The Dirac Notation

Integrals of the type $\int f^*gdq$ or $\int f^*\hat{O}gdq$ appear frequently in quantum mechanics. These are scalar product integrals.

The reason for the name may be understood if we expand the functions in an orthonormal basis $\{u_i\}$:

$$f = \sum_{i} a_i u_i; \quad g = \sum_{i} b_i u_i$$

$$\int f^*g dq = \sum_i \sum_j a_i^* b_j \int u_i^* u_j dq = \sum_i \sum_j a_i^* b_j \delta_{ij} = \sum_i a_i^* b_i,$$

which is a generalization of a scalar product of two vectors,

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z.$$

Dirac proposed a notation where a function f is denoted by $|f\rangle$.

$$f \to |f\rangle; \quad \int f^*g dq \to \langle f|g\rangle.$$

 $\langle f|g\rangle$ is, in general, a complex number. $\langle f|$ is called a bra, and $|g\rangle$ is a ket.

What is $|g\rangle\langle f|$? It is an operator, because operating on a ket $|k\rangle$ it gives a ket:

$$(|g\rangle\langle f|) |k\rangle = |g\rangle\langle f|k\rangle.$$

Projection operator: $(|f\rangle\langle f|)|\psi\rangle = |f\rangle\langle f|\psi\rangle$. This is the projection of $|\psi\rangle$ on $|f\rangle$.

If $|f\rangle$ is normalized, then

 $(|f\rangle\langle f|)(|f\rangle\langle f|)=|f\rangle\langle f|f\rangle\langle f|=|f\rangle\langle f|.$

This property (idempotency) is a characteristic feature of projection operators, because a second projection with the same operator does nothing.

Basis set $\{|u_i\rangle\}$. Orthogonality: $\langle u_i|u_j\rangle = \delta_{ij}$. Expansion of an arbitrary function: $|\psi\rangle = \sum_i |u_i\rangle c_i$. Finding expansion coefficients: $\langle u_j|\psi\rangle = \sum_i \langle u_j|u_i\rangle c_i = c_j$

$$|\psi\rangle = \sum_{i} |u_i\rangle\langle u_i|\psi\rangle.$$

 $\sum_i |u_i\rangle\langle u_i|$ is therefore a unit operator.

Given the basis $\{|u_i\rangle\}, |\psi\rangle$ may be represented by the expansion coefficients c_i :

$$\begin{pmatrix} \langle u_1 | \psi \rangle \\ \langle u_2 | \psi \rangle \\ \vdots \\ \vdots \end{pmatrix} \text{ or } \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ \vdots \end{pmatrix}$$

A ket is thus represented by a column vector, a bra by a row vector $(c_1^* c_2^* \cdots)$, and an operator \hat{A} by a matrix with elements $\langle u_i | \hat{A} | u_j \rangle$. The results obtained in this representation must be the same as in the usual function space: if $\psi' = \hat{A}\psi$, then

$$\begin{pmatrix} c_1' \\ c_2' \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots \\ a_{21} & a_{22} & \cdots \\ \cdot & \cdot & \cdots \\ \cdot & \cdot & \cdots \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \cdot \\ \cdot \\ \cdot \end{pmatrix}$$

Proof:

$$|\psi'\rangle = A|\psi\rangle = \sum_{j} A|u_{j}\rangle\langle u_{j}|\psi\rangle,$$

where the unit operator was inserted. Multiplying by $\langle u_i |$,

$$\langle u_i | \psi' \rangle = \sum_j \langle u_i | A | u_j \rangle \langle u_j | \psi \rangle, \text{ or } c'_i = \sum_j a_{ij} c_j,$$

showing that the vector corresponding to ψ' is obtained by multiplying the matrix of \hat{A} by the vector of ψ .

Similarly, the operator \widehat{AB} is represented by the product of the matrices of \hat{A} and \hat{B} :

$$(\widehat{AB})_{ij} = \langle u_i | \widehat{AB} | u_j \rangle = \sum_k \langle u_i | \widehat{A} | u_k \rangle \langle u_k | \widehat{B} | u_j \rangle = \sum_k a_{ik} b_{kj}.$$

Basis set transformation

Going from the old basis $\{|u_i\rangle\}$ to a new basis $\{|t_k\rangle\}$. Both are orthonormal. The motivation will become clear later.

The transformation is $|t_k\rangle = \sum_i |u_i\rangle S_{ik}$, where S is the transformation matrix.

Using the unit operator, we can write $|t_k\rangle = \sum_i |u_i\rangle \langle u_i|t_k\rangle$. Comparing with the previous eq'n, we get $S_{ik} = \langle u_i|t_k\rangle$.

If the two bases are orthonormal, S must be a unitary matrix, meaning $S^{\dagger}S = SS^{\dagger} = I$ (the Hermitian conjugate S^{\dagger} is the transpose of the complex conjugate, $S^{\dagger} = \widetilde{S^*}$):

$$(S^{\dagger}S)_{kl} = \sum_{i} S_{ki}^{\dagger}S_{il} = \sum_{i} S_{ik}^{*}S_{il} = \sum_{i} \langle t_k | u_i \rangle \langle u_i | t_l \rangle = \langle t_k | t_l \rangle = \delta_{kl}.$$

Representation of the ket $|\psi\rangle$:

$$\langle t_k | \psi \rangle = \sum_i \langle t_k | u_i \rangle \langle u_i | \psi \rangle = \sum_i S_{ki}^{\dagger} \langle u_i | \psi \rangle$$
$$\langle u_i | \psi \rangle = \sum_k \langle u_i | t_k \rangle \langle t_k | \psi \rangle = \sum_k S_{ik} \langle t_k | \psi \rangle.$$

Operator:

$$A_{kl} = \langle t_k | A | t_l \rangle = \sum_{ij} \langle t_k | u_i \rangle \langle u_i | A | u_j \rangle \langle u_j | t_l \rangle = \sum_{ij} S_{ki}^{\dagger} A_{ij} S_{jl}.$$

The representation of the operator is $S^{\dagger}AS$, where A is the matrix in the old basis and S the basis transformation matrix.

If A is Hermitian, there is a unitary matrix S for which $D \equiv S^{\dagger}AS$ is diagonal. This process of diagonalizing Hermitian matrices is very important in physics, and highly efficient computational algorithms have been devised, which can handle very large matrices.

The eigenvalues and eigenfunction of \hat{A} : $\hat{A}|\psi\rangle = \lambda|\psi\rangle$. Using the basis $\{|u_i\rangle\}, \langle u_i|\hat{A}|\psi\rangle = \lambda\langle u_i|\psi\rangle$, leading to $\sum_j \langle u_i|\hat{A}|u_j\rangle\langle u_j|\psi\rangle = \lambda\langle u_i|\psi\rangle$. or $\sum_j A_{ij}c_j = \lambda c_i$, \Rightarrow $\sum_j (A_{ij} - \lambda \delta_{ij}) c_j = 0$.

Taking a finite, N-dimensional space, we get N linear equations (the secular equations) in N unknowns. The trivial solution (all $c_i = 0$) is not acceptable physically, and an additional, nontrivial solution exists only of the equations are linearly dependent, which occurs if the determinant of the coefficients (secular determinant) vanishes,

$$\det |A - \lambda I| = 0.$$

This gives an equation of order N for λ , which yields in general N eigenvalues. Substituting these eigenvalues in the secular equations gives the corresponding eigenvectors.

Note: if the basis is composed of the eigenfunctions of \hat{A} , $\langle t_k | A | t_l \rangle = a_l \delta_{kl}$. The matrix of \hat{A} is diagonal, with the eigenvalues appearing in the diagonal. Therefore, diagonalizing the matrix of an operator in a given basis gives its eigenvalues and eigenvectors. (Example in class.)

Uncertainty principle – a generalization.

Definition of uncertainty: an observable A is measured in many equivalent systems. The average is $\langle A \rangle$, the deviation from average is $A - \langle A \rangle$. The uncertainty is defined as the rootmean-square of the deviation,

$$\Delta A \equiv \sqrt{\langle (A - \langle A \rangle)^2 \rangle}.$$

$$(\Delta A)^2 = \langle A^2 - 2A\langle A \rangle + \langle A \rangle^2 \rangle = \langle A^2 \rangle - 2\langle A \rangle^2 + \langle A \rangle^2 = \langle A^2 \rangle - \langle A \rangle^2.$$

Let us take two Hermitian operators P, Q, which satisfy $[Q, P] = i\hbar$ (an example is given by x and $-i\hbar\partial/\partial x$). Define $|\varphi\rangle = (Q + i\lambda P)|\psi\rangle$, where $|\psi\rangle$ is the normalized wavefunction and λ an arbitrary real number.

$$\langle \varphi | = |\varphi\rangle^{\dagger} = \langle \psi | (Q - i\lambda P)$$

$$0 \leq \langle \varphi | \varphi \rangle = \langle \psi | (Q - i\lambda P)(Q + i\lambda P) | \psi \rangle =$$

= $\langle \psi | Q^2 | \psi \rangle + \langle \psi | i\lambda QP - i\lambda PQ | \psi \rangle + \langle \psi | \lambda^2 P^2 | \psi \rangle =$
= $\langle Q^2 \rangle + i\lambda \langle [Q, P] \rangle + \lambda^2 \langle P^2 \rangle = \langle Q^2 \rangle - \lambda\hbar + \lambda^2 \langle P^2 \rangle.$

This quadratic expression in λ is ≥ 0 for all λ , and its discriminant must therefore be ≤ 0 .

$$\hbar^2 - 4\langle P^2 \rangle \langle Q^2 \rangle \le 0 \implies \langle P^2 \rangle \langle Q^2 \rangle \ge \frac{\hbar^2}{4}.$$

Let us define $P' \equiv P - \langle P \rangle$ and $Q' \equiv Q - \langle Q \rangle$. $[Q', P'] = [Q, P] = i\hbar$, therefore $\langle P'^2 \rangle \langle Q'^2 \rangle \ge \hbar^2/4$. Since $\Delta P = \sqrt{\langle P'^2 \rangle}$ and $\Delta Q = \sqrt{\langle Q'^2 \rangle}$, we get $\Delta P \Delta Q \ge \frac{1}{2}\hbar$.