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PERTURBATION METHODS

Perturbation methods are useful when we cannot solve the

Schrödinger equation for the system of interest, but we know

the solutions for a similar system. These solutions can be used

to obtain approximate solutions for the original system.

An example of such a system is a one-electron atom in an elec-

tric field E . Taking the z coordinate in the direction of E , the

Hamiltonian is H = − h̄2

2m
∇2−Ze2

r
+ezE , where e is the electron

charge, Z the atomic number, and z the value of the coordi-

nate of the electron (fixing the origin at the nucleus). This

Hamiltonian cannot be partitioned into one-coordinate terms,

and therefore cannot be solved analytically. We do know the

solutions of the operator including the first two terms, which

is the hydrogenic H, and the last term is small relative to the

electron-nucleus interaction (this statement applies to ordinary

electric field, but not to strong laser fields).

The basic approach of perturbation methods is to partition H

into the unperturbed H (0) and the perturbation H (1). The

latter is usually written as λH ′, where H ′ is the perturbation

operator, which depends on the type of perturbation, and λ is

the parameter, which gives the perturbation strength. In the

example given,

H(0) = − h̄2

2m
∇2 − Ze2

r
, H ′ = ez, λ = E .
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The application of perturbation treatment requires:

• All the solutions of H (0) are known,

H(0)ψ(0)
n = E(0)

n ψ(0)
n

• The effect of H (1) is relatively small.

When λ → 0, ψn → ψ
(0)
n and En → E

(0)
n . We can therefore

write the expansions in λ

ψn = ψ(0)
n + λψ(1)

n + λ2ψ(2)
n + · · ·

En = E(0)
n + λE(1)

n + λ2E(2)
n + · · ·

Substitution in the Schrödinger equation gives

H(0)ψ(0)
n +λ

[
H(0)ψ(1)

n + H ′ψ(0)
n

]
+λ2

[
H(0)ψ(2)

n + H ′ψ(1)
n

]
+· · · =

= E(0)
n ψ(0)

n + λ
[
E(0)

n ψ(1)
n + E(1)

n ψ(0)
n

]

+λ2
[
E(0)

n ψ(2)
n + E(1)

n ψ(1)
n + E(2)

n ψ(0)
n

]
+ · · · .

For the two series to be equal, the coefficients of the same power

of λ must be equal.

The zero order terms (λ independent) give H (0)ψ
(0)
n = E

(0)
n ψ

(0)
n ,

which is just the unperturbed equation.
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The first-order equation is

H(0)ψ(1)
n + H ′ψ(0)

n = E(0)
n ψ(1)

n + E(1)
n ψ(0)

n ,

from which we shall find ψ
(1)
n and E

(1)
n , and the 2nd order equa-

tion is

H(0)ψ(2)
n + H ′ψ(1)

n = E(0)
n ψ(2)

n + E(1)
n ψ(1)

n + E(2)
n ψ(0)

n ,

which will give the second-order corrections ψ
(2)
n and E

(2)
n .

First order corrections

The eigenfunctions {ψ(0)
m } of H0 provide a basis, and ψ

(1)
n is

expanded

ψ(1)
n =

∑
m

anmψ(0)
m .

Substituting this expansion in the first-order equation gives

H(0)
∑
m

anmψ(0)
m + H ′ψ(0)

n = E(0)
n

∑
m

anmψ(0)
m + E(1)

n ψ(0)
n .

Using the fact that ψ
(0)
m is an eigenfunction of H (0), we get

∑
m

anmE(0)
m ψ(0)

m + H ′ψ(0)
n = E(0)

n

∑
m

anmψ(0)
m + E(1)

n ψ(0)
n .

A scalar product of 〈ψ(0)
k | and the last equation (or, using a

different language, multiplying by ψ
(1)
k

∗
and integrating) gives

ankE
(0)
k + 〈ψ(0)

k |H ′|ψ(0)
n 〉 = ankE

(0)
n + E(1)

n δkn.
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This is a large set of equations, one for each value of k. For

k = n the equation gives

E(1)
n = 〈ψ(0)

n |H ′|ψ(0)
n 〉,

so that the energy is given to first order by

En ≈ E(0)
n + λ〈ψ(0)

n |H ′|ψ(0)
n 〉 = E(0)

n + 〈ψ(0)
n |H(1)|ψ(0)

n 〉 =

= E(0)
n + λE(1)

n = 〈ψ(0)
n |H|ψ(0)

n 〉.
All other equations, for which k �= n, give

ank =
〈ψ(0)

k |H ′|ψ(0)
n 〉

E
(0)
n − E

(0)
k

, and

ψn ≈ ψ(0)
n +λ

∞∑
k �=n

〈ψ(0)
k |H ′|ψ(0)

n 〉
E

(0)
n − E

(0)
k

ψ
(0)
k = ψ(0)

n +
∞∑

k �=n

〈ψ(0)
k |H(1)|ψ(0)

n 〉
E

(0)
n − E

(0)
k

ψ
(0)
k .

What is ann? It should have been obtained from the equation

with k = n, but it cancels out. The equations to be satisfied

do not depend on the value of ann, which is therefore arbitrary.

It is usually chosen as zero.

What happens if there is degeneracy, i.e. some m �= n with

E
(0)
m = E

(0)
n ? If in such cases 〈ψ(0)

m |H ′|ψ(0)
n 〉 = 0, the relevant

anm drops from the equations and may be assigned arbitrary

values, usually zero. If the integral does not vanish, the equa-

tions here are not applicable. This problem will be discussed

later.
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Second order corrections

The equation is

H(0)ψ(2)
n + H ′ψ(1)

n = E(0)
n ψ(2)

n + E(1)
n ψ(1)

n + E(2)
n ψ(0)

n .

To be determined: ψ
(2)
n and E

(2)
n . Expand as before,

ψ(2)
n =

∑
m

bnmψ(0)
m .

Substitute in the equation,

H(0)
∑
m

bnmψ(0)
m + H ′ ∑

m

anmψ(0)
m =

= E(0)
n

∑
m

bnmψ(0)
n + E(1)

n

∑
m

anmψ(0)
m + E(2)

n ψ(0)
n .

The first term can be replaced by
∑

m bnmE
(0)
n ψ

(0)
m . Taking a

scalar product by 〈ψ(0)
k |:

bnkE
(0)
k +

∑
m

anm〈ψ(0)
k |H ′|ψ(0)

m 〉 = E(0)
n bnk +E(1)

n ank +E(2)
n δnk.

For k = n

E(2)
n =

∑
m

anm〈ψ(0)
n |H ′|ψ(0)

m 〉 =
∞∑

m�=n

〈ψ(0)
m |H ′|ψ(0)

n 〉〈ψ(0)
n |H ′|ψ(0)

m 〉
E

(0)
n − E

(0)
m

=

=
∞∑

m�=n

|〈ψ(0)
m |H ′|ψ(0)

n 〉|2
E

(0)
n − E

(0)
m

.
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To second order

En ≈ E(0)
n + 〈ψ(0)

n |H(1)|ψ(0)
n 〉 +

∞∑
m�=n

|〈ψ(0)
m |H(1)|ψ(0)

n 〉|2
E

(0)
n − E

(0)
m

.

For k �= n,

bnk

(
E(0)

n − E
(0)
k

)
=

∑
m

anm〈ψ(0)
n |H ′|ψ(0)

m 〉 − E(1)
n ank =

=
∑
m�=n

〈ψ(0)
m |H ′|ψ(0)

n 〉〈ψ(0)
k |H ′|ψ(0)

m 〉
E

(0)
n − E

(0)
m

−〈ψ(0)
n |H ′|ψ(0)

n 〉〈ψ(0)
k |H ′|ψ(0)

n 〉
E

(0)
n − E

(0)
k

.

To second order,

ψn ≈ ψ(0)
n +

∑
k �=n

〈ψ(0)
k |H(1)|ψ(0)

n 〉
E

(0)
n − E

(0)
k

ψ
(0)
k +

+
∑
k �=n

⎧⎨
⎩

∑
m�=n

〈ψ(0)
m |H(1)|ψ(0)

n 〉〈ψ(0)
k |H(1)|ψ(0)

m 〉[
E

(0)
n − E

(0)
m

] [
E

(0)
n − E

(0)
k

]

−〈ψ(0)
n |H(1)|ψ(0)

n 〉〈ψ(0)
k |H(1)|ψ(0)

n 〉[
E

(0)
n − E

(0)
k

]2

⎫⎪⎬
⎪⎭

ψ
(0)
k .

In general, the energy correction of order n will have terms with

n integrals of the form 〈ψ(0)|H(1)|ψ(0)〉 in the numerator and

n−1 differences of E(0) in the denominator. The expression for

the function will include n integrals and n energy differences.


