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Motivation – manifolds and approximation

“A manifold is a topological space that is locally Euclidean1” from Wolfram
Web Resources.

The research of manifolds is popular in geometry, physics and many more. It is also
becomes popular in many applied math branches, just to name a few: geophysics,
medical imaging, image analysis, CAGD, machine learning.

1“Manifolds are a bit like pornography: hard to define, but you know one when you
see one”. S. Weinberger and M. Gromov.
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Problem formulation

1 Estimate a mapping on a manifold of the form

f : R→M,

where M is the manifold. This function is a curve on M.

2 We are given only a discrete set of samples, {f (ti )}i∈Z.

3 One requires a smooth approximant, Γ : R→M where

Γ(t) ≈ f (t), t ∈ Ω,

in the sense of a metric on M.
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Examples of curves on manifolds

Example (1)

A trajectory on the sphere S2 ⊂ R3.
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Examples of curves on manifolds

Example (2)

A curve generated by the motion group.

An interpolating curve of samples (the dark teapots)
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Examples of manifold data

Example

The analysis of recorded flight data (“black box”). The data consist of
pitch/roll/yaw and modelled as SO(3) raw data.

Many other examples of manifold data, e.g,

Normals (points on the unit sphere)

Positive definite matrices
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Outline

1 Linear univariate subdivision schemes.

2 The adaptation of linear schemes to manifold data.

3 Geodesic averaging.

4 Geodesic refinements: local and global.
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Linear univariate subdivision schemes

A linear univariate subdivision scheme refines repeatedly sequences of
numbers (points) by replacing the current sequence f = {fi}i∈Z by
{(S(f))}i∈Z according to the refinement rule

S (f))i =
∑
j∈Z

ai−2j fj , i ∈ Z,

assuming the mask a = {ai}i∈Z has a finite (small) support. The symbol
of S is the Laurent polynomial a(z) =

∑
j∈Z ajz

j .

In binary refinement (each data point is replaced by two new ones) it is
convenient to write

(S(f))2i =
∑
j∈Z

a2j fi−j

(S(f))2i+1 =
∑
j∈Z

a2j+1fi−j .
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Linear univariate subdivision schemes

A subdivision schemes is termed interpolatory if

(S(f))2i = fi , i ∈ Z.

namely if a2j = δj ,0, j ∈ Z.

The mask of a convergent subdivision scheme satisfies∑
j∈Z

a2j =
∑
j∈Z

a2j+1 = 1.

In terms of the symbol a(z) =
∑

j∈Z ajz
j it is a(−1) = 0, a(1) = 2.

Thus, (S(f))i =
∑

j∈Z ai−2j fj is a weighted average of {fj | ai−2j 6= 0},
possibly with negative weights.
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An example: the cubic B-spline scheme

Consider as an example the cubic B-spline subdivision scheme.

The curve is defined as

Γ(t) =
∑
i

f (ti )B(t − i),

where B is the cubic B-spline with integer knots (B(t) is a cubic
polynomial on each interval (i , i + 1), i ∈ Z, B(t) ∈ C 2(R)).
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An example: the cubic B-spline scheme

Consider as an example the cubic B-spline subdivision scheme.

The refinement rules of the scheme are

(S(f))2i =
1

8
fi−1 +

3

4
fi +

1

8
fi+1

(S(f))2i+1 =
1

2
(fi + fi+1).
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Why to use subdivision schemes for manifold data?

1 The refinement rules are simple and relatively easy to adapt (to be
presented soon).

2 Subdivision schemes are highly local, which is valuable when
approximating manifold-valued functions.

3 An interpolatory refinement leads to multiresolution analysis via a
pyramid transform. Thus, an interpolatory subdivision scheme
adapted to a manifold, induces an analysis tool for manifold data.

Nir Sharon (TAU) The refinement of manifold data June 11, 2015 12 / 47



Why to use subdivision schemes for manifold data?

1 The refinement rules are simple and relatively easy to adapt (to be
presented soon).

2 Subdivision schemes are highly local, which is valuable when
approximating manifold-valued functions.

3 An interpolatory refinement leads to multiresolution analysis via a
pyramid transform. Thus, an interpolatory subdivision scheme
adapted to a manifold, induces an analysis tool for manifold data.

Nir Sharon (TAU) The refinement of manifold data June 11, 2015 12 / 47



Why to use subdivision schemes for manifold data?

1 The refinement rules are simple and relatively easy to adapt (to be
presented soon).

2 Subdivision schemes are highly local, which is valuable when
approximating manifold-valued functions.

3 An interpolatory refinement leads to multiresolution analysis via a
pyramid transform. Thus, an interpolatory subdivision scheme
adapted to a manifold, induces an analysis tool for manifold data.

Nir Sharon (TAU) The refinement of manifold data June 11, 2015 12 / 47



Why to use subdivision schemes for manifold data?

1 The refinement rules are simple and relatively easy to adapt (to be
presented soon).

2 Subdivision schemes are highly local, which is valuable when
approximating manifold-valued functions.

3 An interpolatory refinement leads to multiresolution analysis via a
pyramid transform. Thus, an interpolatory subdivision scheme
adapted to a manifold, induces an analysis tool for manifold data.

Nir Sharon (TAU) The refinement of manifold data June 11, 2015 12 / 47



How to adapt linear subdivision schemes to manifolds?

An easy example
A subdivision scheme for positive numbers (Goldman et. al.): let {pi}i∈Z
be a sequence of positive numbers.

Q: How to construct an interpolatory subdivision scheme which generates
positive functions?
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The problem - the linear 4−pt scheme fails to stay positive in the above example

Nir Sharon (TAU) The refinement of manifold data June 11, 2015 13 / 47



How to adapt linear subdivision schemes to manifolds?

An easy example
A subdivision scheme for positive numbers (Goldman et. al.): let {pi}i∈Z
be a sequence of positive numbers.

Q: How to construct an interpolatory subdivision scheme which generates
positive functions?

2 3 4 5 6 7 8 9
−2

0

2

4

6

8

10

12

 

 

Data

Linear

The problem - the linear 4−pt scheme fails to stay positive in the above example

Nir Sharon (TAU) The refinement of manifold data June 11, 2015 13 / 47



How to adapt linear subdivision schemes to manifolds?

An easy example
A subdivision scheme for positive numbers (Goldman et. al.): let {pi}i∈Z
be a sequence of positive numbers.

Q: How to construct an interpolatory subdivision scheme which generates
positive functions?

2 3 4 5 6 7 8 9
−2

0

2

4

6

8

10

12

 

 

Data

Linear

The problem - the linear 4−pt scheme fails to stay positive in the above example

Nir Sharon (TAU) The refinement of manifold data June 11, 2015 13 / 47



Two solutions

Sol 1 1 Map the points to the real line by pi 7→ log(pi ), and apply a linear
interpolatory subdivision scheme with limit s(t), t ∈ R.

2 Define the interpolant by Γ(t) = exp (s(t))). Obviously Γ(t) > 0.

Sol 2 1 Take a linear interpolatory subdivision scheme. The insertion rule is a
weighted average w1p1 + . . .+ wkpk ,

∑k
i=1 wi = 1.

2 Use the geometric average instead of the arithmetic one,∑k
i=1 wipi →

∏k
i=1 p

wi

i .

Due to commutativity of multiplication these two solutions are
equivalent!
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The commutative diagram

p0 = {pi}i∈Z Γ(t) = exp (s(t))

a0 = {log pi}i∈Z s(t)

-modified scheme

?
log

-
linear scheme

6
exp

Figure: The log− exp diagram
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The adaptation result
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Use of the geometric mean instead the arithmetic mean.

What is the generalization to manifolds?
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Adaptation methods – projection method

The most “straightforward” approach...

1 Apply the refinement rule of a linear scheme in the Ambient space
and project the result back to the manifold.

2 Is an extrinsic method: depends on the embedding of the manifold in
a Euclidean space.
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Adaptation methods – tangent space (Donoho et. al., Wallner et.

al., Yu et. al.)

A similar idea of the exp-log, applies to general manifolds, and is efficient
due to the locality of the subdivision schemes. The adaptation of the
refinement rules consists of the following four steps:

1 choosing a base point on the manifold in the “center” of the
neighbourhood of the manifold-data which take part in the refinement
rule.

2 projecting the above manifold data into the tangent space at the base
point.

3 applying the linear refinement rule to the projected points in the
tangent space.

4 projecting the refined points back to the manifold.

An inherent difficulty in this approach is the choice of the base point.
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Adaptation methods – tangent space

Project into a tangent plane
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Adaptation methods – tangent space

Calculation on the tangent plane
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Adaptation methods – Riemannian center of mass (Grohs,

Ebner)

In Euclidean space, a weighted average
∑n

j=1 wj fj for fj ∈ Ed and wj ≥ 0,
j = 1, . . . , n, is equivalent to

arg min
f ∈Ed

n∑
j=1

wj‖f − fj‖2,

On manifolds we similarly define a weighted average by

arg min
p∈M

n∑
j=1

wjd
2(p, pj).

This average is also termed Karcher mean in case of matrices or Fréchet
mean in general metric spaces, and can be computed by iterations.
In this adaptation the linear average of a refinement rule is replaced by the
Riemannian center of mass.
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Adaptation methods – repeated binary averages (Dyn and

Wallner)

Any refinement rule of a converging linear subdivision scheme can be
rewritten in terms of repeated weighted binary averages (in several ways).

The adaptation consists of two steps:

1 rewrite the refinement rule in terms of repeated binary averages form.

2 replace each arithmetic weighted average by a binary manifold
average (details soon).
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Binary manifold average

A reasonable manifold binary average

Mt :M×M→M,

must satisfy the basic properties,

1 (Identity on the diagonal) Mt(p1, p1) = p1.

2 (Symmetry) Mt(p1, p2) = M1−t(p2, p1).

3 (Interpolation) M0(p1, p2) = p1 and M1(p1, p2) = p2

(in analogy to (1− t)f1 + tf2).

Note that even if we use the word “average” we in general do not restrict
t to the interval [0, 1].
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Geodesic averaging – geodesically complete manifolds

A geodesic (or a geodesic curve) on a manifold is an extension of the
shortest arc on a surface, joining two arbitrary points p1 and p2 on it.

The geodesic curve is defined as the solution to the geodesic
Euler-Lagrange equations.

When there exists a geodesic curve between any two points, the
manifold is termed geodesically complete.

In general metric spaces we define geodesics by the metric property

d(Mt(p1, p2), p2) = (1− t)d(p1, p2), t ∈ [0, 1],

which is typical to geodesics in manifolds.
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Geodesic average

Geodesic induce natural averaging:

Figure: Geodesic on a torus

The geodesic average Mt(p1, p2) is the point on the geodesic curve
between p1 and p2 satisfying the metric property
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Geodesic average

M 1
2
(p1, p2) is the midpoint of the geodesic curve between p1 and p2.

Figure: Geodesic on a torus

Note that M0(p1, p2) = p1 and M1(p1, p2) = p2 as required. The metric
property ensures the symmetry of the average, namely

Mt(p1, p2) = M1−t(p2, p1).
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Recall the cubic B-spline scheme

The refinement rules of this scheme in terms of repeated binary averages
are

(S(f))2i =
1

8
fi−1 +

3

4
fi +

1

8
fi+1

=
1

2

(
(

1

4
fi−1 +

3

4
fi ) + (

3

4
fi +

1

4
fi+1)

)
(S(f))2i+1 =

1

2
(fi + fi+1).
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Cubic B-spline scheme – local adaptation with geodesic
averages

Using the repeated binary averages form and the geodesic averages, we get
the refinement rules

S(p)2i = M 1
2
(M 3

4
(pi−1, pi ),M 1

4
(pi , pi+1))

S(p)2i+1 = M 1
2
(pi , pi+1)

The arcs stand for geodesics.
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Our adaptation method – weighted inductive means

Definition

Let p = (p1, . . . , pn) be a finite sequence of manifold elements, and let
w = (w1, . . . ,wn) be their associated real weights satisfying

∑n
j=1 wj = 1.

We further assume that w1 ≥ w2 ≥ . . . ≥ wn. Then, the repeated geodesic
average Mn (p,w) is defined recursively as,{

Mw2(p1, p2) if n = 2

Mwn(Mn−1

(
(p1, . . . , pn−1), 1

1−wn
(w1, . . . ,wn−1)

)
, pn) if n > 2.

In case of symmetry,

wj = wn−j+1, j = 1, . . . , ` , ` = bn/2c.

Then, for even n (for odd n we split the median weight) we define

MS
n (p,w) = M1/2(Mn/2

(
p1,w1

)
,Mn/2

(
p2,w1

)
.

Each evaluation consists of exactly n − 1 binary averages.
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Convergence

Most popular method to show convergence of adapted linear
subdivision schemes is by proximity.

The main drawback is that the convergence via proximity is
guaranteed only for “close enough data points”. Namely, small
enough δ({pi}) = supi d(pi , pi+1).

We aim to show that our schemes are convergent for any initial data.

This is done by contractivity, that is the existence of µ < 1 s.t.,
δ({S ({pi})) ≤ µδ({pi}).
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Adaptation and convergence - example

The interpolatory 4−point scheme,

(S(f))2i = fi , and (S(f))2i+1 = −ω(fi−1+fi+2)+(
1

2
+ω)(fi +fi+1).

With ω ∈ (0, ω∗) and ω∗ ≈ 0.19273 the unique solution of the cubic
equation 32ω3 + 4ω − 1 = 0, the limits generated by the scheme are C 1.
The case ω = 1

16 coincides with the cubics Dubuc-Deslauriers scheme.

The adaptation of is

S(p)2i = pi , and S(p)2i+1 = MS
4 (p,w) ,

where

MS
4 (p,w) = M 1

2

(
M−2ω

(
pi , pi−1

)
,M−2ω

(
pi+1, pi+2

))
,

with w = ( 1
2 + ω,−ω, 1

2 + ω,−ω) and p = (pi , pi−1, pi+1, pi+2).
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Adaptation and convergence - example
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Convergence - results

Theorem

The adapted version of the interpolatory 4-pt and 6-pt scheme, as well as
the first four B-spline schemes (piecewise linear, quadratic corner cutting,
cubic, and quintic) are converged from any (admissible) initial data.
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Approximation order – in a nutshell

Having an intrinsic approximation order means there exists a constant C
independent of the data p such that

d(S(p)(t), f (t)) ≤ C (δ(p))n , t ∈ R.

Classical results require polynomials reproduction. For operators defined
on manifold data, we use a different notion, replacing the role of linear
polynomials (straight lines) in Euclidean spaces with geodesic curves on
real manifolds.

Theorem

Any convergent subdivision scheme that reproduces linear polynomials,
which is adapted by the inductive geodesic average and having a
contraction factor has a second approximation order.
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Adaptation with repeated geodesic averages – summary

The adaptation of linear subdivision schemes (and other operators)
can be done, and in constructive manner, by the inductive averages.

Reproducing linear polynomials is transform to geodesics
reproduction. This is crucial for approximation order.

We show the convergence, from any initial data, for several highly
popular schemes.

Nevertheless, the convergence technique is valid only for (relatively)
small mask sizes. Namely, for general manifolds, without further
assumptions, working with averaging many elements (or
approximating the Kercher mean) is limited.

We look for a new approach to be considered!
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Global refinement - classical origins

The quadratic B-spline subdivision scheme (corner-cutting)
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Global refinement - classical origins

The cubic B-spline subdivision scheme
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Global refinement - classical origins

The quartic B-spline subdivision scheme
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Global refinement - classical origins

The first refinements are
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Global refinement - classical origins

The first refinements are
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Global refinement - classical origins

The first refinements are
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Global refinement - classical origins

The first refinements are
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Refining high order B-spline

The cubic B-spline refinement can be interpreted as
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Initial data ⇒ Doubling ⇒ Averaging ⇒ Averaging

This is the Lane-Riesenfeld algorithm.
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The linear Lane-Riesenfeld algorithms – global refinements
(Lane and Riesenfeld, 1980)

The refinement step of an m−th degree B-spline subdivision scheme by
several simple global averaging steps is also correspond to the factory of
the symbol

a[m](z) = (1 + z)
(1 + z)

2

(
1 + z

2

)m−1

.

The data: m, f = {fi ∈ R : i ∈ Z}
for i ∈ Z do: f 0

i ← fi (f0 ← f)

for i ∈ Z do: f 1
2i ← fi , f 1

2i+1 ←
fi+fi+1

2 (f1 by basic refinement of f)

for ` = 2, . . . ,m do:

for i ∈ Z do: f `i ←
f `−1
i +f `−1

i−1

2 (f` from f`−1 by averaging)

for i ∈ Z do:
(
S [m](f)

)
i
← f mi (the refined data )
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Global refinement adaptation with geodesic averaging

For the B-spline case

a[m](z) = (1 + z)
(1 + z)

2

(
1 + z

2

)m−1

.

The adaptation is done by replacing each arithmetic averages in the
corresponding LR algorithm by geodesic averages:

for i ∈ Z do: p1
2i ← pi , p1

2i+1 ← M 1
2
(pi , pi+1)

for j = 2, . . . ,m do:

for i ∈ Z do: pji ← M 1
2
(pj−1

i , pj−1
i−1 )

for i ∈ Z do:
(
S̃(p)

)
i
← pmi
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The adaptation of converging linear schemes

Assume S has a factorizable symbol over the reals and satisfies a(−1) = 0
and a(1) = 2. Namely, its symbol is

a(z) = z−s(1 + z)
1 + α1z

1 + α1
· · · 1 + αmz

1 + αm

The refinement step in a LR fashion is

1 for i ∈ Z do: f 1
2i ← fi , f 1

2i+1 ←
α1fi+fi+1

α1+1

2 for j = 2, . . . ,m do:

for i ∈ Z do: f ji ←
αj f

j−1
i +f j−1

i−1

αj+1

3 for i ∈ Z do:
(
S̃(f)

)
i
← f mi+s

The adaptation: the averages in step 1 and 2 are replaced by
M 1

α1+1
(pi , pi+1) and M 1

αj+1
(pj−1

i , pj−1
i−1), respectively.
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Convergence results - αj ∈ R, j = 1, . . . ,m

Given the adaptation of a linear converging scheme with symbol

a(z) = z−s(1 + z)
1 + α1z

1 + α1
· · · 1 + αmz

1 + αm
,

we derive conditions on the symbol for convergence:

Theorem

The convergence for any initial manifold data is guaranteed when

1 αj > 0, j = 1, . . . ,m (positive weights, typical for approximation).

2 {αj | αj > 0} 6= ∅ and minαj>0 max{ 1
1+αj

,
αj

1+αj
}
∏m

i=2 ξ(αi ) < 1

where

ξ(α) =


1, 0 < α,

1 + 2| α1+α |, −1 < α < 0,

1 + 2| 1
1+α |, α < −1.

(we allow negative weights, typical for interpolation)
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General symbols

The symbol, which is a real polynomial, can be factorized into m1 real
linear factors (in addition to 1+z) and m2 quadratic real factors. Then,

a(z) = z−s(1 + z)

(
m1∏
i=1

1 + αiz

1 + αi

)m1+m2∏
i=m1+1

1 + 2 Re(αi )z + |αi |2z2

1 + 2 Re(αi ) + |αi |2

 .

The quadratic factors stands for ternary average.

We define a ”pyramid” averaging for three elements, with optimal
parameters.

We extend the algorithm for symbols with complex roots.

A general convergence result is derived.
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Convergence results - symbols having single complex root

For this special case we have,

Theorem

Let S be a linear subdivision scheme, adapted globally such that m1 ≥ 1,
m2 = 1 and αi > 0, 1 ≤ i ≤ m1. Then, the adapted scheme converges
from all admissible input data, whenever αm1+1 is outside the domain Ω.
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Thank you

Nir Sharon (TAU) The refinement of manifold data June 11, 2015 47 / 47


	Introduction
	1
	2
	3
	4
	5
	6

	Subdivision Schemes
	1
	2
	3
	4
	5

	Adaptation
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Manifold averaging
	1
	2
	3
	4

	Geodesic based schemes
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17


