JAKIMOVSKI 90 Meeting

Approximation of Manifold-valued Functions Based on Refinements

Nir Sharon

School of Mathematical sciences Tel-Aviv University

June 11, 2015

Based on a joint work with Nira Dyn.

Nir Sharon (TAU)

The refinement of manifold data

Motivation – manifolds and approximation

"A manifold is a topological space that is locally Euclidean $^{1\!"}$ from Wolfram Web Resources.

 $^1\,^{\prime\prime}$ Manifolds are a bit like pornography: hard to define, but you know one when you see one". S. Weinberger and M. Gromov.

Nir Sharon (TAU)

Motivation - manifolds and approximation

"A manifold is a topological space that is locally ${\sf Euclidean}^1$ " from Wolfram Web Resources.

Nir Sharon (TAU)

The refinement of manifold data

¹ "Manifolds are a bit like pornography: hard to define, but you know one when you see one". S. Weinberger and M. Gromov.

Motivation – manifolds and approximation

"A manifold is a topological space that is locally ${\sf Euclidean}^1$ " from Wolfram Web Resources.

The research of manifolds is popular in geometry, physics and many more. It is also becomes popular in many applied math branches, just to name a few: geophysics, medical imaging, image analysis, CAGD, machine learning.

¹ "Manifolds are a bit like pornography: hard to define, but you know one when you see one". S. Weinberger and M. Gromov.

Problem formulation

Estimate a mapping on a manifold of the form

```
f: \mathbb{R} \to \mathcal{M},
```

where \mathcal{M} is the manifold. This function is a curve on \mathcal{M} .

2 We are given only a discrete set of samples, $\{f(t_i)\}_{i\in\mathbb{Z}}$.

 ${\small \textcircled{0}} {\small One requires a smooth approximant, } {\displaystyle \Gamma \colon \mathbb{R} \to \mathcal{M} \text{ where }}$

$$\Gamma(t) \approx f(t), \quad t \in \Omega,$$

in the sense of a metric on \mathcal{M} .

Examples of curves on manifolds

Example (1)

A trajectory on the sphere $S^2 \subset \mathbb{R}^3$.

Examples of curves on manifolds

Example (2)

A curve generated by the motion group.

An interpolating curve of samples (the dark teapots)

Examples of manifold data

Example

The analysis of recorded flight data ("black box"). The data consist of pitch/roll/yaw and modelled as SO(3) raw data.

Many other examples of manifold data, e.g,

- Normals (points on the unit sphere)
- Positive definite matrices

Outline

Linear univariate subdivision schemes.

Intersection of linear schemes to manifold data.

Geodesic averaging.

Geodesic refinements: local and global.

Nir Sharon (TAU)

The refinement of manifold data

A linear univariate subdivision scheme refines repeatedly sequences of numbers (points) by replacing the current sequence $\mathbf{f} = \{f_i\}_{i \in \mathbb{Z}}$ by $\{(\mathcal{S}(\mathbf{f}))\}_{i \in \mathbb{Z}}$ according to the refinement rule

$$\mathcal{S}\left(\mathbf{f}
ight)
ight)_{i}=\sum_{j\in\mathbb{Z}}\mathsf{a}_{i-2j}\mathit{f}_{j},\quad i\in\mathbb{Z},$$

assuming the mask $\mathbf{a} = \{a_i\}_{i \in \mathbb{Z}}$ has a finite (small) support. The symbol of S is the Laurent polynomial $a(z) = \sum_{j \in \mathbb{Z}} a_j z^j$.

A linear univariate subdivision scheme refines repeatedly sequences of numbers (points) by replacing the current sequence $\mathbf{f} = \{f_i\}_{i \in \mathbb{Z}}$ by $\{(\mathcal{S}(\mathbf{f}))\}_{i \in \mathbb{Z}}$ according to the refinement rule

$$\mathcal{S}\left(\mathbf{f}
ight)
ight)_{i}=\sum_{j\in\mathbb{Z}}a_{i-2j}f_{j},\quad i\in\mathbb{Z},$$

assuming the mask $\mathbf{a} = \{a_i\}_{i \in \mathbb{Z}}$ has a finite (small) support. The symbol of S is the Laurent polynomial $a(z) = \sum_{j \in \mathbb{Z}} a_j z^j$.

In binary refinement (each data point is replaced by two new ones) it is convenient to write

$$(S(\mathbf{f}))_{2i} = \sum_{j \in \mathbb{Z}} \mathsf{a}_{2j} \mathsf{f}_{i-j}$$
 $(S(\mathbf{f}))_{2i+1} = \sum_{j \in \mathbb{Z}} \mathsf{a}_{2j+1} \mathsf{f}_{i-j}.$

A subdivision schemes is termed interpolatory if

$$(S(\mathbf{f}))_{2i} = f_i, \quad i \in \mathbb{Z}.$$

namely if $a_{2j} = \delta_{j,0}$, $j \in \mathbb{Z}$.

A subdivision schemes is termed interpolatory if

$$(S(\mathbf{f}))_{2i} = f_i, \quad i \in \mathbb{Z}.$$

namely if $a_{2j} = \delta_{j,0}$, $j \in \mathbb{Z}$.

The mask of a convergent subdivision scheme satisfies

$$\sum_{j\in\mathbb{Z}}\mathsf{a}_{2j}=\sum_{j\in\mathbb{Z}}\mathsf{a}_{2j+1}=1.$$

In terms of the symbol $a(z) = \sum_{j \in \mathbb{Z}} a_j z^j$ it is a(-1) = 0, a(1) = 2.

A subdivision schemes is termed interpolatory if

$$(S(\mathbf{f}))_{2i} = f_i, \quad i \in \mathbb{Z}.$$

namely if $a_{2j} = \delta_{j,0}$, $j \in \mathbb{Z}$.

The mask of a convergent subdivision scheme satisfies

$$\sum_{j\in\mathbb{Z}}\mathsf{a}_{2j}=\sum_{j\in\mathbb{Z}}\mathsf{a}_{2j+1}=1.$$

In terms of the symbol $a(z) = \sum_{j \in \mathbb{Z}} a_j z^j$ it is a(-1) = 0, a(1) = 2.

Thus, $(S(\mathbf{f}))_i = \sum_{j \in \mathbb{Z}} a_{i-2j} f_j$ is a weighted average of $\{f_j \mid a_{i-2j} \neq 0\}$, possibly with negative weights.

Consider as an example the cubic B-spline subdivision scheme.

Consider as an example the cubic B-spline subdivision scheme.

The curve is defined as

$$\Gamma(t) = \sum_i f(t_i)B(t-i),$$

where *B* is the cubic B-spline with integer knots (B(t) is a cubic) polynomial on each interval (i, i + 1), $i \in \mathbb{Z}$, $B(t) \in C^2(\mathbb{R})$.

Consider as an example the cubic B-spline subdivision scheme.

Consider as an example the cubic B-spline subdivision scheme.

The refinement rules of the scheme are

$$(S(\mathbf{f}))_{2i} = rac{1}{8}f_{i-1} + rac{3}{4}f_i + rac{1}{8}f_{i+1}$$

 $(S(\mathbf{f}))_{2i+1} = rac{1}{2}(f_i + f_{i+1}).$

The refinement rules are simple and relatively easy to adapt (to be presented soon).

- The refinement rules are simple and relatively easy to adapt (to be presented soon).
- Subdivision schemes are highly local, which is valuable when approximating manifold-valued functions.

- The refinement rules are simple and relatively easy to adapt (to be presented soon).
- Subdivision schemes are highly local, which is valuable when approximating manifold-valued functions.
- An interpolatory refinement leads to multiresolution analysis via a pyramid transform. Thus, an interpolatory subdivision scheme adapted to a manifold, induces an analysis tool for manifold data.

How to adapt linear subdivision schemes to manifolds?

An easy example

A subdivision scheme for positive numbers (Goldman et. al.): let $\{p_i\}_{i \in \mathbb{Z}}$ be a sequence of **positive** numbers.

How to adapt linear subdivision schemes to manifolds?

An easy example

A subdivision scheme for positive numbers (Goldman et. al.): let $\{p_i\}_{i \in \mathbb{Z}}$ be a sequence of **positive** numbers.

Q: How to construct an interpolatory subdivision scheme which generates positive functions?

How to adapt linear subdivision schemes to manifolds?

An easy example

A subdivision scheme for positive numbers (Goldman et. al.): let $\{p_i\}_{i \in \mathbb{Z}}$ be a sequence of **positive** numbers.

Q: How to construct an interpolatory subdivision scheme which generates positive functions?

The problem - the linear 4-pt scheme fails to stay positive in the above example

Nir Sharon (TAU)

- Sol 1 Map the points to the real line by $p_i \mapsto \log(p_i)$, and apply a linear interpolatory subdivision scheme with limit s(t), $t \in \mathbb{R}$.
 - **2** Define the interpolant by $\Gamma(t) = \exp(s(t))$. Obviously $\Gamma(t) > 0$.

- Sol 1 Map the points to the real line by $p_i \mapsto \log(p_i)$, and apply a linear interpolatory subdivision scheme with limit $s(t), t \in \mathbb{R}$.
 - **2** Define the interpolant by $\Gamma(t) = \exp(s(t))$. Obviously $\Gamma(t) > 0$.
- Sol 2 **1** Take a linear interpolatory subdivision scheme. The insertion rule is a weighted average $w_1p_1 + \ldots + w_kp_k$, $\sum_{i=1}^k w_i = 1$.
 - **9** Use the geometric average instead of the arithmetic one, $\sum_{i=1}^{k} w_i p_i \rightarrow \prod_{i=1}^{k} p_i^{w_i}$.

- Sol 1 Map the points to the real line by $p_i \mapsto \log(p_i)$, and apply a linear interpolatory subdivision scheme with limit $s(t), t \in \mathbb{R}$.
 - **2** Define the interpolant by $\Gamma(t) = \exp(s(t))$. Obviously $\Gamma(t) > 0$.
- Sol 2 **1** Take a linear interpolatory subdivision scheme. The insertion rule is a weighted average $w_1p_1 + \ldots + w_kp_k$, $\sum_{i=1}^k w_i = 1$.
 - **9** Use the geometric average instead of the arithmetic one, $\sum_{i=1}^{k} w_i p_i \rightarrow \prod_{i=1}^{k} p_i^{w_i}$.

Due to commutativity of multiplication these two solutions are equivalent!

The commutative diagram

Figure: The log – exp diagram

The adaptation result

Use of the geometric mean instead the arithmetic mean.

The adaptation result

Use of the geometric mean instead the arithmetic mean.

What is the generalization to manifolds?

Adaptation methods - projection method

The most "straightforward" approach...
Adaptation methods - projection method

The most "straightforward" approach...

Apply the refinement rule of a linear scheme in the Ambient space and project the result back to the manifold.

Adaptation methods - projection method

The most "straightforward" approach...

Apply the refinement rule of a linear scheme in the Ambient space and project the result back to the manifold.

Is an extrinsic method: depends on the embedding of the manifold in a Euclidean space.

A similar idea of the exp-log, applies to general manifolds, and is efficient due to the locality of the subdivision schemes. The adaptation of the refinement rules consists of the following four steps:

 choosing a base point on the manifold in the "center" of the neighbourhood of the manifold-data which take part in the refinement rule.

- choosing a base point on the manifold in the "center" of the neighbourhood of the manifold-data which take part in the refinement rule.
- Projecting the above manifold data into the tangent space at the base point.

- choosing a base point on the manifold in the "center" of the neighbourhood of the manifold-data which take part in the refinement rule.
- Projecting the above manifold data into the tangent space at the base point.
- applying the linear refinement rule to the projected points in the tangent space.

- choosing a base point on the manifold in the "center" of the neighbourhood of the manifold-data which take part in the refinement rule.
- Projecting the above manifold data into the tangent space at the base point.
- applying the linear refinement rule to the projected points in the tangent space.
- opposition projecting the refined points back to the manifold.

A similar idea of the exp-log, applies to general manifolds, and is efficient due to the locality of the subdivision schemes. The adaptation of the refinement rules consists of the following four steps:

- choosing a base point on the manifold in the "center" of the neighbourhood of the manifold-data which take part in the refinement rule.
- Projecting the above manifold data into the tangent space at the base point.
- applying the linear refinement rule to the projected points in the tangent space.
- opposition projecting the refined points back to the manifold.

An inherent difficulty in this approach is the choice of the base point.

Adaptation methods – tangent space

Adaptation methods – tangent space

Adaptation methods – Riemannian center of mass (Grohs, Ebner)

Adaptation methods – Riemannian center of mass (Grohs, Ebner)

In Euclidean space, a weighted average $\sum_{j=1}^{n} w_j f_j$ for $f_j \in \mathbb{E}^d$ and $w_j \ge 0$, j = 1, ..., n, is equivalent to

$$rgmin_{f\in\mathbb{E}^d}\sum_{j=1}^n w_j \|f-f_j\|^2,$$

Adaptation methods – Riemannian center of mass (Grohs, Ebner)

In Euclidean space, a weighted average $\sum_{j=1}^{n} w_j f_j$ for $f_j \in \mathbb{E}^d$ and $w_j \ge 0$, j = 1, ..., n, is equivalent to

$$\arg\min_{f\in\mathbb{E}^d}\sum_{j=1}^n w_j \|f-f_j\|^2,$$

On manifolds we similarly define a weighted average by

$$\arg\min_{p\in\mathcal{M}}\sum_{j=1}^n w_j d^2(p,p_j).$$

This average is also termed **Karcher mean** in case of matrices or **Fréchet mean** in general metric spaces, and can be computed by iterations. In this adaptation the linear average of a refinement rule is replaced by the Riemannian center of mass.

Nir Sharon (TAU)

Adaptation methods – repeated binary averages (Dyn and Wallner)

Any refinement rule of a converging linear subdivision scheme can be rewritten in terms of repeated weighted binary averages (in several ways).

Adaptation methods – repeated binary averages (Dyn and Wallner)

Any refinement rule of a converging linear subdivision scheme can be rewritten in terms of repeated weighted binary averages (in several ways).

The adaptation consists of two steps:

() rewrite the refinement rule in terms of repeated binary averages form.

Adaptation methods – repeated binary averages (Dyn and Wallner)

Any refinement rule of a converging linear subdivision scheme can be rewritten in terms of repeated weighted binary averages (in several ways).

The adaptation consists of two steps:

() rewrite the refinement rule in terms of repeated binary averages form.

Preplace each arithmetic weighted average by a binary manifold average (details soon).

Binary manifold average

A reasonable manifold binary average

 $M_t: \mathcal{M} \times \mathcal{M} \to \mathcal{M},$

must satisfy the basic properties,

Binary manifold average

A reasonable manifold binary average

 $M_t: \mathcal{M} \times \mathcal{M} \to \mathcal{M},$

must satisfy the basic properties,

(Identity on the diagonal) $M_t(p_1, p_1) = p_1$.

2 (Symmetry)
$$M_t(p_1, p_2) = M_{1-t}(p_2, p_1)$$
.

• (Interpolation) $M_0(p_1, p_2) = p_1$ and $M_1(p_1, p_2) = p_2$ (in analogy to $(1 - t)f_1 + tf_2$).

Binary manifold average

A reasonable manifold binary average

 $M_t: \mathcal{M} \times \mathcal{M} \to \mathcal{M},$

must satisfy the basic properties,

(Identity on the diagonal) $M_t(p_1, p_1) = p_1$.

2 (Symmetry)
$$M_t(p_1, p_2) = M_{1-t}(p_2, p_1)$$
.

• (Interpolation) $M_0(p_1, p_2) = p_1$ and $M_1(p_1, p_2) = p_2$ (in analogy to $(1 - t)f_1 + tf_2$).

Note that even if we use the word "average" we in general do not restrict t to the interval [0, 1].

• A *geodesic* (or a geodesic curve) on a manifold is an extension of the shortest arc on a surface, joining two arbitrary points p_1 and p_2 on it.

- A *geodesic* (or a geodesic curve) on a manifold is an extension of the shortest arc on a surface, joining two arbitrary points p_1 and p_2 on it.
- The geodesic curve is defined as the solution to the geodesic Euler-Lagrange equations.

- A *geodesic* (or a geodesic curve) on a manifold is an extension of the shortest arc on a surface, joining two arbitrary points p_1 and p_2 on it.
- The geodesic curve is defined as the solution to the geodesic Euler-Lagrange equations.
- When there exists a geodesic curve between any two points, the manifold is termed geodesically complete.

- A *geodesic* (or a geodesic curve) on a manifold is an extension of the shortest arc on a surface, joining two arbitrary points p_1 and p_2 on it.
- The geodesic curve is defined as the solution to the geodesic Euler-Lagrange equations.
- When there exists a geodesic curve between any two points, the manifold is termed geodesically complete.
- In general metric spaces we define geodesics by the metric property

$$d(M_t(p_1,p_2),p_2) = (1-t)d(p_1,p_2), \quad t \in [0,1],$$

which is typical to geodesics in manifolds.

- A *geodesic* (or a geodesic curve) on a manifold is an extension of the shortest arc on a surface, joining two arbitrary points p_1 and p_2 on it.
- The geodesic curve is defined as the solution to the geodesic Euler-Lagrange equations.
- When there exists a geodesic curve between any two points, the manifold is termed geodesically complete.
- In general metric spaces we define geodesics by the metric property

$$d(M_t(p_1,p_2),p_2) = (1-t)d(p_1,p_2), \quad t \in [0,1],$$

which is typical to geodesics in manifolds.

Geodesic induce natural averaging:

Figure: Geodesic on a torus

The geodesic average $M_t(p_1, p_2)$ is the point on the geodesic curve between p_1 and p_2 satisfying the metric property

 $M_{rac{1}{2}}(p_1,p_2)$ is the midpoint of the geodesic curve between p_1 and p_2 .

Figure: Geodesic on a torus

 $M_{\frac{1}{2}}(p_1,p_2)$ is the midpoint of the geodesic curve between p_1 and p_2 .

Figure: Geodesic on a torus

 $M_{\frac{1}{2}}(p_1, p_2)$ is the midpoint of the geodesic curve between p_1 and p_2 .

Figure: Geodesic on a torus

Note that $M_0(p_1, p_2) = p_1$ and $M_1(p_1, p_2) = p_2$ as required. The metric property ensures the symmetry of the average, namely

$$M_t(p_1, p_2) = M_{1-t}(p_2, p_1).$$

Recall the cubic B-spline scheme

The refinement rules of this scheme in terms of repeated binary averages are

$$(S(\mathbf{f}))_{2i} = \frac{1}{8}f_{i-1} + \frac{3}{4}f_i + \frac{1}{8}f_{i+1}$$

= $\frac{1}{2}\left(\left(\frac{1}{4}f_{i-1} + \frac{3}{4}f_i\right) + \left(\frac{3}{4}f_i + \frac{1}{4}f_{i+1}\right)\right)$
 $(S(\mathbf{f}))_{2i+1} = \frac{1}{2}(f_i + f_{i+1}).$

Cubic B-spline scheme – **local adaptation with geodesic averages**

Using the repeated binary averages form and the geodesic averages, we get the refinement rules

$$S(\mathbf{p})_{2i} = M_{\frac{1}{2}}(M_{\frac{3}{4}}(p_{i-1}, p_i), M_{\frac{1}{4}}(p_i, p_{i+1}))$$

$$S(\mathbf{p})_{2i+1} = M_{\frac{1}{2}}(p_i, p_{i+1})$$

Cubic B-spline scheme – **local adaptation with geodesic** averages

Using the repeated binary averages form and the geodesic averages, we get the refinement rules

$$\begin{split} \mathcal{S}(\mathbf{p})_{2i} &= M_{\frac{1}{2}}(M_{\frac{3}{4}}(p_{i-1},p_i),M_{\frac{1}{4}}(p_i,p_{i+1}))\\ \mathcal{S}(\mathbf{p})_{2i+1} &= M_{\frac{1}{2}}(p_i,p_{i+1}) \end{split}$$

The arcs stand for geodesics.

Nir Sharon (TAU)

Our adaptation method - weighted inductive means

Our adaptation method – weighted inductive means

Definition

Let $\mathbf{p} = (p_1, \ldots, p_n)$ be a finite sequence of manifold elements, and let $\mathbf{w} = (w_1, \ldots, w_n)$ be their associated real weights satisfying $\sum_{j=1}^n w_j = 1$. We further assume that $w_1 \ge w_2 \ge \ldots \ge w_n$. Then, the repeated geodesic average $\mathfrak{M}_n(\mathbf{p}, \mathbf{w})$ is defined recursively as,

$$\begin{cases} M_{w_2}(p_1, p_2) & \text{if } n = 2\\ M_{w_n}(\mathfrak{M}_{n-1}\left((p_1, \dots, p_{n-1}), \frac{1}{1-w_n}(w_1, \dots, w_{n-1})\right), p_n) & \text{if } n > 2. \end{cases}$$

In case of symmetry,

$$w_j = w_{n-j+1}, \quad j = 1, \ldots, \ell \quad , \quad \ell = \lfloor n/2 \rfloor.$$

Then, for even n (for odd n we split the median weight) we define

$$\mathfrak{M}_{n}^{S}\left(\mathbf{p},\mathbf{w}\right)=M_{1/2}(\mathfrak{M}_{n/2}\left(\mathbf{p}^{1},\mathbf{w}^{1}\right),\mathfrak{M}_{n/2}\left(\mathbf{p}^{2},\mathbf{w}^{1}\right).$$

Convergence

- Most popular method to show convergence of adapted linear subdivision schemes is by **proximity**.
- The main drawback is that the convergence via proximity is guaranteed only for "close enough data points". Namely, small enough $\delta(\{p_i\}) = \sup_i d(p_i, p_{i+1})$.
- We aim to show that our schemes are convergent for **any initial data**.
- This is done by *contractivity*, that is the existence of $\mu < 1$ s.t., $\delta(\{\mathcal{S}(\{p_i\})\}) \leq \mu \delta(\{p_i\}).$

Adaptation and convergence - example

The interpolatory 4-point scheme,

$$(S(\mathbf{f}))_{2i} = f_i,$$
 and $(S(\mathbf{f}))_{2i+1} = -\omega(f_{i-1}+f_{i+2}) + (\frac{1}{2}+\omega)(f_i+f_{i+1}).$

With $\omega \in (0, \omega^*)$ and $\omega^* \approx 0.19273$ the unique solution of the cubic equation $32\omega^3 + 4\omega - 1 = 0$, the limits generated by the scheme are C^1 . The case $\omega = \frac{1}{16}$ coincides with the cubics Dubuc-Deslauriers scheme.
Adaptation and convergence - example

The interpolatory 4-point scheme,

$$(S(\mathbf{f}))_{2i} = f_i,$$
 and $(S(\mathbf{f}))_{2i+1} = -\omega(f_{i-1}+f_{i+2}) + (\frac{1}{2}+\omega)(f_i+f_{i+1}).$

With $\omega \in (0, \omega^*)$ and $\omega^* \approx 0.19273$ the unique solution of the cubic equation $32\omega^3 + 4\omega - 1 = 0$, the limits generated by the scheme are C^1 . The case $\omega = \frac{1}{16}$ coincides with the cubics Dubuc-Deslauriers scheme. The adaptation of is

$$\mathcal{S}(\mathbf{p})_{2i} = p_i, \quad \text{and} \quad \mathcal{S}(\mathbf{p})_{2i+1} = \mathfrak{M}_4^{\mathcal{S}}(\mathbf{p}, \mathbf{w}),$$

where

$$\mathfrak{M}_{4}^{S}(\mathbf{p},\mathbf{w}) = M_{\frac{1}{2}}\left(M_{-2\omega}(p_{i},p_{i-1}),M_{-2\omega}(p_{i+1},p_{i+2})\right),$$

with $\mathbf{w} = (\frac{1}{2} + \omega, -\omega, \frac{1}{2} + \omega, -\omega)$ and $\mathbf{p} = (p_i, p_{i-1}, p_{i+1}, p_{i+2})$.

Adaptation and convergence - example

Theorem

The adapted version of the interpolatory 4-pt and 6-pt scheme, as well as the first four B-spline schemes (piecewise linear, quadratic corner cutting, cubic, and quintic) are converged from any (admissible) initial data.

Approximation order - in a nutshell

Having an intrinsic approximation order means there exists a constant ${\it C}$ independent of the data ${\bf p}$ such that

 $d(\mathcal{S}(\mathbf{p})(t), f(t)) \leq C \left(\delta(\mathbf{p})\right)^n, \quad t \in \mathbb{R}.$

Approximation order - in a nutshell

Having an intrinsic approximation order means there exists a constant C independent of the data \mathbf{p} such that

 $d(\mathcal{S}(\mathbf{p})(t), f(t)) \leq C \left(\delta(\mathbf{p})\right)^n, \quad t \in \mathbb{R}.$

Classical results require polynomials reproduction. For operators defined on manifold data, we use a different notion, replacing the role of linear polynomials (straight lines) in Euclidean spaces with geodesic curves on real manifolds. Having an intrinsic approximation order means there exists a constant C independent of the data ${\bf p}$ such that

 $d(\mathcal{S}(\mathbf{p})(t),f(t))\leq C\left(\delta(\mathbf{p})
ight)^n,\quad t\in\mathbb{R}.$

Classical results require polynomials reproduction. For operators defined on manifold data, we use a different notion, replacing the role of linear polynomials (straight lines) in Euclidean spaces with geodesic curves on real manifolds.

Theorem

Any convergent subdivision scheme that reproduces linear polynomials, which is adapted by the inductive geodesic average and having a contraction factor has a second approximation order.

Adaptation with repeated geodesic averages – summary

- The adaptation of linear subdivision schemes (and other operators) can be done, and in constructive manner, by the inductive averages.
- Reproducing linear polynomials is transform to geodesics reproduction. This is crucial for approximation order.
- We show the convergence, from any initial data, for several highly popular schemes.
- Nevertheless, the convergence technique is valid only for (relatively) small mask sizes. Namely, for general manifolds, without further assumptions, working with averaging many elements (or approximating the Kercher mean) is limited.

Adaptation with repeated geodesic averages – summary

- The adaptation of linear subdivision schemes (and other operators) can be done, and in constructive manner, by the inductive averages.
- Reproducing linear polynomials is transform to geodesics reproduction. This is crucial for approximation order.
- We show the convergence, from any initial data, for several highly popular schemes.
- Nevertheless, the convergence technique is valid only for (relatively) small mask sizes. Namely, for general manifolds, without further assumptions, working with averaging many elements (or approximating the Kercher mean) is limited.

We look for a new approach to be considered!

The quadratic B-spline subdivision scheme (corner-cutting)

The quadratic B-spline subdivision scheme (corner-cutting)

The quadratic B-spline subdivision scheme (corner-cutting)

The cubic B-spline subdivision scheme

The cubic B-spline subdivision scheme

The cubic B-spline subdivision scheme

The quartic B-spline subdivision scheme

The quartic B-spline subdivision scheme

The quartic B-spline subdivision scheme

Refining high order B-spline

The cubic B-spline refinement can be interpreted as

Refining high order B-spline

The cubic B-spline refinement can be interpreted as

Refining high order B-spline

The cubic B-spline refinement can be interpreted as

This is the Lane-Riesenfeld algorithm.

The linear Lane-Riesenfeld algorithms – global refinements

(Lane and Riesenfeld, 1980)

The refinement step of an m-th degree B-spline subdivision scheme by several simple global averaging steps is also correspond to the factory of the symbol

$$a^{[m]}(z) = (1+z)rac{(1+z)}{2}\left(rac{1+z}{2}
ight)^{m-1}$$

The data: m, $\mathbf{f} = \{f_i \in \mathbb{R} : i \in \mathbb{Z}\}$ for $i \in \mathbb{Z}$ do: $f_i^0 \leftarrow f_i$ ($\mathbf{f}^0 \leftarrow \mathbf{f}$) for $i \in \mathbb{Z}$ do: $f_{2i}^1 \leftarrow f_i$, $f_{2i+1}^1 \leftarrow \frac{f_i + f_{i+1}}{2}$ (\mathbf{f}^1 by basic refinement of \mathbf{f}) for $\ell = 2, \dots, m$ do:

for $i \in \mathbb{Z}$ do: $f_i^{\ell} \leftarrow \frac{f_i^{\ell-1} + f_{i-1}^{\ell-1}}{2}$ (\mathbf{f}^{ℓ} from $\mathbf{f}^{\ell-1}$ by averaging)

for $i \in \mathbb{Z}$ do: $\left(\mathcal{S}^{[m]}(\mathbf{f})
ight)_i \leftarrow f^m_i$ (the refined data)

The linear Lane-Riesenfeld algorithms - global refinements

(Lane and Riesenfeld, 1980)

The refinement step of an m-th degree B-spline subdivision scheme by several simple global averaging steps is also correspond to the factory of the symbol

$$a^{[m]}(z) = (1+z) \frac{(1+z)}{2} \left(\frac{1+z}{2}\right)^{m-1}$$

The data: m, $\mathbf{f} = \{f_i \in \mathbb{R} : i \in \mathbb{Z}\}$ for $i \in \mathbb{Z}$ do: $f_i^0 \leftarrow f_i$ ($\mathbf{f}^0 \leftarrow \mathbf{f}$) for $i \in \mathbb{Z}$ do: $f_{2i}^1 \leftarrow f_i$, $f_{2i+1}^1 \leftarrow \frac{f_i + f_{i+1}}{2}$ (\mathbf{f}^1 by basic refinement of \mathbf{f}) for $\ell = 2, \dots, m$ do: for $i \in \mathbb{Z}$ do: $f_i^\ell \leftarrow \frac{f_i^{\ell-1} + f_{i-1}^{\ell-1}}{2}$ (\mathbf{f}^ℓ from $\mathbf{f}^{\ell-1}$ by averaging) for $i \in \mathbb{Z}$ do: $(\mathcal{S}^{[m]}(\mathbf{f}))_i \leftarrow f_i^m$ (the refined data)

Global refinement adaptation with geodesic averaging

For the B-spline case

$$a^{[m]}(z) = (1+z)rac{(1+z)}{2}\left(rac{1+z}{2}
ight)^{m-1}$$

The adaptation is done by replacing each arithmetic averages in the corresponding LR algorithm by geodesic averages:

Global refinement adaptation with geodesic averaging

For the B-spline case

$$a^{[m]}(z) = (1+z)rac{(1+z)}{2}\left(rac{1+z}{2}
ight)^{m-1}$$

The adaptation is done by replacing each arithmetic averages in the corresponding LR algorithm by geodesic averages:

for
$$i \in \mathbb{Z}$$
 do: $p_{2i}^1 \leftarrow p_i$, $p_{2i+1}^1 \leftarrow M_{\frac{1}{2}}(p_i, p_{i+1})$
for $j = 2, \dots, m$ do:
for $i \in \mathbb{Z}$ do: $p_i^j \leftarrow M_{\frac{1}{2}}(p_i^{j-1}, p_{i-1}^{j-1})$
for $i \in \mathbb{Z}$ do: $\left(\widetilde{\mathcal{S}}(\mathbf{p})\right)_i \leftarrow p_i^m$

The adaptation of converging linear schemes

Assume S has a factorizable symbol over the reals and satisfies a(-1) = 0 and a(1) = 2. Namely, its symbol is

$$a(z) = z^{-s}(1+z)rac{1+lpha_1 z}{1+lpha_1}\cdotsrac{1+lpha_m z}{1+lpha_m}$$

The adaptation of converging linear schemes

Assume S has a factorizable symbol over the reals and satisfies a(-1) = 0 and a(1) = 2. Namely, its symbol is

$$a(z) = z^{-s}(1+z)rac{1+lpha_1 z}{1+lpha_1}\cdotsrac{1+lpha_m z}{1+lpha_m}$$

The refinement step in a LR fashion is

1 for $i \in \mathbb{Z}$ do: $f_{2i}^1 \leftarrow f_i$, $f_{2i+1}^1 \leftarrow \frac{\alpha_1 t_i + t_{i+1}}{\alpha_1 + 1}$ 2 for j = 2, ..., m do: for $i \in \mathbb{Z}$ do: $f_i^j \leftarrow \frac{\alpha_j f_i^{j-1} + f_{i-1}^{j-1}}{\alpha_j + 1}$ 3 for $i \in \mathbb{Z}$ do: $\left(\widetilde{\mathcal{S}}(\mathbf{f})\right)_i \leftarrow f_{i+s}^m$

The adaptation of converging linear schemes

Assume S has a factorizable symbol over the reals and satisfies a(-1) = 0and a(1) = 2. Namely, its symbol is

$$\mathsf{a}(z) = z^{-s}(1+z)rac{1+lpha_1 z}{1+lpha_1}\cdotsrac{1+lpha_m z}{1+lpha_m}$$

The refinement step in a LR fashion is

• for $i \in \mathbb{Z}$ do: $f_{2i}^1 \leftarrow f_i$, $f_{2i+1}^1 \leftarrow \frac{\alpha_1 t_i + t_{i+1}}{\alpha_1 + 1}$ • for j = 2, ..., m do: for $i \in \mathbb{Z}$ do: $f_i^j \leftarrow \frac{\alpha_j t_i^{j-1} + t_{i-1}^{j-1}}{\alpha_j + 1}$ • for $i \in \mathbb{Z}$ do: $\left(\widetilde{\mathcal{S}}(\mathbf{f})\right)_i \leftarrow f_{i+s}^m$

The adaptation: the averages in step 1 and 2 are replaced by $M_{\frac{1}{\alpha_{1}+1}}(p_{i}, p_{i+1})$ and $M_{\frac{1}{\alpha_{j}+1}}(p_{i}^{j-1}, p_{i-1}^{j-1})$, respectively.

Convergence results - $\alpha_j \in \mathbb{R}$, $j = 1, \ldots, m$

Given the adaptation of a linear converging scheme with symbol

$$a(z) = z^{-s}(1+z)\frac{1+\alpha_1 z}{1+\alpha_1}\cdots\frac{1+\alpha_m z}{1+\alpha_m}$$

we derive conditions on the symbol for convergence:

Convergence results - $\alpha_j \in \mathbb{R}$, $j = 1, \ldots, m$

Given the adaptation of a linear converging scheme with symbol

$$a(z) = z^{-s}(1+z)\frac{1+\alpha_1 z}{1+\alpha_1}\cdots\frac{1+\alpha_m z}{1+\alpha_m},$$

we derive conditions on the symbol for convergence:

Theorem

The convergence for any initial manifold data is guaranteed when

α_j > 0, j = 1,..., m (positive weights, typical for approximation).
 {α_j | α_j > 0} ≠ Ø and min_{αj>0} max{1/(1+α_j), α_j/(1+α_j)} ∏^m_{i=2} ξ(α_i) < 1 where

$$\xi(\alpha) = \begin{cases} 1, & 0 < \alpha, \\ 1 + 2|\frac{\alpha}{1+\alpha}|, & -1 < \alpha < 0 \\ 1 + 2|\frac{1}{1+\alpha}|, & \alpha < -1. \end{cases}$$

(we allow negative weights, typical for interpolation)

General symbols

The symbol, which is a real polynomial, can be factorized into m_1 real linear factors (in addition to 1+z) and m_2 quadratic real factors. Then,

$$a(z) = z^{-s}(1+z) \left(\prod_{i=1}^{m_1} \frac{1+\alpha_i z}{1+\alpha_i} \right) \left(\prod_{i=m_1+1}^{m_1+m_2} \frac{1+2\operatorname{Re}(\alpha_i)z+|\alpha_i|^2 z^2}{1+2\operatorname{Re}(\alpha_i)+|\alpha_i|^2} \right)$$

٠

General symbols

The symbol, which is a real polynomial, can be factorized into m_1 real linear factors (in addition to 1+z) and m_2 quadratic real factors. Then,

$$a(z) = z^{-s}(1+z) \left(\prod_{i=1}^{m_1} \frac{1+\alpha_i z}{1+\alpha_i} \right) \left(\prod_{i=m_1+1}^{m_1+m_2} \frac{1+2\operatorname{Re}(\alpha_i)z+|\alpha_i|^2 z^2}{1+2\operatorname{Re}(\alpha_i)+|\alpha_i|^2} \right)$$

- The quadratic factors stands for ternary average.
- We define a "pyramid" averaging for three elements, with optimal parameters.
- We extend the algorithm for symbols with complex roots.
- A general convergence result is derived.
Convergence results - symbols having single complex root

For this special case we have,

Convergence results - symbols having single complex root

For this special case we have,

Theorem

Let S be a linear subdivision scheme, adapted globally such that $m_1 \ge 1$, $m_2 = 1$ and $\alpha_i > 0$, $1 \le i \le m_1$. Then, the adapted scheme converges from all admissible input data, whenever α_{m_1+1} is outside the domain Ω .

Thank you