

−1
2
αE2. α is the polarizability, given for the ground state of

hydrogen by α = 9
2a

3
0.
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Excited state (n = 2)

This state is degenerate, with four functions (ignoring spin)

having the same energy. The four functions in the usual nlm

representation are

ψ
(0)
1 ≡ ψ200 (2s)

ψ
(0)
2 ≡ ψ210 (2p0)

ψ
(0)
3 ≡ ψ211 (2p1)

ψ
(0)
4 ≡ ψ21−1 (2p−1)

Applying degenerate perturbation theory, we define the zero-

order functions φ
(0)
j =

∑4
1 cjiψ

(0)
i .

The secular determinant is of order 4,

det
∣∣∣H(1)

ji − E(1)δji

∣∣∣ = 0, H
(1)
ji = 〈ψ(0)

j |ezE|ψ(0)
i 〉.

Since z = r cos θ does not depend on the ϕ angle, H
(1)
ji vanishes

for m �= m′. It also vanishes (parity!) for j = i. The only non-

vanishing integral is between the 2s and 2p0 orbitals, which is

〈ψ2s|ezE|ψ2p0〉 = 3a0eE . The secular determinant is
∣∣∣∣∣∣∣∣∣

−E(1) 3a0eE 0 0

3a0eE −E(1) 0 0

0 0 −E(1) 0

0 0 0 −E(1)

∣∣∣∣∣∣∣∣∣
= 0
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The determinant shows that 2p1 and 2p−1 do not mix (in zero

order) with any states. This could have been deduced without

writing the determinant, since their m value is different from

all other functions. They will therefore show a quadratic Stark

effect. Solving the secular determinant gives for the first two

functions E(1) = E(0) ± 3a0eE , which is proportional to the

first power of the field. This is the linear Stark effect, which (if

non-zero) is larger than the quadratic.

The n = 2 levels of H are split by E to three groups: the 2p±1

levels stay degenerate, shift quadratically. The other two levels

show a larger linear shift, one going up and the other down.

Going back to the secular equations, the zero-order functions

corresponding to these levels are

φ1 = (ψ2s − ψ2p0)/
√

2

φ2 = (ψ2s + ψ2p0)/
√

2.


