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Motivational Section — Cryo-EM in a Nutshell

Appear in Olena Shmahalo/Quanta Magazine; source: Martin Hogborn/The Royal Swedish Academy of Sciences:
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The “resolution revolution”  (wemer Kihibrandt, 2014)
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Motivational Section — Cryo-EM in a Nutshell

Exciting Times:

“For developing cryo-electron microscopy for the high-resolution structure

determination of biomolecules in solution”
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The process:
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Motivational Section — Cryo-EM in a Nutshell

The process:

electron beam

Wyt
ot 8’s

Main computational challenges:

© High level of noise.

@ Unknown viewing directions.
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The Problem of Multi-Reference Alignment (MRA)

Formulation: Estimating a signal x € R%, up to shifting, from its noisy
circularly—translated copies

yi=Rix+e, j=1,...,N, & ~N(0,0%).
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Applications: radar, image registration, structural biology
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The Sample Complexity of the Problem
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The Sample Complexity of the Problem

Data:

15
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© Can we recover the signal for any level of noise?
@ How many samples do we need for attaining a certain accuracy?
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The Sample Complexity of the Problem

Data:
Estimations:
N =1,000 N = 100,000 N = 10,000, 000
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The Role of Translations in MRA

Recall the model:

yi=Ryx+e;, j=1,...,N, gj ~ N(0,021).

@ The translations are the latent/hidden variables of the problem.
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The Role of Translations in MRA

Recall the model:

yj=Ryx+¢e, j=1,...,N, gj ~ N(0,021).

@ The translations are the latent/hidden variables of the problem.

@ Given the translations, we can estimate

L
~ 71
x——N E R,j Y-
Jj=1

Therefore, estimating the translation reduces the problem significantly.
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The Role of Translations in MRA

Recall the model:

yj=Ryx+¢e, j=1,...,N, gj ~ N(0,021).

@ The translations are the latent/hidden variables of the problem.

@ Given the translations, we can estimate

1N
o -1
j=1
Therefore, estimating the translation reduces the problem significantly.

© Should we find the translations to estimate the signal?

@ Can we recover the signal without explicit translations?
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@ Low level of noise — Explicitly estimating the translations.
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Low vs High Level of Noise

@ Low level of noise — Explicitly estimating the translations.

Observation 1 Observation 2 Cross-correlation

3
3

An example — alignment via cross-correlation
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Low vs High level of noise Regimes

@ Low level of noise — Explicitly estimating the translations.

@ High level of noise — Keeping translations behind the scene:
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Low vs High level of noise Regimes

@ Low level of noise — Explicitly estimating the translations.

@ High level of noise — Keeping translations behind the scene:
» Invariant features — the info is encompassed in mean, power spectrum,
and bispectrum.

» EM - a classical statistical method with state-of-the-art performance
for MRA.
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Low vs High level of noise Regimes

@ Low level of noise — Explicitly estimating the translations.

@ High level of noise — Keeping translations behind the scene:

@ The sample complexity tradeoff,

N2 o - >» N > o
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@ The first moment of the data is
Ely] = Cp = xxp,

where Cy is a circulant matrix and p is the distribution of translations.

Nir Sharon (PACM, Princeton University) Multireference Alignment October 11, 2017 10 / 24
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Statistical Moments Approach — Including the Distribution

@ The first moment of the data is
Ely] = Cp = xxp,

where Cy is a circulant matrix and p is the distribution of translations.

@ The second moment of the data is
E [ny] = CXDpCXT + o1,
where D, is a diagonal matrix with p on its diagonal.

Proposition

Assume the DFT of p satisfies pk] # O for some k, where k and L are
coprime. If the DFT of x is non-vanishing, then it is uniquely determined
(up to translation) from the first two moments of the data.
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Statistical Moments Approach — Including the Distribution

@ The first moment of the data is
Ely] = Cp = xxp,

where Cy is a circulant matrix and p is the distribution of translations.

@ The second moment of the data is
E {ny] = CXDpCXT + 021,
where D, is a diagonal matrix with p on its diagonal.
o Assume|%[Kk]| = 1, we have
CD,C] = D, C 1,
and x is recovered whenever p has a distinct entry.
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Resolving Distinct Eigenvalue

@ The success of the spectral algorithm is contingent on a distinct entry
in p. Can we somehow guarantee it?
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Resolving Distinct Eigenvalue

@ The success of the spectral algorithm is contingent on a distinct entry
in p. Can we somehow guarantee it?

@ The answer: Yes! by randomly reshuffle the samples!

Proposition

Let p be a non-periodic vector on the simplex and let 6 be a random
probability density function on the simplex. Then, all entries of p x 6 are
distinct with probability 1.
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Resolving Distinct Eigenvalue

@ The success of the spectral algorithm is contingent on a distinct entry
in p. Can we somehow guarantee it?

@ The answer: Yes! by randomly reshuffle the samples!

Proposition

Let p be a non-periodic vector on the simplex and let 6 be a random
probability density function on the simplex. Then, all entries of p x 6 are
distinct with probability 1.

A conclusion: the spectral algorithm provides a constructive solution for
any nonperiodic p and achieves a sample complexity of N > o*
(equivalently of order 1/SNR?).
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The Spectral Algorithm in Full
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The Spectral Algorithm in Full

© Estimate moments and power spectrum
N
Q % j=1Yj
e M« % Jlejij—a2l where M ~ C,D,CT
0 Py 11|FYJ‘2 o?L1
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The Spectral Algorithm in Full

© Estimate moments and power spectrum

N
0#“% j=1Yj

N
9M<—% lejij—a2l
0 Py 11|FYJ‘2 o?L1

@ Normalize the signal
0 p« (P)7Y2
@ Q« FD,F
oM« QMQ!
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The Spectral Algorithm in Full

© Estimate moments and power spectrum

N
0#“% j=1Yj

N
9M<—% lejij—a2l
0 P LN [Fy -1

@ Normalize the signal
0 p« (P)7Y2
@ Q<+« FID,F

el\NﬂeQMQfl Here M ~

© Extract and scale solutions
@ v « UniqEig(M)

v FL((P)Y2 0 FY)

x ¢ (Sum(p)/ Sum(¥)) v

p Clp

00 O

where M =~ C,D,C]

Cy Dp CXT/_ with C = CXT/_

Reset the Fourier modulus

Scale by the first moment
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Estimation Error — Spectral Algorithm

Consider 0 — 0o and suppose we have o1 < 0y < ..., such that o, — oco.

Also, let Ny < Ny <.... For each n, we draw observations y;,

YN, at
noise level o,,.
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Estimation Error — Spectral Algorithm

Consider 0 — 0o and suppose we have o1 < 0y < ..., such that o, — oco.

Also, let Ny < Ny <.... For each n, we draw observations y1, .

-5 YN, at
noise level o,,.

Theorem
Let p be periodic. Then, for sufficiently small t > 0:

N,
P [min||RsX — x|| > t] <G exp{—CQZt},
s o

where C; = Ci(x, p, L) and G, = Cy(x, p, L) are finite, positive constants.

v
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Estimation Error — Spectral Algorithm

Consider 0 — 0o and suppose we have o1 < 0y < ..., such that o, — oco.
Also, let Ny < No < .... For each n, we draw observations yi,...,yn, at
noise level o,,.

Theorem
Let p be periodic. Then, for sufficiently small t > 0:

N,
P [min||RsX — x|| > t] <G exp{—CQZt},
s o

where C; = Ci(x, p, L) and G, = Cy(x, p, L) are finite, positive constants.

v

Therefore, if N, > Klog(n)o# for a sufficiently large constant K, then the
error of X, converges to 0 almost surely as n — oo.
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The Periodicity is Tight

Is non-periodicity a real property of the problem or maybe just an artifact
of the construction?
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The Periodicity is Tight

Is non-periodicity a real property of the problem or maybe just an artifact
of the construction?

Proposition

Let £ < L/2 be a divisor of L > 1. Suppose that p is a periodic distribution
with period of £. Then, for a given real signal x; with non-vanishing DFT,
there exists a different real signal x, (which is not a translation of x;) such
that both signals have the same first and second moments.
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The Periodicity is Tight

Is non-periodicity a real property of the problem or maybe just an artifact

of the construction?

Proposition

Let £ < L/2 be a divisor of L > 1. Suppose that p is a periodic distribution
with period of £. Then, for a given real signal x; with non-vanishing DFT,
there exists a different real signal x, (which is not a translation of x;) such
that both signals have the same first and second moments.

A visual example:
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Periodic dist.

2 4 6 8 10 12 14 2 4 8 8 10 12 14

Two signals Real Fourier
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Lower Bound

Let ¢x(X) := argmin,c (R },cs, ||z — x|| and define Minimal Square Error
(MSE) to be

MSE E |[l¢x(%) = x[1?| -

I
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Lower Bound

Let ¢x(X) := argmin,c (R },cs, ||z — x|| and define Minimal Square Error
(MSE) to be

1
MSE = ——E |[|¢x(%) — x||?] .
i [lox(®) =
Theorem

Assume that x is not a constant vector. If X is an asymptotically unbiased
estimator of x, that is ¢x(X) — x, then

1

Moreover, if p is periodic, with a period { < % then

1
wse> 0 (L),
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Dependency on L via Spike Covariance Model

In the spiked model, given a rank r matrix X, we observe
Y=X+GeRXN g M N(0,02).

Usually, it assumes that L = L(N) and L/N — v > 0as N — oo.
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Dependency on L via Spike Covariance Model

In the spiked model, given a rank r matrix X, we observe
Y=X+GeRXN g M N(0,02).

Usually, it assumes that L = L(N) and L/N — v > 0as N — oo.
Let A be the top eigenvalue of XX T /N. Then, the phase transition at

2
Acritical = O \ﬁ

means that for A > Atjcas there is a non-trivial correlation between top
eigenvectors of YYT /N and XX T /N.
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Dependency on L via Spike Covariance Model

In the spiked model, given a rank r matrix X, we observe
Y=X+GeRXN g M N(0,02).

Usually, it assumes that L = L(N) and L/N — v > 0as N — oo.
Let A be the top eigenvalue of XX T /N. Then, the phase transition at

2
Acritical = O \ﬁ

means that for A > Atjcas there is a non-trivial correlation between top
eigenvectors of YYT /N and XX T /N.
In MRA it is equal to

4
N> Lo _ L 1

= [x[F(maxp)? ~ (maxp)2 SNRE
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Two additional algorithms — LS optimization

The least square algorithm aim to minimize
min  [IMy — GDC [ + Ay — Gell3,

%eRL pent

where X\ > 0 is a predefined parameter.

In low SNR regime, the variance of the first estimator is proportional to 2
and the variance of the second is proportional to 3Lo*. Therefore, we set

_ 1
A= )
We solve the problem with a gradient-based method.
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Two additional algorithms — adapted EM

By the model of the MRA,
N i’
p(y. tx, p) =]

2
2 |[Ryx—x
j=1

e 2 plrl-
s [1]

The log-likelihood function is then given, up to a constant, by

N
1 2
log L(x,ply.r) = 3 {'ng[rj] — s [Rox =i } .
Jj=1
To maximize the expectation of the marginal log-likelihood we use the
iteration

1N Lt 1 N wh
B 0j p—1 — k
X"“_NZ w 'R, "y; and pk+1[£]—NZTM'
j=1 =0 k=1 2at'=0 Wk

for weights which are iteratively updated according to the data.

v
Wk’J = P[rj = E‘yaxkvpk]‘
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EM: Standard vs Adapted
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EM: Standard vs Adapted

A family of distributions
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EM: Standard vs Adapted

A family of distributions

03

—s-3

0.2

0.15

0.1

A comparison of standard EM and our adapted version for non-uniform
distributions,

—EM
0.6 ——Adapted EM

3 4 5 6 7 8 9
The uniformity factor s
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Comparing the Different Methods

The relative error as a function of varying level of noise, o.
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Comparing the Different Methods

The relative error as a function of varying level of noise, o.
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Numerical Error Rates via LS Optimization

We expect the (unsquared) error to be
od
VN’

where d =1 for low level of noise (via alignment) whereas d = 2 for high
level of noise (as implied by the spectral algorithm).

min [|RsX — x|| <
se(Z)t
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Numerical Error Rates via LS Optimization

We expect the (unsquared) error to be

min ||RsX | < ¢
i R—x| < —,
@k " ~ VN

where d =1 for low level of noise (via alignment) whereas d = 2 for high
level of noise (as implied by the spectral algorithm).

.
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log(o)

Numerical evidence to the error rates: least squares fitting in a log-log plot.
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Concluding Remarks

@ We can solve the MRA problem in regimes of high level of noise by
using low order statistics and simultaneously targeting the signal and
the distribution.

@ The sample complexity of the problem is N > o# for aperiodic
distributions and N > ¢® for periodic distributions. That makes the
aperiodic case easier!

@ Numerical examples confirm the theory and show the advantage one
gets of including the distribution into the estimator model.
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Th-th-th-that's all folks!

Thank you

Reference:

E. Abbe, T. Bendory, W. Leeb, J. a. Pereira, N. Sharon, and A. Singer.
Multireference alignment is Easier with aperiodic translation distributions.
2017.
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