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The Dirac Notation

Integrals of the type [ f*gdg or [ F*Ogdq appear frequently
in quantum mechanics. These are scalar product integrals.

The reason for the name may be understood if we expand the
functions in an orthonormal basis {u;}:

f= Zaiui; 9= Zbiui
/f*gdq=ZZa;‘bj/ufudeZZZafbj%=Zafbi,
i i i

which is a generalization of a scalar product of two vectors,

a - b= a.b, + ab, + a.b..

Dirac proposed a notation where a function f is denoted by | f).
f= 1) /f*gdq — (flg)-

(flg) is, in general, a complex number. (f| is called a bra, and
|g) is a ket.

What is |g)(f|? It is an operator, because operating on a ket
k) it gives a ket:

(lg) (FD1R) = 1) {F1F).
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Projection operator: (|f){f|)|¥) = |f){f|¥). This is the pro-
jection of ) on | f).

If |f) is normalized, then

UNCDUAN D = [HSLAST = 1AL

This property (idempotency) is a characteristic feature of pro-
jection operators, because a second projection with the same
operator does nothing.

Basis set {|u;) }. Orthogonality: (u;|u;) = di;.
Expansion of an arbitrary function: |¢) = ). |u;)c;.

Finding expansion coefficients: (u;|¢) = > (uj|lui)ci = ¢j
) = Z |wi) (uil ).

> Jug) (uy| is therefore a unit operator.

Given the basis { |u;) }, [¢/) may be represented by the expansion
coefficients ¢;:

(ua]1)) 1

(ualth) C2

or
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A ket is thus represented by a column vector, a bra by a row
vector (¢} ¢; - -+ ), and an operator A by a matrix with elements
(us] Au;). The results obtained in this representation must be
the same as in the usual function space: if 1) = A@b, then

aip arg - C1

_~

C

C g1 Q2 -+ C2

. O~

Proof:

) = Aly) = Z Alug)u;|),
where the unit operator was mserted. Multiplying by (u,|,
(wild') = (il Alug) (), or & = Y~ ase,
J J
showing that the vector corresponding to ¢’ is obtained by mul-

tiplying the matrix of A by the vector of 1.

Similarly, the operator AB is represented by the product of the
matrices of A and B:

(AB)i; = (wi| ABluj) =Y~ (wil Alug) (ur| Blu;) Zazkbkj
k
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Basis set transformation

Going from the old basis {|u;)} to a new basis {|t;)}. Both are
orthonormal. The motivation will become clear later.

The transformation is |t;) = > . |u;) Six, where S is the trans-
formation matrix.

Using the unit operator, we can write [tz) = > . |u;) (u;|ty).
Comparing with the previous eq'n, we get Sy = (u;|ty).

If the two bases are orthonormal, S must be a unitary matrix,
meaning STS = SST = I (the Hermitian conjugate ST is the

transpose of the complex conjugate, ST =5*):

CUSITE ZST il = Z il = Z tlui) (uiltr) = (Erltr) = O

Representation of the ket |¢) :

(el =) (telus) (wil ) = ZS,; ()

1

(wil) = D (wilte) (tr|e)) = ZSm (tele).

k

Operator:

A= (Gl Alt) = (telua) (wl Al ) (ult) = S A3 S
1] 1

The representation of the operator is STAS, where A is the
matrix in the old basis and S the basis transformation matrix.



20

If A is Hermitian, there is a unitary matrix S for which D =
STAS is diagonal. This process of diagonalizing Hermitian ma-
trices is very important in physics, and highly efficient compu-
tational algorithms have been devised, which can handle very
large matrices.

The eigenvalues and eigenfunction of A:

Alp) = M)y, Using the basis {|u;)}, (u;|Alv) = Mu;|v),
leading to

Zj<uz‘|A’uj><UjW> = Mu;|[y). or Zj Ajjej = Ay, =

Zj (AZ] — >\5@]) Cj = 0.

Taking a finite, N-dimensional space, we get N linear equations
(the secular equations) in N unknowns. The trivial solution (all
¢; = 0) is not acceptable physically, and an additional, nontriv-
ial solution exists only of the equations are linearly dependent,
which occurs if the determinant of the coefficients (secular de-
terminant) vanishes,

det |[A — M| = 0.

This gives an equation of order NV for A, which yields in general
N eigenvalues. Substituting these eigenvalues in the secular
equations gives the corresponding eigenvectors.

Note: if the basis is composed of the eigenfunctions of 121,
(tp|Alt;) = a;0p;. The matrix of A is diagonal, with the eigen-
values appearing in the diagonal. Therefore, diagonalizing the
matrix of an operator in a given basis gives its eigenvalues and
cigenvectors. (Example in class.)
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Uncertainty principle — a generalization.

Definition of uncertainty: an observable A is measured in many

equivalent systems. The average is (A), the deviation from
average is A — (A). The uncertainty is defined as the root-
mean-square of the deviation,

AA=/{(A-

(AA)* = (A*=2A4(A)+(A)%) = (A7) —2(A)*+(4)" = (4%)—(4)".

Let us take two Hermitian operators P, (), which satisfy
|Q, P] = ih (an example is given by z and —ihd/0x).

Define [¢) = (@ +iAP)[¢),
where |1) is the normalized wavefunction and A an arbitrary
real number.

(0] = o)t = (WI(Q —iAP)

0 < {plp) = (W|(Q = iAP)(Q +iAP) ) =
= (|Q°[Y)) + (YIINQP — iAPQ|v) + (YN Py) =
= (Q%) +iX(Q, Pl) + X(P?) = (Q7) — Mo+ N\ (P?).
This quadratic expression in A is > 0 for all A, and its discrim-
inant must therefore be < 0.

2
W —4PHQHN <0 = (PHQY) > hz
Let us define P = P — (P) and Q' = Q — (Q).

[Q', P'] = [Q, P] = ih, therefore (P?)(Q"?) > h? /4.
Since AP = \/(P"?) and AQ = /{(Q"?), we get APAQ > %h



