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Abstract

What is the maximum possible number, f3(n), of vectors of length n over {0, 1, 2} such that
the Hamming distance between every two is even? What is the maximum possible number,
g3(n), of vectors in {0, 1, 2}n such that the Hamming distance between every two is odd? We
investigate these questions, and more general ones, by studying Xor powers of graphs, focusing
on their independence number and clique number, and by introducing two new parameters of
a graph G. Both parameters denote limits of series of either clique numbers or independence
numbers of the Xor powers of G (normalized appropriately), and while both limits exist, one of
the series grows exponentially as the power tends to infinity, while the other grows linearly. As
a special case, it follows that f3(n) = Θ(2n) whereas g3(n) = Θ(n).

1 Introduction

The Xor product of two graphs, G = (V,E) and H = (V ′, E′), is the graph whose vertex set
is the Cartesian product V × V ′, where two vertices (u, u′) and (v, v′) are connected iff either
uv ∈ E, u′v′ /∈ E′ or uv /∈ E, u′v′ ∈ E′, i.e., the vertices are adjacent in precisely one of their two
coordinates. This product is commutative and associative, and it follows that for any n ≥ 1, the
product of G1, . . . , Gn is the graph whose vertex set is

∏
V (Gi), where two vertices are connected

iff they are adjacent in an odd number of coordinates. Throughout this paper, let G ·H denote the
Xor product of G and H, and let Gn denote the Xor product of n copies of G.

The Xor graph product was studied in [12], where the author used its properties to construct
edge colorings of the complete graph with two colors, containing a smaller number of monochromatic
copies of K4 than the expected number of such copies in a random coloring. See also [5],[6],[13] for
more about this problem.
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Examine K3, the complete graph on 3 vertices. Each vertex of Kn
3 can be naturally represented

by a vector in {0, 1, 2}n, and two vertices are connected in Kn
3 iff their representing vectors differ

in an odd number of coordinates, or equivalently, have an odd Hamming distance. Thus, a set
of vectors in {0, 1, 2}n, in which every two vectors have an even Hamming distance, represents
an independent set in Kn

3 ; similarly, a set of vectors of {0, 1, 2}n in which each pair has an odd
Hamming distance represents a clique in Kn

3 , and hence:

f3(n) = α(Kn
3 )

g3(n) = ω(Kn
3 )

where α(G) denotes the independence number of G and ω(G) denotes the clique number of G.
Studying the series of independence numbers and the series of clique numbers of powers of a
fixed graph G provides several interesting questions and results. Both series, when normalized
appropriately, converge, however one has an exponential growth while the other grows linearly.

In section 2 we show that the series of independence numbers, when normalized, converges to
its supremum, which we denote by xα(G):

xα(G) = lim
n→∞

n
√

α(Gn) = sup
n

n
√

α(Gn)

We calculate this parameter for several families of graphs and multi-graphs, and study some of its
properties.

In section 3 we show, this time using a linear normalization, that the series ω(Gn)/n converges
as well. We denote its limit by xω(G):

xω(G) = lim
n→∞

ω(Gn)
n

= sup
n

ω(Gn)− 2
n + 1

Determining the value of xα and xω for K3 and for a general complete graph Kr gives the
asymptotic behavior of f3(n) and g3(n), and similarly, of fr(n) and gr(n), defined analogously with
r replacing the alphabet size of 3. For a general G, it seems that merely approximating xα and xω

can be extremely difficult. Both parameters are non-monotone with respect to the addition of edges
to the graph, and we use combinatorial ideas, tools from linear algebra and spectral techniques in
order to provide bounds for them for different graphs.

2 Independence numbers of Xor powers

2.1 The independence series and xα

We begin with an immediate observation: for every two graphs G and H, and every two independent
sets I ⊂ V (G) and J ⊂ V (H), I × J is an independent set of G · H. Therefore, the function
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f(n) = α(Gn) is super-multiplicative: f(m + n) ≥ f(m)f(n), and by Fekete’s lemma (c.f., e.g.,
[10], p. 85), we deduce that

∃ lim
n→∞

n
√

f(n) = sup
n

n
√

f(n)

Let xα(G) denote this limit.

We note that the definition of the Xor product and of xα applies to multi-graphs as well: indeed,
since only the parity of the number of edges between two vertices dictates their adjacency, we can
assume that there are no multiple edges, however there may be (self) loops in the graph. The
function f(n) = α(Gn) remains super-multiplicative (notice that an independent set I of Gn can
never contain a vertex v = (v1, . . . , vn) with an odd number of coordinates {vij}, which have loops).
However, in the single scenario where every vertex of G has a loop, α(G) = 0 and we cannot apply
Fekete’s lemma (indeed, in this case, f(2n + 1) = 0 and f(2n) ≥ 1 for all n). In all other cases,
xα(G) is well defined. Furthermore, if we negate the adjacency matrix of G, obtaining the multi-
graph complement G (u and v are adjacent in G iff they are disconnected in G, including the case
u = v), we get xα(G) = xα(G), as long as xα(G) is also defined. To see this fact, take the even
powers 2k of the independence series, in which two vertices are adjacent in G2k iff they are adjacent
in G

2k.

Proposition 2.1. For every multi-graph G = (V,E) satisfying α(G) > 0, xα(G) is well defined.
Furthermore, if in addition α(G) > 0, where G is the multi-graph-complement of G, then xα(G) =
xα(G).

2.2 General bounds for xα

It is obvious that xα(G) ≤ |V (G)|, and this upper bound is tight, for instance, for the edgeless
graph. For the lower bound, the following simple fact holds:

Claim 2.2 (Uniform lower bound). Let G = (V,E) be a multi-graph satisfying α(G) > 0. Then:

xα(G) ≥
√
|V | (1)

Proof. Let I ⊂ V (G2) denote the set {(v, v) | v ∈ V }. Clearly, I is an independent set of G2 of
size |V |, thus xα(G) ≥ |V |

1
2 (and similarly, for all k we get an explicit independent set of size |V |k

in G2k). �

For a better understanding of the parameter xα(G), we next show several infinite families of
graphs which attain either the lower bound of (1) or the upper bound of |V (G)|. While, trivially,
the edgeless graph G on n vertices satisfies xα(G) = n, it is interesting that complete bipartite
graphs also share this property:

Claim 2.3. Let Km,n denote the complete bipartite graph with color classes of sizes m, n, where
m ≥ n. Then for every k ≥ 1, Kk

m,n is a complete bipartite graph with color classes W0,W1 of
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sizes:
|W0| =

1
2

(
(m + n)k + (m− n)k

)
, |W1| =

1
2

(
(m + n)k − (m− n)k

)
Therefore, xα(Km,n) = m + n.

Proof. Let G = Km,n, m ≥ n, and denote its color classes by U0, U1, where |U0| = m. For every
vertex v = (v1, . . . , vk) ∈ V (Gk), define a vector wv ∈ {0, 1}k, in the following manner: (wv)i = 0
iff vi ∈ U0. By the definition of the Xor product (recall that G is a complete bipartite graph), the
following holds for every u, v ∈ V (Gk):

uv /∈ E(Gk) ⇐⇒ |{1 ≤ i ≤ k | (wu)i 6= (wv)i}| = 0 (mod 2)

Equivalently, performing addition and dot-product over GF (2k):

uv /∈ E(Gk) ⇐⇒ (wu + wv) · 1 = 0 (2)

Let W0 denote the set of all vertices in v ∈ V (Gk) such that the Hamming weight of wv is even,
and let W1 denote the set of all those whose corresponding vectors have an odd Hamming weight.
In other words, we partition the vertices of Gk into two sets, according to the parity of the number
of times a coordinate was taken from U0. Notice that:

|W0| =
b k

2
c∑

i=0

(
k

2i

)
n2imk−2i =

1
2

(
(m + n)k + (m− n)k

)
,

and similarly:

|W1| =
1
2

(
(m + n)k − (m− n)k

)
To see that Gk is a complete bipartite graph with color classes W0,W1, argue as follows: take

u, v ∈ Wi (i ∈ {0, 1}); clearly, we have:

(wu + wv) · 1 = wu · 1 + wv · 1 = i + i = 0 ,

hence, by (2), W0 and W1 are both independent sets. Next, for every u ∈ W0 and v ∈ W1, we have:

(wu + wv) · 1 = 0 + 1 = 1 ,

implying that u and v are adjacent. This completes the proof. �

The previous claim shows that xα(Kn,n) = 2n = nxα(K2). This is a special case of the following
property of xα:

Claim 2.4. Let G = (V,E) be a graph on the vertex set V = [n]. We define the r-blow-up of G,
G[r], as the n-partite graph whose color groups are (V1, . . . , Vn), where for all i, |Vi| = r, and two
vertices x ∈ Vi and y ∈ Vj are connected iff ij ∈ E. Then:

xα(G[r]) = r · xα(G)

Furthermore, every maximum independent set of G[r]k is an r-blow-up of a maximum independent
set of Gk.
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Proof. Let T : V (G[r]) → V (G) be the mapping from each vertex in G[r] to its corresponding
vertex in G (i.e., if x ∈ Vi, then T (x) = i), and define T ◦k : V (G[r]k) → V (Gk) by

T ◦k(v1, . . . , vk) = (T (v1), . . . , T (vk))

Then, by the definition of G[r], T ◦k(G[r]k) is isomorphic to Gk, and furthermore, a set I is indepen-
dent in G[r]k iff T ◦k(I) is independent in Gk. This implies that every maximum independent set of
G[r]k can be obtained by taking a maximum independent set of Gk and expanding each coordinate
in each of the r possible ways. In particular:

α(G[r]k)
1
k =

(
rkα(Gk)

) 1
k = r · α(Gk)

1
k

and the desired result follows. �

A simple algebraic consideration provides an example for a family of multi-graphs which attain
the lower bound - the Hadamard multi-graphs (see , e.g., [10] for further information on Sylvester-
Hadamard matrices):

Claim 2.5. Let H2n be the multi-graph whose adjacency matrix is the Sylvester-Hadamard matrix
on 2n vertices: two (not necessarily distinct) vertices u and v, represented as vectors in GF (2n),
are adjacent iff their dot product equals 1. Then: xα(H2n) = 2n/2

Proof. Let H = H2n . Notice that exactly 2n−1 vertices have loops, and in particular there is a
non-empty independent set in H and xα is defined. Examine Hk; by definition, u = (u1, . . . , uk)
and v = (v1, . . . , vk) are adjacent in Hk iff

∑
i ui · vi = 1 (mod 2). This implies, by the definition

of the Hadamard multi-graph, that:
Hk

2n = H2nk

We are thus left with showing that H = H2n satisfies α(H) ≤
√
|H|, and this follows from the fact

that an independent set in H is a self-orthogonal set of vectors in GF (2n), hence the rank of its
span is at most n/2 and thus:

α(H) ≤ 2n/2 =
√
|H| ,

as needed. �

Note that the result above is also true for multi-graphs whose adjacency matrix is a general-
type Hadamard matrix, Hn; this can be proved using spectral analysis, in a way similar to the
treatment of strongly-regular graphs in the next subsection. As another corollary of the analysis
of strongly-regular graphs in the next subsection, we will show that the Paley graph Pq, defined
there, has q vertices and satisfies xα(Pq) ≤

√
q + 1, hence there exists a family of simple graphs

which roughly attain the general lower bound on xα.
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2.3 Properties of xα and bounds for codes

The normalizing factor applied to the independence series when calculating xα depends only on
the current graph power, therefore restricting ourselves to an induced subgraph of a graph G

immediately gives a lower bound for xα(G). It turns out that xα cannot drastically change with
the addition of a single vertex to the graph - each added vertex may increase xα by at most 1.
However, xα is non-monotone with respect to the addition of edges. The next few claims summarize
these facts.

Claim 2.6. Let G = (V,E) be a multi-graph, and let H be an induced subgraph on U ⊂ V , satisfying
α(H) > 0. Then:

xα(H) ≤ xα(G) ≤ xα(H) + |V | − |U |

Proof. The first inequality is trivial, since we can always restrict our choice of coordinates in
independent sets of Gk to vertices of U . In order to prove the second inequality, it is enough to
prove the case of |U | = |V |− 1. Denote by v the single vertex of V \U , and assume that v does not
have a loop. Let I be a maximum independent set of Gk. For every pattern of i appearances of v

in the coordinates of vertices of I, the set of all vertices of I containing this pattern (and no other
appearances of v) is an independent set. This set remains independent in Hk−i, after omitting from
each of these vertices its i appearances of v, hence its size is at most α(Hk−i). Since xα(H) is the
supremum of n

√
α(Hn), we get the following bound for I:

|I| ≤
k∑

i=0

(
k

i

)
α(Hk−i) ≤

k∑
i=0

(
k

i

)
xα(H)k−i = (xα(H) + 1)k .

Taking the k-th root gives xα(G) ≤ xα(H) + 1.

We are left with the case where v has a loop. If H has no loops, then every vertex of I must
have an even number of appearances of v in its coordinates (as an independent set cannot contain
loops). Hence, every pattern of i appearances of v in the coordinates of vertices of I still represents
an independent set in Hk−i, and the calculation above is valid. In fact, it gives that

|I| ≤
b k

2
c∑

i=0

(
k

i

)
α(Hk−2i) =

1
2

(
(xα(H) + 1)k + (xα(H)− 1)k

)
< (xα + 1)k .

If H does contain loops, then α(H) > 0, and we can apply the previous argument to G with respect
to H and v (which does not have a loop in G), obtaining:

xα(G) = xα(G) ≤ xα(H) + 1 = xα(H) + 1 ,

where the last equality holds since α(H) > 0, guaranteeing that at least one vertex of H does not
have a loop. �

Notice that, by the last claim, we can apply the vertex-exposure Martingale on the random
graph Gn, 1

2
, and obtain a concentration result for xα (see for example [3], Chapter 7):
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Corollary 2.7. Almost surely, that is, with probability that tends to 1 as n tends to infinity, the
random graph G = Gn, 1

2
satisfies

|xα(G)− Exα(G)| ≤ O(
√

n)

A counterexample for edge-addition monotonicity exists already when |V | = 3, as the next
claim shows.

Claim 2.8. xα is non-monotone with respect to the addition of edges.

Proof. Let G = (V,E) be the graph on three vertices V = Z3 and one edge E = {(0, 1)}. We
show that xα(G) = 2, thus if we remove the single edge (creating the empty graph on 3 vertices)
or add the edge (1, 2) (creating the complete bipartite graph K1,2) we increase xα to a value of 3.
In fact, up to an automorphism of the graph G in each coordinate, there is exactly one maximum
independent set of Gk, which is {(v1, . . . , vk) : vi ∈ {0, 2}}.

The proof is by induction on k, stating that every maximum independent set of Gk is the
Cartesian product of either {0, 2} or {1, 2} in each of the coordinates (it is obvious that this set is
indeed independent). The case k = 1 is trivial. For k > 1, let I be a maximum independent set of
Gk, and notice that by the construction of the independent set above, we have |I| = α(Gk) ≥ 2k.
Let Ai (i ∈ Z3) be the set of vertices of I whose first coordinate is i. We denote by A′

i the set of
vertices of Gk−1 formed by omitting the first coordinate from Ai. Since Ai ⊂ I is independent, so
is A′

i for every i. However, every vertex of A′
0 is adjacent to every vertex of A′

1 (again since I is
independent).

Note that, by induction, |Ai| = |A′
i| ≤ 2k−1. Clearly, this implies that if either A0 or A1 are

empty, we are done, and I is the Cartesian product of a maximum independent set I ′ ⊂ Gk−1

of size 2k−1, with either {0, 2} or {1, 2}. Indeed, if for instance A1 is empty, then both A′
0 and

A′
2 are maximum independent sets of Gk−1 (otherwise, the size of I would be strictly less than

2k), with the same automorphism of G in each coordinate (otherwise I would not be independent -
consider the two vertices which contain 2 in all coordinates except the one where the automorphism
is different).

Assume therefore that A0, A1 6= ∅. By a similar argument, A2 6= ∅, otherwise |I| ≥ 2k would
imply that both A′

0 and A′
1 are maximum independent sets in Gk−1 (of size 2k−1 each), and by

induction, both contain the vector 2, contradicting the independence of I. We therefore have:

|I| =
∑

i

|Ai| =
∑

i

|A′
i| <

(
|A′

0|+ |A′
2|

)
+

(
|A′

1|+ |A′
2|

)
≤ 2 · 2k−1 = 2k

The last inequality is by the fact that A′
2 ∩A′

0 = A′
2 ∩A′

1 = ∅, since, for instance, all vertices in A′
0

are adjacent to all vertices in A′
1 but disconnected from all vertices in A′

2. We therefore obtained
a contradiction to the fact that |I| ≥ 2k. �
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We next prove a general upper bound for xα of regular graphs. As a corollary, this will determine
xα(K3) and give the asymptotic behavior of the function f3(n), mentioned in the abstract.

Theorem 2.9. Let G be a loopless nontrivial d-regular graph on n vertices, and let d = λ1 ≥ λ2 ≥
. . . ≥ λn denote the eigenvalues of G. Then:

xα(G) ≤ max {|n− 2d|, 2|λ2|, 2|λn|}

Proof. We use spectral analysis to bound the independence numbers of powers of the graph G.
Denote by A = AG the adjacency matrix of G, and let B = BG = (−1)A, i.e.:

Bij
def=

{
−1 ij ∈ E(G)

1 ij /∈ E(G)

Notice that BG·H = BG ⊗BH , where ⊗ denotes the tensor-product:

(BG ⊗BH)(u,v),(u′,v′) = BGu,v ·BHu′,v′ =

{
−1 (u, v)(u′, v′) ∈ E(G ·H)

1 (u, v)(u′, v′) /∈ E(G ·H)

Our aim in using BG is to obtain expressions for the eigenvalues of AGk , and then use the following
bound, proved by Hoffman: every regular graph H with eigenvalues µ1 ≥ . . . ≥ µm satisfies:

α(H) ≤ −|H|µm

µ1 − µm
(3)

(see [7], [11]). Recall that the eigenvalues of A are:

λ(A) = {d = λ1, . . . , λn}

By definition, BG = Jn− 2AG, where Jn is the all 1-s matrix of order n, and fortunately, the single
non-zero eigenvalue of Jn (the eigenvalue n) corresponds to an eigenvector of 1, which is also an
eigenvector of A (with the eigenvalue d). Thus, if we denote the spectrum of B by Λ:

Λ = λ(B) = {n− 2d,−2λ2, . . . ,−2λn}

Define Λk = {µ1µ2 . . . µk : µi ∈ Λ}. As usual with tensor-products (c.f., e.g., [2]), we use the fact
that:

λ(B⊗k) = {λi1λi2 · . . . · λik | λij ∈ λ(B)} = Λk

Returning to AGk , we have AGk = 1
2(Jnk −BGk), and 1 is an eigenvector of BGk corresponding to

the eigenvalue (n− 2d)k. Hence, 1 is an eigenvector of AGk with an eigenvalue of:

λM =
nk − (n− 2d)k

2

Since this is the regularity degree of Gk, by the Perron-Frobenius theorem it is also its largest
eigenvalue. The remaining eigenvalues of AGk are

{
−1

2µ : µ ∈ Λk, µ 6= (n− 2d)k
}
. Hence, if we

define:
β(k) = max

{
Λk \ {(n− 2d)k}

}
8



then the minimal eigenvalue of AGk , λm, equals −1
2β(k). Applying (3) gives:

α(Gk) ≤ −nkλm

λM − λm
=

β(k)
1− (1− 2d

n )k + β(k)/nk
(4)

Examine the right hand side of (4). The term
(
1− 2d

n

)k
tends to zero as k tends to infinity, since

G is simple and hence 1 ≤ d ≤ n− 1. Considering β(k), notice that for sufficiently large values of
k, in order to obtain the maximum of Λk \ {(n − 2d)k}, one must choose the element of Λ whose
absolute value is maximal with plurality at least k−2 (the remaining two choices of elements should
possibly be used to correct the sign of the product, making sure the choice made is not the one
corresponding to the degree of Gk). Therefore, if we set r = max {|n− 2d|, 2|λ2|, 2|λn|}, we get
β(k) = Θ(rk). To bound r, we use the following simple argument, which shows that

λ = max {|λ2|, . . . , |λn|} ≤
n

2

(equality is precisely in the cases where G is complete bipartite with d = n
2 ). Indeed, the square of

the adjacency matrix A of G has the values d on its diagonal (as G is d-regular), hence:

d2 + λ2 ≤
∑

i

λ2
i = tr(A2) = nd ,

implying that:
λ ≤

√
d(n− d) ≤ n

2

Therefore, either r = 2λ ≤ n or r = |n−2d| < n, and in both cases we obtain that β(k)/nk = O(1).
Taking the k-th root in (4), gives:

xα(G) ≤ lim
k→∞

k
√

β(k) = r ,

as required. �

Note that the above proof in fact provides upper bounds for the independence numbers of every
power k of a given regular graph G (not only for the asymptotic behavior as k tends to infinity) by
calculating β(k) and applying (4).

Corollary 2.10. For the complete graphs K3 and K4, xα(K3) = xα(K4) = 2

Proof. It is easy and well known that the eigenvalues of the complete graph Kn on n ≥ 2 vertices
are: {n− 1,−1, . . . ,−1}. By Theorem 2.9, we have, for every n ≥ 2:

xα(Kn) ≤ max{n− 2, 2}

For n = 3, this implies xα(K3) ≤ 2, and for n ≥ 4 this implies xα(Kn) ≤ n− 2. The lower bounds
for K3 and K4 follow from the fact that xα(K2) = 2.
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We note that (4) gives the following bounds on α(Kk
n) for every k ≥ 1:

α(Kk
3 ) ≤ 2k

1−
(
−1

3

)k +
(

2
3

)k
,

α(Kk
n) ≤ 2(n− 2)k−1

1− (2−n
n )k + 2

n(n−2
n )k−1

, n ≥ 4 , 2 - k ,

α(Kk
n) ≤ 2(n− 2)k−1

1− (2−n
n )k + 4

n2 (n−2
n )k−2

, n ≥ 4 , 2 | k .

�

Recalling the motivation of the codes considered in the introduction, the last claim implies that

f3(n) = Θ(2n)

f4(n) = Θ(2n)

In other words, extending the alphabet from 3 letters to 4 does not increase the maximal asymptotic
size of the required code, and both cases are asymptotically equivalent to using a binary alphabet.
However, adding additional letters to the alphabet does increase this asymptotic size, as it is
immediate by Claim 2.2 that f5(n) is at least Ω(

√
5

n
). Using a simple probabilistic argument

(similar to the one used in [2]), we can derive an upper bound for xα(K5) from the result on K4 :

Claim 2.11. Let G be a vertex transitive graph, and let H be an induced subgraph of G. Then:

xα(G) ≤ xα(H)
|G|
|H|

Combining this with Corollary 2.10, we get:

Corollary 2.12. For all m < n, x(Kn) ≤ xα(Km)
m n, and in particular,

√
5 ≤ xα(K5) ≤ 5

2 .

Proof of claim. Let I be a maximum independent set of Gk, and let σ1, σ2, . . . , σk denote random
automorphisms of G, chosen independently and uniformly out of all the automorphisms of G. The
permutation τ , which maps v = (v1, . . . , vk) ∈ Gk to (σ1(v1), . . . , σk(vk)), is an automorphism of
Gk, and moreover, if we fix a vertex v in Gk, then τ(v) is uniformly distributed over all the vertices
of Gk. Let S be an induced copy of Hk in Gk, and notice that by the properties of τ ,

E|τ(S) ∩ I| = |I| |S|
|Gk|

= |I|
(
|H|
|G|

)k

On the other hand, I is an independent set, therefore |τ(S) ∩ I| ≤ α(Hk) ≤ (xα(H))k. Choose an
automorphism τ for which this random variable attains at least its expected value of E|τ(S) ∩ I|,
and it follows that:

|I| ≤
(

xα(H)
|G|
|H|

)k

�
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While the best upper bound we have for Kn, when n ≥ 5, is n/2, the last corollary, as well
as some simple observations on the first few powers of complete graphs, lead to the following
conjecture:

Conjecture 2.13. For every n ≥ 4, the complete graph on n vertices satisfies xα(Kn) =
√

n.

It seems possible that the Delsarte linear programming bound (c.f., e.g., [9]) may provide
improved upper bounds for α(Kk

n) when n ≥ 4, but it does not seem to supply a proof of the last
conjecture.

As another corollary of Theorem 2.9, we can derive bounds for xα of strongly-regular graphs.
Recall that a strongly-regular graph G with parameters (n, d, λ, µ) is a d-regular graph on n vertices,
where the co-degree (the number of common neighbors) of every two adjacent vertices is λ, and
the co-degree of every two non-adjacent vertices is µ. The eigenvalues of such a graph are d and
the solutions to the quadratic equation x2 + (µ− λ)x + (µ− k) = 0 (c.f., e.g. [4], Chapter 10). As
an example, we consider the Paley graphs:

Corollary 2.14. The Paley graph Pq (where q is a prime power, q = 1 (mod 4)) satisfies
√

q ≤
xα(Pq) ≤

√
q + 1.

Proof. Recall that Pq has a vertex set V (Pq) = GF (q) and i, j ∈ V are connected iff i − j is a
quadratic residue in GF (q). It is easy to check that Pq is a (q, q−1

2 , q−5
4 , q−1

4 ) strongly regular graph
(c.f., e.g., [4]). Hence, its largest eigenvalue is q−1

2 , and its remaining eigenvalues are the solutions
of the equation x2 + x− q−1

4 = 0, i.e., {−1±√q
2 }. By Theorem 2.9:

xα(Pq) ≤ max{1,
√

q + 1} =
√

q + 1

�

We conclude this section with another example of an extremal problem on codes, which can
easily be translated to the terms of xα: let f̃3(n) be the maximum size of a set of words over Zn

3 ,
where for every two not necessarily distinct words u, v, the Hamming weight of their sum u + v

(addition is performed modulo 3) is even. Determining f̃3(n) asymptotically becomes relatively
simple, once the problem is translated to the problem of determining xα(H) for an appropriate
multi-graph H. This graph H has a vertex set V = Z3, where 0 is connected to both 1 and −1,
and there are loops on the vertices 1,−1. It is easy to confirm that a maximum independence set
in Hn corresponds to a code of maximum size, meeting the requirements mentioned above. This is
an induced subgraph of H4, the Hadamard graph on 4 vertices (assign the vertices {0, 1,−1} the
values {11, 01, 10} respectively), hence xα(H) ≤ xα(H4) = 2. The lower bound is immediate, and
therefore, f̃3(n) = Θ(2n).
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3 Clique numbers of Xor powers

3.1 The clique series and xω

In the previous section, we examined independent sets in Xor powers of graphs; the behavior of
cliques in Xor powers of graphs proves to be significantly different.

Theorem 3.1. For every graph G = (V,E), the limit of ω(Gn)
n as n tends to infinity exists. Let

xω(G) denote this limit. Then:

0 ≤ xω(G) = sup
n

ω(Gn)− 2
n + 1

≤ |V |

Proof. Let G and H denote two simple graphs, and let {v1, . . . , vr} and {u1, . . . , us} be maximum
cliques in G and H respectively. The following set is a clique in the graph G · H · K2, where the
vertex set of K2 is {0, 1}:

{v2, . . . , vr} × {u1} × {0} ∪ {v1} × {u2, . . . , us} × {1} (5)

Thus, the following inequality applies to every two simple graphs G and H:

ω(G ·H ·K2) ≥ ω(G) + ω(H)− 2 (6)

Note that there are graphs G and H for which equation (6) is tight. For example, take both G and
H to be powers of K2. The graph Kn

2 is triangle free (recall that by Claim 2.3, Kn
2 is bipartite),

therefore, ω(Kk+l
2 ) = 2 = ω(Kk

2 ) + ω(K l
2)− 2.

Consider a graph G, and define g(n) = ω(Gn). If G contains no edges, then each of its powers
is an edgeless graph, and g(n) = 1 for all n. Otherwise, it contains a copy of K2, hence equation
(6) implies that for every m,n ≥ 1:

g(m + n + 1) ≥ g(m) + g(n)− 2

Defining, for every n ≥ 1,
ĝ(n) = g(n− 1)− 2

gives:
ĝ(m + n) = g(m + n− 1)− 2 ≥ g(m− 1) + g(n− 1)− 4 = ĝ(m) + ĝ(n)

Therefore, the function ĝ is super-additive, and by Fekete’s lemma, the limit of the series ĝ(n)
n exists

and equals its supremum. We note that this applies for edgeless graphs as well, where this limit
equals 0. Denote this limit by xω:

xω(G) = lim
n→∞

ω(Gn)
n

= sup
n

ω(Gn)− 2
n + 1

(7)

It remains to show that xω(G) ≤ |V |. We first need the following definition: A function
f : V → Zk

2 (for some k ≥ 1) will be called a proper representation of G, if there is a bf ∈ {0, 1},
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such that for every (not necessarily distinct) u, v ∈ V , uv ∈ E iff f(u) · f(v) = bf . The dimension
of the representation, dim(f), is defined to be dim(f(V )) in Zk

2.

The upper bound for xω is given by the following lemma:

Lemma 3.2. If G = (V,E) has a proper representation f , then xω(G) ≤ dim(f).

Proof. Let x ◦ y denote the concatenation of the vectors x and y. By the definition of the Xor
product, for every two graphs G and H, if g is a proper representation of G and h is a proper
representation of H, then g ◦h, which maps each vector (u, v) ∈ V (G ·H) to g(u)◦h(v), is a proper
representation of G ·H, with bg◦h = bg + bh + 1 (mod 2). Clearly, dim(g ◦ h) ≤ dim(g) + dim(h).

Suppose f is a proper representation of G of dimension d, and let g denote the k-fold concate-
nation of f . Allowing dim(g) to be at most kd + 1 we may assume that bg = 0 (by adding a new
coordinate of 1 to all vectors if necessary). Let S be a maximum clique in Gk, |S| = s. We define
B to be the matrix whose s columns are {g(v) : v ∈ S}. Since S is a clique, and g is a proper
representation of Gk with bg = 0, then BtB = I. The rank of BtB is thus s, hence:

s = rank(BtB) ≤ rank(B) ≤ dim(g) ≤ kd + 1

We conclude that for every k, ω(Gk)
k ≤ d + 1

k , and the result follows. �

To prove that xω(G) ≤ |V |, it suffices to show that there exists a proper representation for
every G (the dimension of the span of n vectors can never exceed n). Set |V | = n and |E| = m,
and examine the function f : V → Zm

2 , which maps each vertex v to its corresponding row in the
incidence matrix of G. For every u 6= v ∈ V , either uv ∈ E, in which case there is a single index
at which f(u) = f(v) = 1, or uv /∈ E and there is no such index. Hence f(u) · f(v) = 1 iff uv ∈ E

(and in particular, this applies to the dot product in Zm
2 as well). All that remains in order to turn

f into a proper representation of G (with bf = 1) is to adjust the values of f(u) · f(u) to 0 for
every u ∈ V . Note that f(u) · f(u) is precisely the degree of u modulo 2, hence the vertices which
requires adjusting are precisely those of odd degree. Let S = {v1, . . . , vs} denote the set of vertices
of odd degree (clearly, s is even). We adjust the representation as follows: add s new coordinates
to all vectors. For every u /∈ S, set all of its new coordinates to 0. For vi, 1 ≤ i ≤ s, set the
i-th new coordinate to 1 and the remaining new coordinates to 0. In this manner, we reversed the
parity of the vi vectors, while preserving the dot product of vi and vj , guaranteeing this is a proper
representation of G. This completes the proof of Theorem 3.1. �

Remark: Lemma 3.2 can give better upper bounds for various graphs, by constructing proper
representations of dimension strictly smaller than |V |. For instance, for every Eulerian graph
G = (V,E), the incidence matrix is a proper representation of G (there is no need to modify the
parity of any of the vertices, since the degrees are all even). Since each column has precisely two
occurrences of the value 1, the sum of all rows is 0 in GF (2), hence the rank of the matrix is at
most |V |−1. More generally, if G has k Eulerian connected components, then xω(G) ≤ |V |−k (by
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creating a dependency in each set of rows corresponding to an Eulerian component). Finally, since
the matrix whose rows are the vectors of the proper representation, B, satisfies either BBt = A or
BBt = A + J (operating over GF (2)), where A is the adjacency matrix of G), then every proper
representation f satisfies dim(f) ≥ min{rank(A), rank(A + J)} over GF (2). In particular, if both
A and A + J are of full rank over GF (2), then there cannot exist a proper representation which
gives a better bound than |V |.

We now wish to extend our definition of xω to multi-graphs. Recall that without loss of gen-
erality, there are no parallel edges, hence a clique in a multi-graph G is a set where every two
distinct vertices are adjacent, however, it contains no loops. We note that if we were to examine
sets in G, where each two vertices are adjacent, and in addition, each vertex has a loop, then this
notion would be equivalent to independent sets in the multi-graph complement G, and would thus
be treated by the results in the previous section.

Notice that equation (6) remains valid, by the same argument, when G and H are multi-graphs.
It therefore follows that if a graph G satisfies ω(G) ≥ 2, or equivalently, if there are two adjacent
vertices in G, each of which does not have a loop, then xω is well defined and satisfies equation (7).

If ω(G) = 0, then every vertex of G has a loop, hence ω(G2n+1) = 0 and yet ω(G2n) ≥ 1 for
every n, thus the series g(n)

n alternates between zero and non zero values. Indeed, it is easy to come
up with examples for such graphs where this series does not converge (the disjoint union of 3 loops
is an example: the second power, which is exactly the square lattice graph L2(3), contains a copy
of K3, hence the subseries of even indices does not converge to 0).

If ω(G) = 1, then either the graph is simple (and hence edgeless), or there exist two vertices a

and b, such that a has a loop and b does not. In this case, we can modify the clique in (5) to use
the induced graph on {a, b} instead of a copy of K2:

{v2, . . . , vr} × {u1} × {aba} ∪ {v1} × {u2, . . . , us} × {aab} (8)

We can therefore slightly modify the argument used on simple graphs, and obtain a similar result.
The function g(n) now satisfies the inequality:

g(m + n + 3) ≥ g(m) + g(n)− 2

hence we can define ĝ as:
ĝ(n) = g(n− 3)− 2

and obtain the following definition for xω:

xω(G) = lim
n→∞

ω(Gn)
n

= sup
n

ω(Gn)− 2
n + 3

(9)

Altogether, we have shown that xω, the limit of g(n)
n , exists for every multi-graph G satisfying

ω(G) > 0. Examining the even powers of G, it is clear that two possibly equal vertices u and
v are adjacent in G2n iff they are adjacent in G

2n (where G is the multi-graph complement of
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G, as defined in the previous section). Hence, we obtain the following proposition, analogous to
Proposition 2.1:

Proposition 3.3. For every multi-graph G = (V,E) satisfying ω(G) > 0, xω(G) is well defined.
Furthermore, if in addition ω(G) > 0, where G is the multi-graph-complement of G, then xω(G) =
xω(G).

We note that the upper bound of |V | in Theorem 3.1 applies to multi-graphs as well: Lemma
3.2 does not rely on the fact that G has no loops, and in the constructions of proper representations
for G, we have already dealt with the scenario of having to modify the value of f(ui) · f(ui) for a
subset of the vertices {ui} ⊂ V . The loops merely effect the choice of the vertices whose parity we
need to modify.

3.2 Properties of xω and bounds for codes

While defining xω in the previous section, we commented that the lower bound of 0 is trivially
tight for edgeless graphs. It is interesting to state that xω(G) may be 0 even if the graph G is
quite dense: recall that the powers of complete bipartite graphs are complete bipartite (Claim 2.3).
Therefore, for every k ≥ 1, ω(Kk

m,n) = 2, and xω(Km,n) = 0.

It is now natural to ask whether xω(G) = 0 holds for every (not necessarily complete) bipartite
graph. This is false, as the following example shows: take P4, the path on 4 vertices, w−x− y− z.
The set {(w, x), (y, y), (z, y)} is a triangle in P 2

4 , hence (7) implies that xω(P4) ≥ 1
3 > 0. However,

adding the edge (w, z) completes P4 into a cycle C4 = K2,2, which satisfies xω(K2,2) = 0 by the
discussion above. This proves the following property of xω:

Claim 3.4. xω is non-monotone with respect to the addition of edges.

Recall the motivation of examining g3(n), the maximal number of vectors in {0, 1, 2}n such
that the Hamming distance between every two is odd. We already noted in the introduction that
g3(n) = ω(Kn

3 ); it is now clear from the lower and upper bounds we have presented for xω that
g3(n) = Θ(n), and more generally, that when the alphabet is {0, . . . , r − 1} for some fixed r,
gr(n) = Θ(n). The following holds for general complete graphs:

Theorem 3.5. The complete graph Kr (r ≥ 3) satisfies:

xω(G) = (1− o(1)) r ,

where the o(1)-term tends to 0 as r tends to infinity.

Proof. We first prove the following lemma, addressing the case of r being a prime power:

Lemma 3.6. Let r = pk for some prime p ≥ 3 and k ≥ 1. Then:

r − 1− r

r + 2
≤ xω(Kr) ≤ r − 1
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Proof. The upper bound of r − 1 is derived from the remark following Theorem 3.1 (r is odd and
hence Kr is Eulerian). For the lower bound, argue as follows: let L denote the set of all lines with
finite slopes in the affine plane GF (pk). Let {x1, . . . , xpk} denote the elements of GF (pk), and
represent each such line ` ∈ L, ` = ax + b by the vector:

f(`) = (a, ax1 + b, ax2 + b, . . . , axpk + b)

(i.e., represent ` by its slope followed by the y-coordinates of its set of points). Every two distinct
lines `1, `2 ∈ L are either parallel (a1 = a2 and b1 6= b2) or intersect in precisely one point
(x = (b1 − b2)(a2 − a1)−1). In both cases, precisely one coordinate in f(`1), f(`2) is equal, hence
the Hamming distance between them is pk. Since p is odd, the above set of vectors forms a clique
of size |L| = p2k in Kpk+1

pk . Equation (7) yields:

xω(Kpk) ≥ p2k − 2
(pk + 1) + 1

= pk − 1− pk

pk + 2
,

as required. �

There exists a 1
2 < Θ < 1 such that for every sufficiently large n, the interval [n−nΘ, n] contains

a prime number (see, e.g., [8] for Θ = 23/42). Combining this fact with the lower bound of the
above lemma immediately implies the asymptotic result for every sufficiently large r. �

Remark: Lemma 3.6 gives a lower bound of 1.4 for xω(K3). Using a computer search, we improved
this lower bound to 1.7 (compared to the upper bound of 2), by finding a clique of size 19 in K9

3 .

It is not difficult to see that the upper bounds of proper representations, given for cliques, can
be extended to complete r-partite graphs, by assigning the same vector to all the vertices in a given
color class. This is a special case of the following property, analogous to Claim 2.4:

Claim 3.7. Let G = (V,E) be a graph on the vertex set V = [n]. The r-blow-up of G, G[r] (see
Claim 2.4 for the definition) satisfies:

xω(G[r]) = xω(G)

Furthermore, every maximum clique of G[r]k corresponds to a maximum clique of the same size of
Gk.

Proof. Define the pattern of a vertex v = (v1, . . . , vk) ∈ G[r]k to be the vector wv = (w1, . . . , wk) ∈
Gk, such that every coordinate of v belongs in G[r] to the color class of the corresponding coordinate
of wv in G (i.e., vi belongs to the independent set of size r which corresponds to wi in G[r]). Let
S be a maximum clique of G[r]k; then every vertex v ∈ S has a unique pattern in S (by definition,
two vertices sharing the same pattern are disconnected in every coordinate). Thus, we can fix a
vertex in each color class of G[r] (note that this is an induced copy of G in G[r]), and without loss
of generality, we can assume that these are the only vertices used in every v ∈ S. This completes
the proof of the claim. �
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Corollary 3.8. Every complete r-partite graph G satisfies r
2 − 1 ≤ xω(G) ≤ r, and in addition,

xω(G) = (1− o(1)) r, where the o(1)-term tends to 0 as r tends to infinity.

We have so far seen that for every graph G on n vertices and a maximum clique of size r,
Ω(r) ≤ xω(G) ≤ O(n). For complete graphs, xω(G) = (1 − o(1))r, and one might suspect that
xω(G) cannot be significantly larger than r. The following claim settles this issue, by examining
self complementary Ramsey graphs (following the ideas of [1]):

Claim 3.9. For every n ∈ N there is a graph G on n vertices, such that ω(G) < 2dlog2(n)e and
yet xω(G) ≥ n−5

3 .

Proof. In section 2.2 of [1], the authors prove the following lemma:

Lemma 3.10 ([1]). For every n such that 4 | n there is a self-complementary graph G on n vertices
satisfying α(G) < 2dlog2(n)e.

Set n = 4m + r (0 ≤ r ≤ 3), and let G be the disjoint union of a self-complementary graph H

on 4m vertices, and r isolated vertices. By the lemma,

ω(G) < 2dlog2(n)e

Furthermore, if τ is an isomorphism mapping H to its complement, the set {(v, τ(v)) : v ∈ V (H)}
is a clique of size 4m in G2, since for every u 6= v, uv ∈ E(G) iff τ(u)τ(v) /∈ E(G). Hence:

xω(G) ≥ ω(G2)− 2
3

≥ n− r − 2
3

≥ n− 5
3

�

We note that a slightly weaker result can be proved rather easily and without using the lemma
on self-complementary Ramsey graphs, by taking the disjoint union of a Ramsey graph and its
complement. The lower bound on xω is again derived from a clique in G2 of the form {(v, ṽ)} where
ṽ is the vertex corresponding to v in the complement graph. This construction gives, for every even
n ∈ N, a graph G on n vertices, satisfying ω(G) ≤ 2 log2(n) and yet xω(G) ≥ n/2−2

3 = n−4
6 .

4 Open problems

We conclude with several open problems related to xα and xω:

Question 4.1. Does every complete graph on n ≥ 4 vertices, Kn, satisfy xα(Kn) =
√

n?

Question 4.2. What is the expected value of xα for the random graph Gn, 1
2
? What is the expected

value of xω for the random graph Gn, 1
2
?

Question 4.3. What is the precise value of xω(Kn) for n ≥ 3?

17



Question 4.4. Is the problem of deciding whether xα(G) > k, for a given graph G and a given
value k, decidable? Is the problem of deciding whether xω(G) > k, for a given graph G and a given
value k, decidable?
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