Letter to the Editor

Aspergillus nidulans is frequently resistant to amphotericin B

Aspergillus nidulans ist häufig resistent gegenüber Amphotericin B

D. P. Kontoyiannis1, R. E. Lewis1, G. S. May1, N. Osherov1 and M. G. Rinaldi2

Key words. Aspergillus nidulans, aspergillosis, amphotericin B, resistance.

Summary. The high failure rate of amphotericin B-based therapy in patients with Aspergillus nidulans infections may not be entirely a result of host factors as suggested previously. Innate resistance of \textit{A. nidulans} to polyenes may contribute to the poor response in patients.

Introduction

Aspergillus nidulans, a genetically amenable model fungus closely related to other pathogenic species of the \textit{Aspergillus} genus, is a rare human pathogen with a unique predilection for patients having chronic granulomatous disease \cite{1}. This mould is frequently refractory to amphotericin B therapy, with a failure rate of 50\% (vs. only 15\% for \textit{Aspergillus fumigatus}) reported in this patient population \cite{1}. The reasons for this poor response are unclear.

Materials and methods

We tested the susceptibility of seven different clinical isolates of \textit{A. nidulans} (obtained from the Fungus Reference Laboratory at The University of Texas Health Science Center at San Antonio) to amphotericin B (AmB) and itraconazole (ITR). Specifically, we used both the National Committee for Clinical Laboratory Standards (NCCLS) microdilution (document M38-P) \cite{2} and the E test method. All experiments were performed in triplicate. The reference strains \textit{Candida glabrata} ATCC 582, \textit{Candida parapsilosis} ATCC 22019 were used as QC strains. Strains of AmB-resistant \textit{A. terreus}, ITR-resistant \textit{A. fumigatus} were also used as controls.

For the microdilution assay, we followed the procedure described by NCCLS \cite{2}. Briefly, logarithmic phase cultures were prepared by subculturing the \textit{A. nidulans} isolates on yeast extract agar (YAG) medium (0.5\%, yeast extract, 1\% glucose, 1.5\% agar; Sigma Chemical Co., St Louis, MO, USA) and incubating at 37 °C for 5–7 days. Conidia were collected with a sterile swab and suspended in sterile saline containing 0.05\% Tween-20. After heavy particles were allowed to settle for 15 min, the turbidity of the supernatants was measured by spectrophotometer (Spectronic 20, Bausch & Lomb, Overland Park, KS, USA) at 530 nm and transmission was adjusted to 80–82\% corresponding with an inoculum of

1The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, and 2The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.

Correspondence: Professor Dr Dimitrios P. Kontoyiannis, Department of Infectious Diseases, Box 402, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.

Tel: 713–792–6237 Fax: 713/745 6839
E-mail: dkontoyi@mdanderson.org

1 × 10⁶–5 × 10⁶ conidia ml⁻¹ [3]. The inoculum was then diluted 1 : 50 in RPMI-1640 (with l-glutamine; without bicarbonate) buffered to pH 7.0 with 0.165 mol/l⁻¹ 3-N-morpholino-
propanesulfonic acid (MOPS, Sigma Chemical Co.) growth medium to achieve an inoculum of 1.0 × 10⁵–2.5 × 10⁴ conidia ml⁻¹. ITR solution was prepared at 100× the final test concentrations in dimethylsulphoxide using powder from the manufacturer (Janssen Pharmaceutical, Titusville, NJ, USA). This solution was then diluted 1 : 50 in RPMI-1640 growth medium. AmB solution (Pharm-
Tek, Inc., Huntington, NY, USA) was prepared by reconstituting the deoxycholate salt preparation in sterile water, then diluting the solution in RPMI-1640 (with pH 7.0 with 0.165 mol
N-glutamine; without bicarbonate) buffered to 37°C. Minimum inhibitory concentrations (MICs) were then incubated for 48 h at 37°C. Minimum inhibitory concentrations (MICs) were read at 24 and 48 h visually with the aid of a reading mirror. The MIC was defined as the lowest concentration of antifungal that resulted in absence of fungal growth compared to control.

In addition, the E test MICs were determined using ITR (range, 0.002–32.000 µg ml⁻¹) and AmB (range, 0.002–32.000 µg ml⁻¹) strips provided by the manufacturer (AB Biodisk, Solna, Sweden). Solidified RPMI-1640-morpholinepropanesulfonic acid–2% glucose–1.5% Bacto agar plates served as the test medium. A standardized cell suspension (80% transmittance at 530 nm) was prepared by harvesting conidia from mature cultures on potato glucose agar slants and suspending them in 0.85% sterile saline prior to each experiment. All MICs were recorded 24 and 48 h after the application of the E test strip.

Results

Using the NCCLS method, four of the seven isolates exhibited a high AmB MIC (> 2), while the remaining three isolates had intermediate sensitivity to the drug (MIC = 1). With the E test method all but isolate 7 had MIC ≥ 1 for AmB (Table 1). All of the isolates were susceptible to ITR on both tests.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>NCCLS Microdilution method</th>
<th>E test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AmB</td>
<td>ITR</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Discussion

These data suggest that the high failure rate of AmB-based therapy in patients with A. nidulans infections may not be entirely due to host factors as suggested previously [1]. Innate resistance of this Aspergillus species to polyenes, which is analogous to the resistance observed in Aspergillus terreus [3], may contribute to the poor response seen in patients with chronic granulomatous disease. This resistance to polyenes has rarely been reported and only in laboratory strains of A. nidulans [4]. Therefore, A. nidulans may be a promising model fungus for dissecting the molecular genetics of AmB resistance in non-fumigatus Aspergillus species. Finally, AmB may not be a suitable drug for the treatment of uncommon infections caused by A. nidulans; consideration should therefore be given to treatment using triazoles.

References