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Motivational Section – Cryo-EM in a Nutshell

Appear in Olena Shmahalo/Quanta Magazine; source: Martin Högborn/The Royal Swedish Academy of Sciences:

The “resolution revolution” (Werner Kühlbrandt, 2014)
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Motivational Section – Cryo-EM in a Nutshell

Exciting Times:
“For developing cryo-electron microscopy for the high-resolution structure
determination of biomolecules in solution”
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Motivational Section – Cryo-EM in a Nutshell

The process:

Main computational challenges:

1 High level of noise.

2 Unknown viewing directions.  
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The Problem of Multi-Reference Alignment (MRA)

Formulation: Estimating a signal x ∈ RL, up to shifting, from its noisy
circularly–translated copies

yj = Rrj x + εj , j = 1, . . . ,N, εj ∼ N (0, σ2I ).
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Applications: radar, image registration, structural biology
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The Sample Complexity of the Problem

Data:
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1 Can we recover the signal for any level of noise?
2 How many samples do we need for attaining a certain accuracy?

Estimations:
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The Role of Translations in MRA

Recall the model:

yj = Rrj x + εj , j = 1, . . . ,N, εj ∼ N (0, σ2I ).

The translations are the latent/hidden variables of the problem.

Given the translations, we can estimate

x̃ =
1

N

N∑
j=1

R−1
rj

yj .

Therefore, estimating the translation reduces the problem significantly.

1 Should we find the translations to estimate the signal?

2 Can we recover the signal without explicit translations?
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Low vs High Level of Noise

Low level of noise → Explicitly estimating the translations.
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An example – alignment via cross-correlation
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Low vs High level of noise Regimes

Low level of noise → Explicitly estimating the translations.

High level of noise → Keeping translations behind the scene:

I Invariant features – the info is encompassed in mean, power spectrum,
and bispectrum.

I EM – a classical statistical method with state-of-the-art performance
for MRA.The sample complexity tradeoff,
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Statistical Moments Approach – Including the Distribution

The first moment of the data is

E [y ] = Cxρ = x ∗ ρ,

where Cx is a circulant matrix and ρ is the distribution of translations.

The second moment of the data is

E
[
yyT

]
= CxDρC

T
x + σ2I ,

where Dρ is a diagonal matrix with ρ on its diagonal.

Proposition

Assume the DFT of ρ satisfies ρ̂[k] 6= 0 for some k, where k and L are
coprime. If the DFT of x is non-vanishing, then it is uniquely determined
(up to translation) from the first two moments of the data.
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Statistical Moments Approach – Including the Distribution

The first moment of the data is

E [y ] = Cxρ = x ∗ ρ,

where Cx is a circulant matrix and ρ is the distribution of translations.

The second moment of the data is

E
[
yyT

]
= CxDρC

T
x + σ2I ,

where Dρ is a diagonal matrix with ρ on its diagonal.

Assume
∣∣x̂ [k]

∣∣ = 1, we have

CxDρC
T
x = CxDρC

−1
x ,

and x is recovered whenever ρ has a distinct entry.
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Resolving Distinct Eigenvalue

The success of the spectral algorithm is contingent on a distinct entry
in ρ. Can we somehow guarantee it?

The answer: Yes! by randomly reshuffle the samples!

Proposition

Let ρ be a non-periodic vector on the simplex and let θ be a random
probability density function on the simplex. Then, all entries of ρ ∗ θ are
distinct with probability 1.

A conclusion: the spectral algorithm provides a constructive solution for
any nonperiodic ρ and achieves a sample complexity of N & σ4

(equivalently of order 1/SNR2).
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The Spectral Algorithm in Full

1 Estimate moments and power spectrum

1 µ← 1
N

∑N
j=1 yj

2 M ← 1
N

∑N
j=1 yjy

T
j − σ2I , where M ≈ CxDρC

T
x

3 Px ← 1
N

∑N
j=1 |Fyj |2 − σ2L1

2 Normalize the signal
1 p ← (Px)−1/2

2 Q ← F−1DpF

3 M̃ ← Q M Q−1 Here M̃ ≈ Cx′DρC
T
x′ with Cx′ = CT

x′

3 Extract and scale solutions
1 v ← UniqEig(M̃)

2 ṽ ← F−1
(

(Px)1/2 � Fv
)

Reset the Fourier modulus

3 x ←
(
Sum(µ)/Sum(ṽ)

)
ṽ Scale by the first moment

4 ρ← C−1
x µ
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)
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2 ṽ ← F−1
(

(Px)1/2 � Fv
)

Reset the Fourier modulus

3 x ←
(
Sum(µ)/Sum(ṽ)
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2 ṽ ← F−1
(

(Px)1/2 � Fv
)

Reset the Fourier modulus

3 x ←
(
Sum(µ)/ Sum(ṽ)
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Estimation Error – Spectral Algorithm

Consider σ →∞ and suppose we have σ1 ≤ σ2 ≤ . . . , such that σn →∞.
Also, let N1 ≤ N2 ≤ . . . . For each n, we draw observations y1, . . . , yNn at
noise level σn.

Theorem

Let ρ be periodic. Then, for sufficiently small t > 0:

P
[

min
s
‖Rs x̂ − x‖ ≥ t

]
≤ C1 exp

{
−C2

Nn

σ4
n

t

}
,

where C1 = C1(x , ρ, L) and C2 = C2(x , ρ, L) are finite, positive constants.

Therefore, if Nn ≥ K log(n)σ4
n for a sufficiently large constant K , then the

error of x̂n converges to 0 almost surely as n→∞.
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The Periodicity is Tight

Is non-periodicity a real property of the problem or maybe just an artifact
of the construction?

Proposition

Let ` < L/2 be a divisor of L > 1. Suppose that ρ is a periodic distribution
with period of `. Then, for a given real signal x1 with non-vanishing DFT,
there exists a different real signal x2 (which is not a translation of x1) such
that both signals have the same first and second moments.

A visual example:
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Lower Bound

Let φx(x̂) := argminz∈{R`x̂}`∈ZL
‖z − x‖ and define Minimal Square Error

(MSE) to be

MSE =
1

‖x‖2
E
[
‖φx(x̂)− x‖2

]
.

Theorem

Assume that x is not a constant vector. If x̂ is an asymptotically unbiased
estimator of x , that is φx(x̂)→ x , then

MSE ≥ O
(

1

SNR2

)
.

Moreover, if ρ is periodic, with a period ` < L
2 , then

MSE ≥ O
(

1

SNR3

)
.
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Dependency on L via Spike Covariance Model

In the spiked model, given a rank r matrix X , we observe

Y = X + G ∈ RL×N , gij
iid∼ N (0, σ2).

Usually, it assumes that L = L(N) and L/N → γ > 0 as N →∞.

Let λ be the top eigenvalue of XXT/N. Then, the phase transition at

λcritical = σ2√γ.

means that for λ > λcritical there is a non-trivial correlation between top
eigenvectors of YY T/N and XXT/N.
In MRA it is equal to

N ≥ Lσ4

‖x‖4(max ρ)2
=

L

(max ρ)2

1

SNR2
.
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Two additional algorithms – LS optimization

The least square algorithm aim to minimize

min
x̃∈RL,ρ̃∈∆L

‖M̂y − Cx̃Dρ̃C
T
x̃ ‖2

F + λ‖µ̂y − Cx̃ ρ̃‖2
2,

where λ > 0 is a predefined parameter.

In low SNR regime, the variance of the first estimator is proportional to σ2

and the variance of the second is proportional to 3Lσ4. Therefore, we set
λ = 1

L(1+3σ2)
.

We solve the problem with a gradient-based method.
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Two additional algorithms – adapted EM

By the model of the MRA,

p(y , `|x , ρ) =
N∏
j=1

1√
2πσ2

e
− 1

2σ2

∥∥∥Rrj
x−yj

∥∥∥2

ρ[rj ].

The log-likelihood function is then given, up to a constant, by

log L(x , ρ|y , r) =
N∑
j=1

{
log ρ[rj ]−

1

2σ2

∥∥∥Rrj x − yj

∥∥∥2
}
.

To maximize the expectation of the marginal log-likelihood we use the
iteration

xk+1 =
1

N

N∑
j=1

L−1∑
`=0

w `,j
k R−1

` yj and ρk+1[`] =
1

N

N∑
k=1

w `,j
k∑L−1

`′=0 w
`′,j
k

.

for weights which are iteratively updated according to the data.

w `,j
k = P[rj = `|y , xk , ρk ].
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EM: Standard vs Adapted

A family of distributions
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Comparing the Different Methods

The relative error as a function of varying level of noise, σ.
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Numerical Error Rates via LS Optimization

We expect the (unsquared) error to be

min
s∈(Z)L

‖Rs x̂ − x‖ ≤ σd√
N
,

where d = 1 for low level of noise (via alignment) whereas d = 2 for high
level of noise (as implied by the spectral algorithm).
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Numerical evidence to the error rates: least squares fitting in a log-log plot.
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Concluding Remarks

We can solve the MRA problem in regimes of high level of noise by
using low order statistics and simultaneously targeting the signal and
the distribution.

The sample complexity of the problem is N & σ4 for aperiodic
distributions and N & σ6 for periodic distributions. That makes the
aperiodic case easier!

Numerical examples confirm the theory and show the advantage one
gets of including the distribution into the estimator model.
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Th-th-th-that’s all folks!

Thank you

Reference:
E. Abbe, T. Bendory, W. Leeb, J. a. Pereira, N. Sharon, and A. Singer.
Multireference alignment is Easier with aperiodic translation distributions.
2017.
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