Advanced Seminar in Applied Mathematics

Nir Sharon

Spring 2021

1 Seminar description

The seminar's goal is to expose students with sufficient mathematical backgrounds to advanced topics in applied and computational mathematics. In particular, we wish to mark the following targets:

- Learning essential topics that usually do not get the center of attention in standard undergraduate courses.
- Experiencing an academic study in a small group with a research flavor and facing peer-reviewing on both sides of the process.
- Presenting advanced mathematical material in front of an "expert" audience.

2 Admin: Time, place, prerequisites

Course name:	Applied Math Seminar	
Course $\#$:	0366-3013-01	
Time:	Tuesday 12:00-14:00	
Place:	Zoom or in-person meetings, according to the most recent directions. See website for updates.	
Contact:	Nir Sharon, Schreiber 121, nsharon@tauex.tau.ac.il	
Prerequisite:	advanced curiosity, calculus, linear algebra, numerical analysis.	
Recommended:	probability, graph and group theory.	

3 Guidelines, requirements, and grading

- 1. Attendance in all classes is mandatory. Any missed class must be approved in advance. (10% of the total grade).
- 2. Each student should **lecture for 1 hour** and **prepare a short abstract** on his presentation subject to publish a week before the talk. (80% of the total grade).
- 3. Each talk should be self-contained and include the required background. Do not hesitate to repeat things that have been presented in other talks, if necessary.
- 4. Examples and demonstrations, live code examples are greatly appreciated.
- 5. Slides can be in English or Hebrew, your choice.
- 6. **Peer-reviewing** each student will be assigned to two lectures **as a referee**. The referring includes reading background on the topic and prepare a reports. The report should be submitted up to a day after the talk. (10% of the total grade).

4 Schedule and tentative subjects selection

In the next table, you will find the dates of seminar meetings and suggested topics. This is a preliminary setting, where in practice, we don't have to strictly follow it.

Date	Main Topic	A provisional title
9/3	Welcome	Introduction to the seminar and its topics
16/3	20th Century's Most Im- portant Algorithms	Fast Fourier Transform (FFT)Fast Multipole Method (FMM)
6/4	NUFFT — where real- world meets FFT	NUFFT part 1NUFFT part 2
13/4	The sphere — a numeri- cal perspective	Spherical HarmonicsIntegration over the sphere.
20/4	Introduction to opti- mization	Convex optimizationNon-convex optimization
27/4	Advanced optimization	 Optimization on Lie groups Stochastic Gradient Descent
4/5	Introduction to learning	The fundamentals of learningClassification and nearest neighbors algorithm
11/5	Learning and classifica- tion	Classification: logistic regression, LDA, QDABoosting and Adaboost algorithm
18/5	PCA: Principal compo- nents analysis	PCA part 1PCA part 2
25/5	Dimension reduction	JL lemma and random projectionsLaplacian eigenmaps
1/6	Mathematics in applica- tions	 Radon transform Group theory and applications
1/6	Randomness in compu- tations	Fast Randomized SVDSampling and its applications
15/6	Open subject [*]	

*Examples of other possible subjects (contingent upon approval): Neural Nets in inverse problems, synchronization over groups, EM algorithm, etc.