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The Dirac Notation

Integrals of the type
∫

f∗gdq or
∫

f∗Ôgdq appear frequently

in quantum mechanics. These are scalar product integrals.

The reason for the name may be understood if we expand the

functions in an orthonormal basis {ui}:
f =

∑
i

aiui; g =
∑

i

biui

∫
f∗gdq =

∑
i

∑
j

a∗i bj

∫
u∗

i ujdq =
∑

i

∑
j

a∗i bjδij =
∑

i

a∗i bi,

which is a generalization of a scalar product of two vectors,

→
a · →b= axbx + ayby + azbz.

Dirac proposed a notation where a function f is denoted by |f〉.

f → |f〉;
∫

f∗gdq → 〈f |g〉.

〈f |g〉 is, in general, a complex number. 〈f | is called a bra, and

|g〉 is a ket.

What is |g〉〈f |? It is an operator, because operating on a ket

|k〉 it gives a ket:

(|g〉〈f |) |k〉 = |g〉〈f |k〉.
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Projection operator: (|f〉〈f |)|ψ〉 = |f〉〈f |ψ〉. This is the pro-

jection of |ψ〉 on |f〉.
If |f〉 is normalized, then

(|f〉〈f |)(|f〉〈f |) = |f〉〈f |f〉〈f | = |f〉〈f |.
This property (idempotency) is a characteristic feature of pro-

jection operators, because a second projection with the same

operator does nothing.

Basis set {|ui〉}. Orthogonality: 〈ui|uj〉 = δij.

Expansion of an arbitrary function: |ψ〉 =
∑

i |ui〉ci.

Finding expansion coefficients: 〈uj|ψ〉 =
∑

i〈uj|ui〉ci = cj

|ψ〉 =
∑

i

|ui〉〈ui|ψ〉.
∑

i |ui〉〈ui| is therefore a unit operator.

Given the basis {|ui〉}, |ψ〉 may be represented by the expansion

coefficients ci: ⎛
⎜⎜⎜⎝

〈u1|ψ〉
〈u2|ψ〉

·
·

⎞
⎟⎟⎟⎠ or

⎛
⎜⎜⎜⎝

c1

c2

·
·

⎞
⎟⎟⎟⎠
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A ket is thus represented by a column vector, a bra by a row

vector (c∗1 c∗2 · · · ), and an operator Â by a matrix with elements

〈ui|Â|uj〉. The results obtained in this representation must be

the same as in the usual function space: if ψ′ = Âψ, then⎛
⎜⎜⎜⎝

c′1
c′2
·
·

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a11 a12 · · ·
a21 a22 · · ·
· · · · ·
· · · · ·

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c1

c2

·
·

⎞
⎟⎟⎟⎠ .

Proof:

|ψ′〉 = A|ψ〉 =
∑

j

A|uj〉〈uj|ψ〉,

where the unit operator was inserted. Multiplying by 〈ui|,
〈ui|ψ′〉 =

∑
j

〈ui|A|uj〉〈uj|ψ〉, or c′i =
∑

j

aijcj,

showing that the vector corresponding to ψ′ is obtained by mul-

tiplying the matrix of Â by the vector of ψ.

Similarly, the operator ÂB is represented by the product of the

matrices of Â and B̂:

(ÂB)ij = 〈ui|ÂB|uj〉 =
∑

k

〈ui|Â|uk〉〈uk|B̂|uj〉 =
∑

k

aikbkj.
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Basis set transformation

Going from the old basis {|ui〉} to a new basis {|tk〉}. Both are

orthonormal. The motivation will become clear later.

The transformation is |tk〉 =
∑

i |ui〉Sik, where S is the trans-

formation matrix.

Using the unit operator, we can write |tk〉 =
∑

i |ui〉〈ui|tk〉.
Comparing with the previous eq’n, we get Sik = 〈ui|tk〉.

If the two bases are orthonormal, S must be a unitary matrix,

meaning S†S = SS† = I (the Hermitian conjugate S† is the

transpose of the complex conjugate, S† =
∼
S∗):

(S†S)kl =
∑

i

S†
kiSil =

∑
i

S∗
ikSil =

∑
i

〈tk|ui〉〈ui|tl〉 = 〈tk|tl〉 = δkl.

Representation of the ket |ψ〉 :

〈tk|ψ〉 =
∑

i

〈tk|ui〉〈ui|ψ〉 =
∑

i

S†
ki〈ui|ψ〉

〈ui|ψ〉 =
∑

k

〈ui|tk〉〈tk|ψ〉 =
∑

k

Sik〈tk|ψ〉.

Operator:

Akl = 〈tk|A|tl〉 =
∑
ij

〈tk|ui〉〈ui|A|uj〉〈uj|tl〉 =
∑
ij

S†
kiAijSjl.

The representation of the operator is S†AS, where A is the

matrix in the old basis and S the basis transformation matrix.
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If A is Hermitian, there is a unitary matrix S for which D ≡
S†AS is diagonal. This process of diagonalizing Hermitian ma-

trices is very important in physics, and highly efficient compu-

tational algorithms have been devised, which can handle very

large matrices.

The eigenvalues and eigenfunction of Â:

Â|ψ〉 = λ|ψ〉. Using the basis {|ui〉}, 〈ui|Â|ψ〉 = λ〈ui|ψ〉,
leading to∑

j〈ui|Â|uj〉〈uj|ψ〉 = λ〈ui|ψ〉. or
∑

j Aijcj = λci, ⇒∑
j (Aij − λδij) cj = 0.

Taking a finite, N -dimensional space, we get N linear equations

(the secular equations) in N unknowns. The trivial solution (all

ci = 0) is not acceptable physically, and an additional, nontriv-

ial solution exists only of the equations are linearly dependent,

which occurs if the determinant of the coefficients (secular de-

terminant) vanishes,

det |A − λI| = 0.

This gives an equation of order N for λ, which yields in general

N eigenvalues. Substituting these eigenvalues in the secular

equations gives the corresponding eigenvectors.

Note: if the basis is composed of the eigenfunctions of Â,

〈tk|A|tl〉 = alδkl. The matrix of Â is diagonal, with the eigen-

values appearing in the diagonal. Therefore, diagonalizing the

matrix of an operator in a given basis gives its eigenvalues and

eigenvectors. (Example in class.)
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Uncertainty principle – a generalization.

Definition of uncertainty: an observable A is measured in many

equivalent systems. The average is 〈A〉, the deviation from

average is A − 〈A〉. The uncertainty is defined as the root-

mean-square of the deviation,

ΔA ≡
√
〈(A − 〈A〉)2〉.

(ΔA)2 = 〈A2−2A〈A〉+〈A〉2〉 = 〈A2〉−2〈A〉2+〈A〉2 = 〈A2〉−〈A〉2.
Let us take two Hermitian operators P,Q, which satisfy

[Q,P ] = ih̄ (an example is given by x and −ih̄∂/∂x).

Define |ϕ〉 = (Q + iλP )|ψ〉,
where |ψ〉 is the normalized wavefunction and λ an arbitrary

real number.

〈ϕ| = |ϕ〉† = 〈ψ|(Q − iλP )

0 ≤ 〈ϕ|ϕ〉 = 〈ψ|(Q − iλP )(Q + iλP )|ψ〉 =

= 〈ψ|Q2|ψ〉 + 〈ψ|iλQP − iλPQ|ψ〉 + 〈ψ|λ2P 2|ψ〉 =

= 〈Q2〉 + iλ〈[Q,P ]〉 + λ2〈P 2〉 = 〈Q2〉 − λh̄ + λ2〈P 2〉.
This quadratic expression in λ is ≥ 0 for all λ, and its discrim-

inant must therefore be ≤ 0.

h̄2 − 4〈P 2〉〈Q2〉 ≤ 0 ⇒ 〈P 2〉〈Q2〉 ≥ h̄2

4
.

Let us define P ′ ≡ P − 〈P 〉 and Q′ ≡ Q − 〈Q〉.
[Q′, P ′] = [Q,P ] = ih̄, therefore 〈P ′2〉〈Q′2〉 ≥ h̄2/4.

Since ΔP =
√〈P ′2〉 and ΔQ =

√〈Q′2〉, we get ΔPΔQ ≥ 1
2
h̄.


