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OPERATORS

An operator is a recipe showing how to get a function g from a

given function f :

g = Ôf.

This is similar to a function, which tells us how to get a number

y given a number x:

y = f(x).

Examples:

Âf ≡ f + 8

x̂f ≡ xf

ŝf ≡
√

f

δ̂f(x) ≡ d

dx
f(x)

Definitions:

Sum of operators: (Ô + P̂ )f ≡ Ôf + P̂ f

Product: (ÔP̂ )f ≡ Ô(P̂ f).

Note that operators are always characterized by operations on

functions.
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Commutation:

Sum of operators is always commutative, product – not neces-

sarily. Example:

(
d̂

dx
x̂)f(x) =

d

dx
(xf) = f + xf ′

(x̂
d̂

dx
)f(x) = xf ′.

Commutator:

[Ô, P̂ ] ≡ ÔP̂ − P̂ Ô.

The commutator is an operator, shows properties by operating

on function:

[x̂, d̂
dx]f = −f for arbitrary f , therefore [x̂, d̂

dx] = −1.

An operator Ô is linear if

Ô(af(x) + bg(x)) = aÔf(x) + bÔg(x)

for arbitrary complex numbers a, b and functions f, g.

The operators x̂, δ̂ defined above are linear, Â, ŝ are not.

We will use only linear operators.
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Eigenvalues and eigenfunctions of operators

Applying d/dx to the function e2x gives the function multiplied

by a constant, (d/dx)e2x = 2e2x. This shows a special relation-

ship between the function and operator, which occurs only for

certain functions. Thus, (d/dx)x3 �= kx3.

Definition: if Ôf(x) = αf(x), f(x) is an eigenfunction of Ô

with the eigenvalue α.

The eigenvalue equation for d/dx is (d/dx)f(x) = αf(x). Ob-

viously, any f(x) = ekx with arbitrary k is an eigenfunction of

the operator, with k the corresponding eigenvalue.

Going to the operator d2/dx2, again any ekx is an eigenfunc-

tion, with the eigenvalue now k2. Note: the same eigenvalue

corresponds to the two eigenfunctions ekx and e−kx. The eigen-

value k2 is degenerate, belonging to more than one eigenfunc-

tion. The degeneracy level is the number of linearly indepen-

dent eigenfunctions belonging to the same eigenvalue (two in

this example).

Theorem: If two (or more) eigenfunctions belong to the same

eigenvalue, any linear combination of them (af1 + bf2) will also

be an eigenfunction with the same eigenvalue.

Proof (for 2 functions, similar for any number):

Ôf1(x) = αf1(x)

Ôf2(x) = αf2(x)

}
=⇒

Ô(af1 + bf2) = aÔf1 + bÔf2 = aαf1 + bαf2 = α(af1 + bf2)

The first equality uses the linearity of the operator Ô.
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Well behaved functions

Required properties:

1. Function must be single-valued and finite in the whole range.

This applies primarily to trigonometric functions, e.g. sin(kθ).

Increasing θ by 2π does not change the physics, so we want

to have f(θ + 2π) = f(θ). The function sin(kθ) must

therefore have integer k.

2. Function must be continuous and have a continuous first

derivative. This requirement comes from the appearance of

the 2nd derivative in the Schrödinger equation. Exceptions

occur when there are infinite jumps in the potential (e.g.

the walls of a particle in a box).

3. The function is quadratically integrable, 0 <
∫

f∗fdτ <

∞. This makes possible the normalization of the function.

A necessary (but not sufficient) condition is that f → 0 as

any of the arguments of the function goes to infinity.
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Hermitian operators

Definition: The Hermitian conjugate Ô† of Ô is the operator

satisfying
∫

fÔ†gdτ =
∫

gÔ∗fdτ for any well-behaved f, g.

An operator is Hermitian if Ô† = Ô, i.e.
∫

fÔgdτ =
∫

gÔ∗fdτ

for any well-behaved f, g.

We shall discuss only Hermitian operators (a few exceptions).

Examples:

• Is d/dx Hermitian? Ô = d
dx

Ô∗ = d
dx∫ ∞

−∞
f

d

dx
gdx

integ by parts
= [fg]∞−∞ −

∫ ∞

−∞
g

d

dx
fdx =

= −
∫ ∞

−∞
g

d

dx
fdx �=

∫ ∞

−∞
g

d

dx
fdx.

The 2nd step is possible because f, g go to 0 at ±∞.

Conclusion: d/dx is not Hermitian. Its Hermitian conju-

gate is −d/dx.

• How about id/dx? Ô = i d
dx

Ô∗ = −i d
dx

Steps similar to those above show that∫ ∞

−∞
f

(
i

d

dx

)
gdx =

∫ ∞

−∞
g

(
−i

d

dx

)
fdx.

id/dx is therefore Hermitian.

• x is Hermitian.
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Properties of Hermitian operators

1. All eigenvalues are real

2. Eigenfunctions belonging to different eigenvalues are or-

thogonal.

3. The set of all eigenfunctions fi of a Hermitian operator

forms a basis for the space of functions with the same

boundary conditions, i.e. any function Ψ of this space may

be spanned in the set of eigenfunctions, Ψ =
∑

i cifi.

Proof of 1

Ôf = αf . Taking the complex conjugate gives Ô∗f∗ = α∗f∗.
From the first equation,

∫
f∗Ôfdτ = α

∫
f∗fdτ ,

and from the 2nd
∫

fÔ∗f∗dτ = α∗ ∫
ff∗dτ .

The lhs of the last equation is equal (by the definition of Hermi-

tian conjugate) to
∫

f∗Ô†fdτ . Since Ô is Hermitian, Ô† may

be replaced by Ô, and the lhs of the last two equations are

equal. Therefore, the rhs are also equal; since
∫

f∗fdτ �= 0,

α = α∗, and α is real.

Proof of 2. Given:

Ôf = αf ; Ôg = βg; α �= β.

From the 1st equation,
∫

g∗Ôfdτ = α
∫

g∗fdτ .

From the complex conjugate of the 2nd,
∫

fÔ∗g∗dτ = β
∫

fg∗dτ .

Since Ô is Hermitian, the lhs of the last two equations are equal,

therefore the rhs are equal. Since α �= β,
∫

g∗fdτ = 0.

If α = β, the functions f, g are degenerate, and any linear

combination of them is an eigenfunction of Ô with the same

eigenvalue. It is possible to choose orthogonal combinations.

3 will not be proved.
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Theorem: Given two commuting Hermitian operators, there ex-

ists a complete set of eigenfunctions common to both operators.

Notes:

• a complete set – the set of all eigenfunctions, in which any

function with the same boundary conditions may be spanned.

• there exists . . . – an eigenfunction of one operator is not nec-

essarily an eigenfunction of the other (remember the freedom

of selecting eigenfunctions in case of degeneracy), but one can

always find a complete set of eigenfunctions common to both

operators.

Example: the hydrogen atom functions Ψnlm are eigenfunctions

of the commuting Hermitian operators Ĥ, L̂2, L̂z:

ĤΨnlm = EnΨnlm

L̂2Ψnlm = l(l + 1)h̄2Ψnlm

L̂zΨnlm = mh̄Ψnlm.

A linear combination such as
∑

l clΨnlm (constant n,m) will be

an ef of Ĥ and L̂z, but not of L̂2.

The proof will be given only for the nondegenerate case:

Given ÂB̂ = B̂Â, Âf = af, a nondegen ev.

Â(B̂f)
commute

= B̂Âf = B̂af = a(B̂f)

B̂f is therefore an ef of Â with the ev a. Since a is a nondegen-

erate ev, f and B̂f must be linearly dependent, which means

they are proportional, or B̂f = bf . The last equation shows

that f is an ef of B̂, QED.

It can be shown (exercise) that if two Hermitian operators have

a complete set of common eigenfunctions, the operators com-

mute.
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Classical wave equation (one dimension):

Ψ = Ae2πi(kx−νt).

k = 1/λ is the wave number.

From Planck’s equation E = hν ⇒ ν = E
h ,

from de Broglie λ = h
p
⇒ k = p

h
, giving

Ψ = Ae2πi/h(px−Et) = Aei/h̄(px−Et).

Taking derivatives wrt x and t, we get

∂Ψ

∂x
=

i

h̄
pΨ ⇒ pΨ =

h̄

i

∂Ψ

∂x
∂Ψ

∂t
= − i

h̄
EΨ ⇒ EΨ = −h̄

i

∂Ψ

∂t
.

This shows some relationship of px to the operator h̄
i

∂
∂x

and of

E to − h̄
i

∂
∂t . This does not prove anything!!!.


